JPH0222463A - Production of metallic thin film - Google Patents

Production of metallic thin film

Info

Publication number
JPH0222463A
JPH0222463A JP17330188A JP17330188A JPH0222463A JP H0222463 A JPH0222463 A JP H0222463A JP 17330188 A JP17330188 A JP 17330188A JP 17330188 A JP17330188 A JP 17330188A JP H0222463 A JPH0222463 A JP H0222463A
Authority
JP
Japan
Prior art keywords
metal
thin film
electron beam
crucible
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17330188A
Other languages
Japanese (ja)
Inventor
Tomoaki Ando
智朗 安藤
Shigeo Suzuki
茂夫 鈴木
Hidenobu Shintaku
秀信 新宅
Yoshiaki Yamamoto
義明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17330188A priority Critical patent/JPH0222463A/en
Publication of JPH0222463A publication Critical patent/JPH0222463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the title metallic thin film with completeness without causing splashing by setting a vaporization crucible with an internal convex bottom on a hearth, melting, and vaporizing the metal in the crucible by an electron beam. CONSTITUTION:The metal 4 in a vaporization crucible 3 with an internal convex bottom is melted by an electron beam 5, and a metallic thin film is formed on a substrate by the generated metal vapor 6. At this time, since the crucible has a convex bottom, the top C is close to the A part directly irradiated by the electron beam 5, the distance from a cooler 1 is long, and the temp. of the top C is made higher than that of the periphery D. As a result, the molten metal 4 is allowed to flow toward the top C from the periphery D by the temp. difference. Meanwhile, the molten metal flows toward the B part close to the side wall from the irradiated part A, a convection is produced in the direction A B D C, and the temp. is uniformized. In addition, since a heater 11 is embedded in the side part 2a of the hearth, the temp. is further uniformized, splashing is hardly caused, and a metallic thin film with completeness is formed on the substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属を溶融して発生させた金属蒸気を基板に
蒸着させて金属薄膜を形成する製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a manufacturing method for forming a metal thin film by depositing metal vapor generated by melting a metal onto a substrate.

従来の技術 基板に金属薄膜を形成する方法としてはスパッタリング
法や真空蒸着法が用いられているが、高い堆積速度が望
まれる量産には後者の方が適している。金属を溶融する
手段としては、抵抗加熱や電子ビーム加熱があるが、高
融点材料に適用できる電子ビーム加熱が近年よく用いら
れている。
Conventional techniques for forming metal thin films on substrates include sputtering and vacuum evaporation, but the latter is more suitable for mass production where a high deposition rate is desired. Methods for melting metal include resistance heating and electron beam heating, and electron beam heating, which can be applied to high melting point materials, has been frequently used in recent years.

第2図に従来の金属薄膜の製造法の蒸発源まわりの概略
を示す。冷却器1によって冷却される蒸発るつぼ設置ハ
ース2に、MqO等の附熱材料で形成された蒸発るつぼ
3を設置し内部に金属4を入れる。金属4を電子ビーム
5により溶融する。
FIG. 2 shows an outline of the evaporation source and its surroundings in a conventional metal thin film manufacturing method. An evaporation crucible 3 made of a heat-generating material such as MqO is installed in an evaporation crucible installation hearth 2 cooled by a cooler 1, and a metal 4 is placed inside. Metal 4 is melted by electron beam 5.

この溶融金属4から発生する金属蒸気6が基板(図示せ
ず)に蒸着して金属薄膜を形成する。
Metal vapor 6 generated from this molten metal 4 is deposited on a substrate (not shown) to form a metal thin film.

発明が解決しようとする課題 第3図aid、溶融金属4の電子ビーム5が照射される
液面近傍部位の溶融状態を示している。電子ビーム5が
直接照射されるA部の温度をT1、A部まわシのB部の
温度をT2とするとT1〉T2である。従ってA、B部
におけるそれぞれの飽和蒸気圧をPsl、Ps2とする
と”Sl>”S2であシ、液面上A、B部で圧力差が生
じる。またA、B部における表面張力をσ1.σ2とす
ると、一般に温度が高い程表面張力は小さいので、σ1
〈σ2となる。従って液面近傍部位に6で示す力が作用
する。
Problems to be Solved by the Invention FIG. 3 aid shows the molten state of a portion of the molten metal 4 near the liquid surface that is irradiated with the electron beam 5. Assuming that the temperature of part A, which is directly irradiated with the electron beam 5, is T1, and the temperature of part B of part A, which is rotated, is T2, T1>T2. Therefore, if the saturated vapor pressures in parts A and B are Psl and Ps2, "Sl>"S2, and a pressure difference occurs in parts A and B above the liquid surface. In addition, the surface tension at parts A and B is set to σ1. Assuming σ2, generally the higher the temperature, the smaller the surface tension, so σ1
〈σ2. Therefore, a force indicated by 6 acts on a portion near the liquid surface.

この2つの力が作用してA部にはくぼみ7が生じ、くぼ
み7の深さHに相当する溶融金属4の水頭と、前述の2
つの力とかつシ合う。
These two forces act to create a depression 7 in part A, and the water head of the molten metal 4 corresponding to the depth H of the depression 7 and the above-mentioned 2
The power of one and the other.

このとき、液面近傍部位の温度分布に起因する飽和蒸気
圧および表面張力の分布によっては、第3図すに示すよ
うな形状のくぼみ8が生じ、液面の挙動は不安定となる
。従って液膜厚の小さい部分9に電子ビーム5が照射さ
れると、液体金属1゜が基板に付着(以下、スブラソン
ユ現象と記す)し、金属薄膜の完成度が非常に低下する
という不具合が生じていた。
At this time, depending on the distribution of saturated vapor pressure and surface tension caused by the temperature distribution in the vicinity of the liquid surface, a depression 8 having a shape as shown in FIG. 3 is generated, and the behavior of the liquid surface becomes unstable. Therefore, when the electron beam 5 is irradiated onto the part 9 where the liquid film thickness is small, the liquid metal 1° adheres to the substrate (hereinafter referred to as the souvre sonyu phenomenon), resulting in a problem that the degree of completion of the metal thin film is greatly reduced. was.

第4図に示すように、溶融金属4の表面温度分布はスポ
ット点をピークとして蒸発るつぼ壁面にむかって低下し
ている。上記不具合はこの温度分布の不均一さによるも
のであった。
As shown in FIG. 4, the surface temperature distribution of the molten metal 4 peaks at the spot point and decreases toward the wall surface of the evaporation crucible. The above-mentioned problems were caused by the non-uniformity of the temperature distribution.

課題を解決するための手段 本発明は上記不具合を解消するため、内部底面が凸面状
に形成された蒸発るつぼを蒸発るつぼ設置ハースに設置
し、前記蒸発るつぼ内の金属を電子ビームにより溶融し
金属蒸気を発生させることを特徴とする。なお、このと
き、蒸発るつぼを側方から同時加熱すると好適である。
Means for Solving the Problems In order to solve the above problems, the present invention installs an evaporation crucible with a convex internal bottom in an evaporation crucible installation hearth, melts the metal in the evaporation crucible with an electron beam, and melts the metal. It is characterized by generating steam. At this time, it is preferable to simultaneously heat the evaporation crucible from the side.

作  用 上記手段により本発明は次のように作用するものである
。所定パワーの電子ビームを蒸発るつぼ内の金属に照射
すると、蒸発るつぼの凸面状の内部底面において、頂部
と周辺部で温度差が生じる。
Operation The present invention operates as follows by means of the above-mentioned means. When the metal in the evaporation crucible is irradiated with an electron beam of a predetermined power, a temperature difference occurs between the top and the periphery of the convex internal bottom surface of the evaporation crucible.

すなわち頂部は、溶融金属の電子ビームが照射される液
面部位に接近しておシ、かつ蒸発るつぼ設置ハース冷却
器から離れているので周辺部よシも高温となる。従って
この温度差により、溶融金属に周辺部から頂部方向へ流
れが生じる。そして溶融金属の電子ビームが照射される
液面近傍部位において、表面張力差によって生じる蒸発
るつぼ側壁部方向への流れと相まって、対流が生じる。
That is, since the top is close to the liquid surface area of the molten metal that is irradiated with the electron beam and is away from the hearth cooler in which the evaporation crucible is installed, the surrounding area also becomes high temperature. This temperature difference therefore causes the molten metal to flow from the periphery toward the top. In a portion of the molten metal near the liquid surface where the electron beam is irradiated, convection occurs in combination with the flow toward the side wall of the evaporation crucible caused by the difference in surface tension.

従ってこの対流によシ、溶融金属液面の電子ビーム照射
部から蒸発るつぼ側壁部近傍までの温度勾配は小さくな
る。これによシ温度差に基づく飽和蒸気圧力差は低下す
るので、電子ビーム照射部の液面くぼみ量は減少する。
Therefore, due to this convection, the temperature gradient of the molten metal liquid surface from the electron beam irradiation part to the vicinity of the side wall of the evaporation crucible becomes small. As a result, the saturated vapor pressure difference based on the temperature difference decreases, and the amount of depression in the liquid level in the electron beam irradiation section decreases.

このとき、蒸発るつぼを側方から同時加熱することによ
シ、蒸発るつぼ側壁部の温度は上昇し、溶融金属表面温
度分布はますます均一になり液面くぼみ量はさらに減少
する。
At this time, by simultaneously heating the evaporation crucible from the side, the temperature of the side wall of the evaporation crucible increases, the temperature distribution on the surface of the molten metal becomes more uniform, and the amount of depression in the liquid level further decreases.

従ってスプラッシュ現象が生じにくくなり完成度の高い
金属薄膜が形成される。
Therefore, the splash phenomenon is less likely to occur and a highly complete metal thin film is formed.

実施例 第1図は本発明の一実施例を示している。Example FIG. 1 shows an embodiment of the invention.

蒸発るつぼ3の内部底面は内側に対して凸面状に形成さ
れており、凸面の頂部Cと周辺部りでは蒸発るつぼ3の
壁肉厚が異なる。また蒸発るつぼ設置ハース2の側周部
2aにヒーター11が埋設されている。1は蒸発るつぼ
設置ハース2の底部2bに埋設された冷却器である。
The internal bottom surface of the evaporation crucible 3 is formed in a convex shape toward the inside, and the wall thickness of the evaporation crucible 3 differs between the top C and the peripheral portion of the convex surface. Further, a heater 11 is embedded in the side peripheral portion 2a of the evaporation crucible installation hearth 2. 1 is a cooler buried in the bottom part 2b of the hearth 2 in which the evaporation crucible is installed.

次に動作を説明する。蒸発るつぼ3内の金属4は電子ビ
ーム6によシ熔融し、発生した金属蒸気6が基板(図示
せず)に付着して金属薄膜を形成する。電子ビーム5の
エネルギーによシ溶融金属4の温度は上昇する。この時
蒸発るつぼ3の内部底面は内側に対して凸面となってい
るので、頂部Cは、溶融金属4の電子ビーム6が直接照
射されるA部に接近しており、かつ冷却器1からの距離
が長いので、周辺部りよシ高温となる。従って温度差に
よシ、溶融金属4に周辺部りから頂部方向への流れ12
が生じる。一方、溶融金属4表面においては、A都電子
ビームスポット照射部Aから蒸発るつぼ3の側壁部近傍
のB部方向への流れ13がA、B部間の表面張力差によ
って生じている。この2つの流れが相まってA−、B−
、D−、Cという対流が発生する。従ってこの対流によ
シ溶融金属4表面の温度勾配は小さくなり、温度分布は
均一化される。よって温度差に基づく飽和蒸気圧差は低
下するので、A部の液面くぼみ量は減少する。
Next, the operation will be explained. The metal 4 in the evaporation crucible 3 is melted by the electron beam 6, and the generated metal vapor 6 adheres to a substrate (not shown) to form a metal thin film. The temperature of the molten metal 4 increases due to the energy of the electron beam 5. At this time, since the internal bottom surface of the evaporation crucible 3 is convex toward the inside, the top C is close to the part A of the molten metal 4 that is directly irradiated with the electron beam 6, and Because the distance is long, the surrounding areas become hotter than the others. Therefore, due to the temperature difference, the molten metal 4 has a flow 12 from the periphery to the top.
occurs. On the other hand, on the surface of the molten metal 4, a flow 13 flows from the electron beam spot irradiation section A toward the section B near the side wall of the evaporation crucible 3 due to the difference in surface tension between the sections A and B. These two flows combine to create A- and B-
, D-, and C occur. Therefore, due to this convection, the temperature gradient on the surface of the molten metal 4 is reduced, and the temperature distribution is made uniform. Therefore, the saturated vapor pressure difference based on the temperature difference decreases, so the amount of liquid level depression in section A decreases.

さらに蒸発るつぼ設置ハース側部2a内に埋設されてい
るヒーター11によって蒸発るつぼ3の側壁面温度は上
昇するので、溶融金属4の表面温度分布はますます均一
化され液面くぼみ量は減少する。
Further, the temperature of the side wall of the evaporating crucible 3 is increased by the heater 11 embedded in the side part 2a of the evaporating crucible installation hearth, so that the surface temperature distribution of the molten metal 4 becomes more uniform and the amount of depression in the liquid level decreases.

これにより、スプラッシュ現象も生じにくくなり完成度
の高い金属薄膜の形成が可能となる。まだ溶融金属4の
表面温度分布が均一化されるので、蒸発るつぼ3からの
金属蒸気6の蒸発速度分布も均一化されさらに大面積基
板においても膜厚の均一化が図れるものである。
As a result, splash phenomena are less likely to occur, and a highly complete metal thin film can be formed. Since the surface temperature distribution of the molten metal 4 is still made uniform, the evaporation rate distribution of the metal vapor 6 from the evaporation crucible 3 is also made uniform, and further, the film thickness can be made uniform even on a large-area substrate.

発明の効果 本発明によれば、溶融金属に対流を生じさせることがで
きるので、溶融金属の表面温度分布が均一になり、その
結果液面の挙動は沈静しスプラッシュ現象が発生する事
なく、完成度の高い金属薄膜が得られるものである。
Effects of the Invention According to the present invention, since convection can be generated in the molten metal, the surface temperature distribution of the molten metal becomes uniform, and as a result, the behavior of the liquid level calms down and the liquid is completed without the occurrence of a splash phenomenon. A thin metal film with high purity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略図、第2図は従来の製
造法の概略図、第3図はその溶融金属表面の電子ビーム
照射部の状態図、第4図はその溶融金属の表面温度分布
図である。 2・・・・・・蒸発るつぼ設置ハース、3・・・・・・
蒸発るつぼ、5・・・・・・電子ヒーム、11・・・・
・・ヒーター代理人の氏名 弁理士 粟 野 重 孝 
ほか1名図 (−)【−ノ (aン 蒸発ろ211没1ハース
Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is a schematic diagram of a conventional manufacturing method, Fig. 3 is a state diagram of the electron beam irradiated part on the surface of the molten metal, and Fig. 4 is a diagram of the molten metal. FIG. 2... Evaporation crucible installation hearth, 3...
Evaporation crucible, 5...electronic heat, 11...
...Name of Heater's agent Patent attorney Shigetaka Awano
1 other figure (-) [-ノ(a evaporation filter 211 sink 1 hearth

Claims (2)

【特許請求の範囲】[Claims] (1)内部底面が凸面状に形成された蒸発るつぼを蒸発
るつぼ設置ハースに設置し、前記蒸発るつぼ内の金属を
電子ビームにより溶融し金属蒸気を発生させる金属薄膜
の製造法。
(1) A method for producing a metal thin film, in which an evaporation crucible with a convex internal bottom is installed in an evaporation crucible installation hearth, and metal in the evaporation crucible is melted by an electron beam to generate metal vapor.
(2)蒸発るつぼを側方から同時加熱する特許請求の範
囲第1項記載の金属薄膜の製造法。
(2) The method for producing a metal thin film according to claim 1, in which the evaporation crucible is simultaneously heated from the sides.
JP17330188A 1988-07-12 1988-07-12 Production of metallic thin film Pending JPH0222463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17330188A JPH0222463A (en) 1988-07-12 1988-07-12 Production of metallic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17330188A JPH0222463A (en) 1988-07-12 1988-07-12 Production of metallic thin film

Publications (1)

Publication Number Publication Date
JPH0222463A true JPH0222463A (en) 1990-01-25

Family

ID=15957906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17330188A Pending JPH0222463A (en) 1988-07-12 1988-07-12 Production of metallic thin film

Country Status (1)

Country Link
JP (1) JPH0222463A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264549B2 (en) 2004-03-31 2007-09-04 Toyo Tire & Rubber Co., Ltd. Joint boot
US7347787B2 (en) 2004-11-24 2008-03-25 Toyo Tire & Rubber Co., Ltd. Joint boot
US7488259B2 (en) 2003-02-19 2009-02-10 Fukoku Co., Ltd. Resin boots for constant velocity universal joint
US7531119B2 (en) 2003-08-29 2009-05-12 Fukoku Co., Ltd. Method of manufacturing boot for constant-velocity universal joint and manufacturing apparatus for use in the method, and boot for constant-velocity universal joint
US7588713B2 (en) 2003-02-19 2009-09-15 Fukoku Co., Ltd. Method of manufacturing resin boots for constant velocity universal joint

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488259B2 (en) 2003-02-19 2009-02-10 Fukoku Co., Ltd. Resin boots for constant velocity universal joint
US7588713B2 (en) 2003-02-19 2009-09-15 Fukoku Co., Ltd. Method of manufacturing resin boots for constant velocity universal joint
US7531119B2 (en) 2003-08-29 2009-05-12 Fukoku Co., Ltd. Method of manufacturing boot for constant-velocity universal joint and manufacturing apparatus for use in the method, and boot for constant-velocity universal joint
US7264549B2 (en) 2004-03-31 2007-09-04 Toyo Tire & Rubber Co., Ltd. Joint boot
US7347787B2 (en) 2004-11-24 2008-03-25 Toyo Tire & Rubber Co., Ltd. Joint boot

Similar Documents

Publication Publication Date Title
KR100276779B1 (en) Improved method of depositing materials in integrated circuit fabrication
JPH0222463A (en) Production of metallic thin film
JP4382162B2 (en) Member coating and manufacturing method thereof
JPS56100451A (en) Manufacture of electrode of semiconductor device
JPH01275750A (en) Thin metallic film manufacturing equipment
JPH0313566A (en) Production of thin film
JP2570560Y2 (en) Electron beam evaporation source
JPH02104659A (en) Device for producing thin film
JPS6476736A (en) Manufacture of semiconductor device
JP2790654B2 (en) Method for forming titanium dioxide film on plastic lens substrate
JPS60180111A (en) Manufacture of single crystal semiconductor device
JPH0556315B2 (en)
JPS6347256B2 (en)
JPH0261059A (en) Vapor deposition apparatus
JPH0230754A (en) Vacuum deposition method
JPH03264666A (en) Device for producing semiconductor
JPH03105854A (en) Manufacture of lithium negative electrode
JPS57154829A (en) Forming method for electrode metal of semiconductor device
KR100795802B1 (en) Method of manufacturing flat panel display apparatus
JPH0641730A (en) Vapor deposition method
RU2092970C1 (en) Method for joining glass and piezoelectric crystal with aluminium base alloy layer
JPS63460A (en) Evaporating method for ingot
JPS6043914B2 (en) Sputtering film forming method
JPS6393855A (en) Vapor deposition device
JPS6314859A (en) Method for evaporating metal