JPH01275750A - Thin metallic film manufacturing equipment - Google Patents

Thin metallic film manufacturing equipment

Info

Publication number
JPH01275750A
JPH01275750A JP10639888A JP10639888A JPH01275750A JP H01275750 A JPH01275750 A JP H01275750A JP 10639888 A JP10639888 A JP 10639888A JP 10639888 A JP10639888 A JP 10639888A JP H01275750 A JPH01275750 A JP H01275750A
Authority
JP
Japan
Prior art keywords
evaporation crucible
metal
metallic film
thin metallic
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10639888A
Other languages
Japanese (ja)
Inventor
Tomoaki Ando
智朗 安藤
Shigeo Suzuki
茂夫 鈴木
Yoshiaki Yamamoto
義明 山本
Hidenobu Shintaku
秀信 新宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10639888A priority Critical patent/JPH01275750A/en
Publication of JPH01275750A publication Critical patent/JPH01275750A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Abstract

PURPOSE:To prevent splashes from a molten metal and to improve the degree of completion of a thin metallic film to be obtained by supporting an evaporation crucible for melting a metal and generating its vapor on an installation hearth via a heat-insulating layer. CONSTITUTION:A metal 4 in an evaporation crucible 3 is irradiated by an electron beam 5 to undergo melting by heating and the resulting metallic vapor 6 is allowed to adhere to a substrate (not shown in figure), by which a thin metallic film is formed. In manufacturing equipment for the above thin metallic film, the above evaporation crucible 3 held in a vessel 11 composed of a refractory metal material is placed on an evaporation crucible installation hearth 2 equipped with a cooler 1 via a supporting medium 12. A vacuum layer 13 is provided at a prescribed space between this installation hearth 2 and the above crucible 3 to form a heat-insulating layer, by which temp. in the evaporation crucible 3 is raised and a difference in the temp. of the metal between an electron beam spot irradiation point 14 and other parts can be reduced. By this method, a splashing phenomenon at the above irradiation point 14 is reduced and a thin metallic film with high degree of completion can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属を溶融し金属蒸気を発生し、基板に付着
させて金属薄膜を形成する製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a manufacturing apparatus for melting metal to generate metal vapor and depositing it on a substrate to form a metal thin film.

従来の技術 基板に金属薄膜を形成する方法としてはスパッタリング
法や真空蒸着法が用いられている。量産性を考慮すると
高い堆積速度が望まれ後者の方が適している金属を溶融
する手段としては、抵抗加熱や電子銃(以下EBと記す
)加熱があるが、高融点材料に適用できるEB加熱が近
年よく用いられている。
Conventional techniques for forming metal thin films on substrates include sputtering and vacuum evaporation. Considering mass production, a high deposition rate is desired and the latter is more suitable.Resistance heating and electron gun (hereinafter referred to as EB) heating are methods for melting metals, but EB heating is applicable to high melting point materials. has been frequently used in recent years.

第2図に従来の金属薄膜の製造装置における蒸発源まわ
りの概略を示す。冷却器1によって冷却された蒸発るつ
ぼ設置ハース2に、MqO等の耐熱材料で形成された蒸
発るつぼ3を設置し内部に金属4を入れる。金属4をE
B(図示せず)から出力した電子ビームスポット6によ
り溶融させる。
FIG. 2 shows an outline of the evaporation source and its surroundings in a conventional metal thin film manufacturing apparatus. An evaporation crucible 3 made of a heat-resistant material such as MqO is installed in an evaporation crucible installation hearth 2 cooled by a cooler 1, and a metal 4 is placed inside. E for metal 4
It is melted by an electron beam spot 6 output from B (not shown).

溶融した金属4から発生した金属蒸気6が基板(図示せ
ず)に付着して金属薄膜を形成する。
Metal vapor 6 generated from the molten metal 4 adheres to a substrate (not shown) to form a metal thin film.

発明が解決しようとする課題 第3図(−)は電子ビームスポット6が溶融した金属4
の表面に照射された場所の状態図である。電子ビームス
ポット6が直接照射されたA部の温度をT 1そうでな
い場所B部の温度をT2とするとT1〉T2である。従
ってA、B部におけるそれぞれの飽和蒸気圧をPs4.
Ps2とするとP51オS2であり、液面上A、B部で
圧力差が生じる。また、A、B部における表面張力をσ
 σ とすると、1 !  2 一般に温度が高い程表面張力は小さく、σ1くσ2とな
る。従って液面近傍に6に示す力が作用する。
Problem to be Solved by the Invention Figure 3 (-) shows that the electron beam spot 6 is located on the molten metal 4.
FIG. 2 is a state diagram of a location where the surface of Assuming that the temperature of part A where the electron beam spot 6 is directly irradiated is T1, and the temperature of part B, which is not directly irradiated, is T2, then T1>T2. Therefore, the saturated vapor pressure in parts A and B is Ps4.
If Ps2 is P51, then S2, and a pressure difference occurs between parts A and B above the liquid surface. Also, the surface tension at parts A and B is σ
Let σ be 1! 2 Generally, the higher the temperature, the lower the surface tension, which is σ1 and σ2. Therefore, the force shown in 6 acts near the liquid surface.

この2つの力が作用してA部にはくぼみ7が形成される
。くぼみ7深さHに相当する溶融金属4の水頭と、前述
の2つの力がつり合う。この際、くぼみT内の温度分布
に起因する飽和蒸気圧および表面張力の分布によっては
、第3図(b)に示すような形状のくぼみ8が形成され
液面の挙動は不安定となる。
These two forces act to form a depression 7 in the A section. The water head of the molten metal 4 corresponding to the depth H of the depression 7 and the two aforementioned forces are balanced. At this time, depending on the distribution of saturated vapor pressure and surface tension caused by the temperature distribution within the depression T, a depression 8 having a shape as shown in FIG. 3(b) is formed, and the behavior of the liquid level becomes unstable.

従って9に示す液膜厚の小さい部分に電子ビーム6が照
射されると、溶融金属が散乱して飛翔する。その結果飛
翔した液体金属(以下スプラッシュと記す)10が基板
に付着し、金属薄膜の完成度が非常に低下するという不
具合が生じていた。
Therefore, when the electron beam 6 is irradiated onto a portion 9 where the liquid film thickness is small, the molten metal scatters and flies. As a result, the flying liquid metal (hereinafter referred to as "splash") 10 adheres to the substrate, resulting in a problem that the degree of completion of the metal thin film is greatly reduced.

課題を解決するだめの手段 本発明は金属を溶融し金属蒸気を発生する蒸発るつぼと
蒸発るつぼ設置ハースとの間に断熱層を設けるものであ
る。
Means for Solving the Problems The present invention provides a heat insulating layer between an evaporation crucible for melting metal and generating metal vapor and a hearth in which the evaporation crucible is installed.

作  用 上記手段により本発明は次のように作用するものである
。EBにより所定のパワーを投入した際、溶融金属表面
の温度分布は、熱量の収支で決定される。従って蒸発る
つぼと冷却されている設置ノ・−スの間に断熱層を設け
る事で、蒸発るつぼの温度は上昇し溶融金属表面の電子
ビームスポット照  ゛射点から蒸発るつぼ壁面までの
温度勾配は小さくなる。従って電子ビームスポット照射
点とそうでない部分の温度差が小さくなるので、温度差
に基づく飽和蒸気圧力差および表面張力差も低下する。
Operation The present invention operates as follows by means of the above-mentioned means. When a predetermined power is applied by EB, the temperature distribution on the surface of the molten metal is determined by the balance of heat amount. Therefore, by providing a heat insulating layer between the evaporation crucible and the cooled installation nozzle, the temperature of the evaporation crucible increases and the temperature gradient from the irradiation point to the wall of the evaporation crucible increases. becomes smaller. Therefore, the temperature difference between the electron beam spot irradiation point and the other parts becomes smaller, so that the saturated vapor pressure difference and the surface tension difference based on the temperature difference also decrease.

その結果電子ビームスポット照射点の液面くぼみ量は減
少するので、スプラッシュが生じにくくなり完成度の高
い金属薄膜が形成される。
As a result, the amount of depression in the liquid surface at the electron beam spot irradiation point is reduced, making it difficult for splash to occur and forming a highly complete metal thin film.

実施例 第1図は本発明の一実施例の製造法の蒸発源まわりの概
略図である。
Embodiment FIG. 1 is a schematic diagram of the evaporation source and its surroundings in a manufacturing method according to an embodiment of the present invention.

図において冷却器1および冷却されている蒸発るつぼ設
置ハース2、蒸発るつぽ3.金属4.電子ビームスポッ
ト6および金属蒸気6は第2図と同一構成要素であり、
同一番号で表示している。
In the figure, a cooler 1, a cooling evaporation crucible installation hearth 2, an evaporation crucible 3. Metal 4. The electron beam spot 6 and the metal vapor 6 are the same components as in FIG.
Displayed with the same number.

蒸発るつぽ3は高融点金属材料(例えばタングステン、
モリブデン)で形成された容器11に収納されており、
容器11の外表面は、表面粗さ0.2S程度の鏡面仕上
げが施されておシ、放射率0.2〜0.3程の低放射率
面が実、現されている。また支持具12によシ容器11
と蒸発るつぼ設置ハース2間は一定間隔の真空層を形成
している。
The evaporation crucible 3 is made of high melting point metal material (e.g. tungsten,
It is stored in a container 11 made of (molybdenum),
The outer surface of the container 11 has a mirror finish with a surface roughness of about 0.2S, and exhibits a low emissivity surface with an emissivity of about 0.2 to 0.3. In addition, the container 11 is attached to the support 12.
A vacuum layer is formed at a constant interval between the evaporation crucible and the evaporation crucible installation hearth 2.

次に動作を説明する。蒸発るつぼ3内の金属4は電子ビ
ームスポット6によシ熔融し、発生した金属蒸気6が基
板(図示せず)に付着して金属薄膜を形成する。電子ビ
ームのエネルギーにより溶融金属4の温度は上昇しそれ
につれて蒸発るつぼ3および容器11の温度は上昇する
。しかし支持具12によって容器11と蒸発るつぼ設置
ハース2の間に一定間隔の真空層13が存在するので、
容器11から蒸発るつぼ設置ハース2への伝導および対
流による放熱はほとんど無い。さらに容器11の外表面
は表面粗さ0.25程度の鏡面仕上げを施すことで、放
射率が0.2〜0.3程の低放射率面が実現されている
ので、放射による蒸発るつぼ設置ハース2への放熱も、
抑制させる事が可能である。従って真空層13は非常に
高い断熱能力を発揮する。
Next, the operation will be explained. The metal 4 in the evaporation crucible 3 is melted by the electron beam spot 6, and the generated metal vapor 6 adheres to a substrate (not shown) to form a metal thin film. The energy of the electron beam causes the temperature of the molten metal 4 to rise, and the temperatures of the evaporation crucible 3 and the container 11 to rise accordingly. However, since there is a vacuum layer 13 at a constant interval between the container 11 and the evaporation crucible installation hearth 2 due to the support 12,
There is almost no heat radiation from the container 11 to the evaporation crucible installation hearth 2 due to conduction and convection. Furthermore, by applying a mirror finish to the outer surface of the container 11 with a surface roughness of about 0.25, a low emissivity surface with an emissivity of about 0.2 to 0.3 is achieved, so that an evaporation crucible using radiation can be installed. The heat radiation to Hearth 2 is also
It is possible to suppress it. Therefore, the vacuum layer 13 exhibits extremely high heat insulation ability.

その結果、従来構成と比較して同一電子ビーム投入パワ
ーでも、蒸発るつぼ温度は上昇する。そして溶融金属表
面の電子ビームスポット照射点14から蒸発るつぼ3壁
面までの温度勾配は小さくなる。従って電子ビームスポ
ット照射点14とそうでない部分の温度差が低下するの
で、温度差に基づく飽和蒸気圧力差および表面張力差も
低下する。
As a result, compared to the conventional configuration, the evaporation crucible temperature increases even with the same electron beam input power. The temperature gradient from the electron beam spot irradiation point 14 on the molten metal surface to the wall surface of the evaporation crucible 3 becomes smaller. Therefore, since the temperature difference between the electron beam spot irradiation point 14 and the other parts is reduced, the saturated vapor pressure difference and the surface tension difference based on the temperature difference are also reduced.

その為に電子ビームスポット照射点14の液面くぼみ量
は減少してスプラッシュ発生現象も生じにくくなる。よ
って完成度の高い金属薄膜の形成が可能となる。
Therefore, the amount of depression in the liquid surface at the electron beam spot irradiation point 14 is reduced, and the phenomenon of splash generation becomes less likely to occur. Therefore, it becomes possible to form a metal thin film with a high degree of perfection.

さらに蒸発るつぼの断熱が向上しているので、従来構成
と比較して同一蒸発レートを確保するのに必要な電子ビ
ーム投入パワーは小さくてよく、省エネルギーの面から
みても効果は大きい。また溶融金属表面温度分布が均一
化されるので、蒸発るつぼからの蒸発速度分布も均一化
され、さらに大面積基板においても均一膜厚が可能とい
う効果が得られる。
Furthermore, since the heat insulation of the evaporation crucible has been improved, the electron beam input power required to maintain the same evaporation rate is smaller than that of the conventional configuration, which is highly effective in terms of energy conservation. Furthermore, since the temperature distribution on the surface of the molten metal is made uniform, the evaporation rate distribution from the evaporation crucible is also made uniform, and it is also possible to obtain a uniform film thickness even on a large-area substrate.

発明の効果 金属を溶融し金属蒸気を発生する蒸発るつぼと蒸発るつ
ぼ設置ハースとの間に断熱層を設ける事により、溶融金
属表面温度分布が均一になシ、その結果液面の挙動は沈
静しスプラッシュが発生する事がなく、完成度の高い金
属薄膜が得られるものである。
Effects of the invention By providing a heat insulating layer between the evaporation crucible that melts metal and generates metal vapor and the evaporation crucible installation hearth, the temperature distribution on the surface of the molten metal becomes uniform, and as a result, the behavior of the liquid level becomes calm. There is no splash and a highly complete metal thin film can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の製造装置における蒸着源ま
わりの概略図、第2図は従来例の製造装置における蒸着
源まわりの概略図、第3図は溶融した金属表面の電子ビ
ームスポット照射部の状態図である。 1・・・・・・冷却器、2・・・・・・蒸発るつぼ設置
ハース、3・・・・・・蒸発るつぼ、6・・・・・・電
子ビーム、7,8・・・・・・くぼみ、1o・・・・・
・スプラッシュ、11・・・・・・容器、12・・・・
・・支持具、13・・・・・・真空層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図      3−X発るつ1i 1       ノ ?       l
Fig. 1 is a schematic diagram of the evaporation source and its surroundings in a production apparatus according to an embodiment of the present invention, Fig. 2 is a schematic diagram of the evaporation source and its surroundings in a conventional production apparatus, and Fig. 3 is an electron beam spot on the molten metal surface. It is a state diagram of an irradiation part. 1... Cooler, 2... Evaporation crucible installation hearth, 3... Evaporation crucible, 6... Electron beam, 7, 8...・Indentation, 1o...
・Splash, 11... Container, 12...
...Support, 13...Vacuum layer. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3-X departure 1i 1 no? l

Claims (2)

【特許請求の範囲】[Claims] (1)金属を溶融し金属蒸気を発生する蒸発るつぼを設
置ハース上に断熱層を介して支持することを特徴とする
金属薄膜の製造装置。
(1) A metal thin film production apparatus characterized in that an evaporation crucible for melting metal and generating metal vapor is supported on a hearth via a heat insulating layer.
(2)蒸発るつぼを低放射率材料を介して断熱層に接触
させたことを特徴とする請求項1記載の金属薄膜の製造
装置。
(2) The metal thin film manufacturing apparatus according to claim 1, wherein the evaporation crucible is brought into contact with the heat insulating layer via a low emissivity material.
JP10639888A 1988-04-28 1988-04-28 Thin metallic film manufacturing equipment Pending JPH01275750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10639888A JPH01275750A (en) 1988-04-28 1988-04-28 Thin metallic film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10639888A JPH01275750A (en) 1988-04-28 1988-04-28 Thin metallic film manufacturing equipment

Publications (1)

Publication Number Publication Date
JPH01275750A true JPH01275750A (en) 1989-11-06

Family

ID=14432585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10639888A Pending JPH01275750A (en) 1988-04-28 1988-04-28 Thin metallic film manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH01275750A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149290A (en) * 2011-01-18 2012-08-09 Sanyu Electron Co Ltd Lidded hearth liner and vapor deposition method using the same
US11344304B2 (en) 2005-07-01 2022-05-31 Abbott Laboratories Clip applier and methods of use
US11439378B2 (en) 2009-01-09 2022-09-13 Abbott Cardiovascular Systems, Inc. Closure devices and methods
US11589856B2 (en) 2003-01-30 2023-02-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US11672518B2 (en) 2012-12-21 2023-06-13 Abbott Cardiovascular Systems, Inc. Articulating suturing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589856B2 (en) 2003-01-30 2023-02-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US11344304B2 (en) 2005-07-01 2022-05-31 Abbott Laboratories Clip applier and methods of use
US11439378B2 (en) 2009-01-09 2022-09-13 Abbott Cardiovascular Systems, Inc. Closure devices and methods
JP2012149290A (en) * 2011-01-18 2012-08-09 Sanyu Electron Co Ltd Lidded hearth liner and vapor deposition method using the same
US11672518B2 (en) 2012-12-21 2023-06-13 Abbott Cardiovascular Systems, Inc. Articulating suturing device

Similar Documents

Publication Publication Date Title
US5698273A (en) Electron beam physical vapor deposition method
JPH01275750A (en) Thin metallic film manufacturing equipment
JPS57155363A (en) Method of forming surface covering metal layer
JPH0222463A (en) Production of metallic thin film
JPH03120358A (en) Apparatus and method for coating parts by ark discharge
JPS5644770A (en) Preparation of thin film
JPH0230754A (en) Vacuum deposition method
JPH0578826A (en) Device for producing thin film
JPS5852473A (en) Surface treatment of metallic material
US4913220A (en) Apparatus and method for spill chilling rapidly solidified material
JPH0313566A (en) Production of thin film
JPH0371970A (en) Apparatus for melting metal
JPS6130619A (en) Quick cooling method
JPH04116377A (en) Container for melting metal
JPH06158301A (en) Sputtering device
JPH09143685A (en) Method for preventing crack of crucible for continuous vacuum vapor deposition apparatus
JPH0261059A (en) Vapor deposition apparatus
JPH03187133A (en) Shadow mask of color cathode-ray tube
JPH0892734A (en) Evaporation of mg
JPS5816066A (en) Vacuum plating device
RU2092970C1 (en) Method for joining glass and piezoelectric crystal with aluminium base alloy layer
JPH06279813A (en) Container for melting high-purity metal and production thereof
JPS5616927A (en) Magnetic head
JPH09137268A (en) Method for evaporating magnesium
JPH08250465A (en) Electrode cover for plasma treating device for semiconductor