JPH0556315B2 - - Google Patents

Info

Publication number
JPH0556315B2
JPH0556315B2 JP16619284A JP16619284A JPH0556315B2 JP H0556315 B2 JPH0556315 B2 JP H0556315B2 JP 16619284 A JP16619284 A JP 16619284A JP 16619284 A JP16619284 A JP 16619284A JP H0556315 B2 JPH0556315 B2 JP H0556315B2
Authority
JP
Japan
Prior art keywords
thin film
single crystal
semiconductor
crystal thin
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16619284A
Other languages
Japanese (ja)
Other versions
JPS6144786A (en
Inventor
Takashi Tomita
Akashi Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16619284A priority Critical patent/JPS6144786A/en
Publication of JPS6144786A publication Critical patent/JPS6144786A/en
Publication of JPH0556315B2 publication Critical patent/JPH0556315B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体単結晶薄膜の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor single crystal thin film.

従来の技術 第3図は従来の半導体単結晶薄膜の製造方法に
適用される製造装置の一例であつて、1は半導体
ウエハで、これが予備加熱のための平板状カーポ
ンヒータ2上に載置される。3は線状のカーボン
ヒータであつて、半導体ウエハ1上を例えば矢印
3a方向に所定の速度をもつて移動し得るように
なされている。
Prior Art FIG. 3 shows an example of a manufacturing apparatus applied to a conventional semiconductor single crystal thin film manufacturing method, in which 1 is a semiconductor wafer, which is placed on a flat carbon heater 2 for preheating. Ru. Reference numeral 3 denotes a linear carbon heater, which can be moved over the semiconductor wafer 1 at a predetermined speed, for example, in the direction of an arrow 3a.

第4図に第3図の半導体ウエハの構造例を示
し、以下これについて説明する。4は例えば石英
からなる絶縁基板、5はその上に形成されたシリ
コン等からなる多結晶半導体層、6はその上に被
着形成されたSiO2層等からなるキヤツプ層であ
る。尚、基板4としては、シリコン基板を設けそ
の上にSiO2層の如き絶縁層を被着形成したもの
を用いることができる。
FIG. 4 shows an example of the structure of the semiconductor wafer shown in FIG. 3, which will be described below. 4 is an insulating substrate made of, for example, quartz; 5 is a polycrystalline semiconductor layer made of silicon or the like formed thereon; and 6 is a cap layer made of an SiO 2 layer or the like deposited thereon. As the substrate 4, a silicon substrate may be used with an insulating layer such as a SiO 2 layer deposited thereon.

第3図の製造装置において、線状カーボンヒー
タ3が矢印3a方向に移動するとき、第4図にお
ける多結晶半導体層5は、第5図に示すごとくカ
ーボンヒータ3によつて加熱されて溶融されてい
る領域M、未だ溶融されていない多結晶領域P及
び溶融後自然冷却されて固化冷却されて、単結晶
化している領域RCに分けられる。又、領域P乃
びMの中間位置をa、領域M及びRCの中間位置
をbとする。第5図のグラフでは横軸をカーボン
ヒータ3の移動方向3aに沿う位置とし、縦軸を
温度とする。TSは板状カーボンヒータ2の予備
加熱温度、TMはシリコン多結晶半導体層5の融
点である。しかしてカーボンヒータ3が移動する
につれて多結晶半導体層5が加熱され、その温度
が高くなり融点TMを超えると溶融し、カーボン
ヒータ3が遠ざかると自然冷却されて徐々に固化
冷却されて単結晶化(再結晶化)される。この温
度変化の曲線をS1として示す。
In the manufacturing apparatus of FIG. 3, when the linear carbon heater 3 moves in the direction of the arrow 3a, the polycrystalline semiconductor layer 5 in FIG. 4 is heated and melted by the carbon heater 3 as shown in FIG. The polycrystalline region M is divided into a polycrystalline region P which is not yet melted, a polycrystalline region P which is naturally cooled after melting, and a region RC which is solidified and turned into a single crystal. Also, let the intermediate position between regions P and M be a, and the intermediate position between regions M and RC be b. In the graph of FIG. 5, the horizontal axis represents the position along the moving direction 3a of the carbon heater 3, and the vertical axis represents the temperature. T S is the preheating temperature of the plate-shaped carbon heater 2 , and T M is the melting point of the silicon polycrystalline semiconductor layer 5 . As the carbon heater 3 moves, the polycrystalline semiconductor layer 5 is heated, and when the temperature rises and exceeds the melting point T M , it melts, and as the carbon heater 3 moves away, it is naturally cooled and gradually solidified and cooled to become a single crystal. (recrystallization). The curve of this temperature change is shown as S1 .

尚、上述の線状加熱手段としては、レーザビー
ム発生手段、電子ビーム発生手段或いはハロゲン
ランプ、IRランプ等を用いることもできる。そ
の場合は板状ヒータ2を用いなくても良い。
Note that as the above-mentioned linear heating means, a laser beam generating means, an electron beam generating means, a halogen lamp, an IR lamp, etc. can also be used. In that case, the plate heater 2 may not be used.

しかして、多結晶半導体層5を加熱溶融し、そ
の後冷却固化して再結晶化させる場合、単結晶層
にサブグレインバウンダリイと呼ばれる小傾角の
結晶粒界が発生する場合が多い。この単結晶層に
サブグレインバウンダリイが発生する原因につい
ては、現在のところ明確ではないが、多結晶半導
体層5が溶融後、冷却固化して再結晶化する時点
で放出される潜熱がその原因の一つであると考え
られる。即ち、サブグレインパウンダリイの発生
は、多結晶半導体層の溶融後の固化時に発生する
潜熱という系の自由エネルギを、結晶粒界の持つ
界面エネルギとして固定していることに起因する
と推察できる。この推察による仮定によれば、固
液界面近傍での熱の流れ方を、この潜熱が優先的
に固液境界近傍から外部へ放出されるように制御
することで、前述のサブグレインバウンダリイの
発生を回避することができるものと考えられる。
Therefore, when the polycrystalline semiconductor layer 5 is heated and melted and then cooled and solidified to be recrystallized, small-angle crystal grain boundaries called subgrain boundaries often occur in the single crystal layer. The reason why subgrain boundaries occur in this single crystal layer is not clear at present, but the cause is the latent heat released when the polycrystalline semiconductor layer 5 is melted, cooled, solidified, and recrystallized. It is considered to be one of the That is, it can be inferred that the occurrence of subgrain boundaries is due to the fact that the free energy of the latent heat system generated during solidification after melting of the polycrystalline semiconductor layer is fixed as the interfacial energy of the crystal grain boundaries. According to the assumption based on this speculation, by controlling the flow of heat near the solid-liquid interface so that this latent heat is preferentially released from the vicinity of the solid-liquid boundary to the outside, the above-mentioned subgrain boundary can be achieved. It is thought that this can be avoided.

発明が解決しようとする問題点 斯る点に鑑み本発明は、サブグレインバウンダ
リイが発生しに難く、高品質の半導体単結晶薄膜
を得ることのできる半導体単結晶薄膜の製造方法
を提案しようとするものである。
Problems to be Solved by the Invention In view of the above, the present invention seeks to propose a method for manufacturing a semiconductor single crystal thin film that is unlikely to cause subgrain boundaries and can obtain a high quality semiconductor single crystal thin film. It is something to do.

問題点を解決するための手段 本発明による半導体単結晶薄膜の製造方法は、
半導体層に対して相対的に加熱手段を走査させ
て、半導体層を溶融させた後、固化冷却して半導
体単結晶薄膜を形成するようにした半導体単結晶
薄膜の製造方法において、加熱手段に後続する冷
却手段を設け、上記半導体層の溶融領域に続く再
結晶化領域の温度勾配を急峻にするようにしたも
のである。
Means for Solving the Problems The method for manufacturing a semiconductor single crystal thin film according to the present invention includes:
In a method for manufacturing a semiconductor single crystal thin film in which a heating means is scanned relative to a semiconductor layer to melt the semiconductor layer and then solidified and cooled to form a semiconductor single crystal thin film, a method subsequent to the heating means is provided. A cooling means is provided to steepen the temperature gradient in the recrystallized region following the melted region of the semiconductor layer.

作 用 斯る製造方法によれば、冷却手段によつて半導
体薄膜の溶融領域に続く再結晶化領域の温度勾配
が急峻となるので、溶融領域の潜熱が急速に外部
へ放出され、これにより溶融領域が急峻に冷却さ
れて、サブグレインバウンダリイのごとき小傾角
の結晶粒界の発生の可能性が低下するものであ
る。
Effect: According to this manufacturing method, the cooling means makes the temperature gradient of the recrystallization region following the melting region of the semiconductor thin film steep, so that the latent heat of the melting region is rapidly released to the outside, thereby causing the melting. The region is cooled steeply, and the possibility of occurrence of small-angle grain boundaries such as subgrain boundaries is reduced.

実施例 以下に第1図を参照して本発明の一実施例を説
明するも、第1図において第3図と対応する部分
には同一符号を付して重複説明を省略する。第1
図の実施例も第3図と同様にカーボンヒータ3を
加熱手段として用いて半導体ウエハ1を加熱して
溶融し、これを固化冷却して半導体単結晶薄膜を
形成する場合である。又、半導体ウエハ1の具体
的構成例は上述した第4図及びそれに関連した説
明と同様である。
Embodiment An embodiment of the present invention will be described below with reference to FIG. 1. In FIG. 1, parts corresponding to those in FIG. 1st
The illustrated embodiment also uses the carbon heater 3 as a heating means to heat and melt the semiconductor wafer 1, as in FIG. 3, and solidifies and cools it to form a semiconductor single crystal thin film. Further, a specific example of the structure of the semiconductor wafer 1 is the same as that shown in FIG. 4 and the related explanation described above.

本発明においては線状加熱手段3に後続して、
線状の冷却手段8を設けるものである。この例の
冷却手段8は金属、プラスチツク等のパイプ8a
の下側に多数の孔を穿設し、このパイプにヘリウ
ム、アルゴン等の冷却ガスを通過させ、加熱手段
3に後続して、半導体ウエハ1を走査させ、冷却
ガスを半導体1に吹き付けて加熱手段3によつて
溶融された半導体単結晶薄膜を急速に固化ウエハ
冷却して、単結晶薄膜を形成するものである。第
5図に示す如く、点bより右側の半導体薄膜5の
再結晶領域の温度勾配は、曲線S2として示すごと
くその勾配が曲線S1に比し急峻となる。この温度
勾配は負の温度勾配である。
In the present invention, following the linear heating means 3,
A linear cooling means 8 is provided. The cooling means 8 in this example is a pipe 8a made of metal, plastic, etc.
A number of holes are drilled in the lower side, and a cooling gas such as helium or argon is passed through this pipe, followed by the heating means 3, the semiconductor wafer 1 is scanned, and the cooling gas is blown onto the semiconductor 1 to heat it. The semiconductor single crystal thin film melted by means 3 is rapidly solidified and cooled on a wafer to form a single crystal thin film. As shown in FIG. 5, the temperature gradient in the recrystallized region of the semiconductor thin film 5 on the right side of point b is steeper than that of curve S1, as shown by curve S2 . This temperature gradient is a negative temperature gradient.

かくすることにより、加熱手段3によつて溶融
された多結晶半導体層5は冷却手段8によつて急
速に固化冷却するので、その潜熱が急速に放散さ
れ、サブグレインバウンダリイの如き小傾角の結
晶粒界の発生が頗る少なくなる。
As a result, the polycrystalline semiconductor layer 5 melted by the heating means 3 is rapidly solidified and cooled by the cooling means 8, so that its latent heat is rapidly dissipated, and the polycrystalline semiconductor layer 5 melted by the heating means 3 is rapidly solidified and cooled. The occurrence of grain boundaries is significantly reduced.

第2図は本発明の他の実施例であつて冷却手段
8として孔を設けていない金属製のパイプ8aに
冷媒を通過させ加熱手段3に後続して、半導体ウ
エハ1を走査させるようにするものである。この
場合の冷媒としては水等の液体或いはヘリウム、
窒素等の液体又は気体が可能である。尚、パイプ
8aの表面を黒化することにより、冷却効率を上
げることができる。この場合も作用効果は第1図
の場合と同様である。尚、第1図及び第2図の実
施例において、加熱手段3がカーボンヒータの場
合はその走査速度は0.1〜10mm/sec、望しくは2
mm/sec、レーザビーム発生手段の場合は1〜100
mm/sec、望しくは20mm/sec、電子ビーム発生手
段の場合は50〜5000mm/sec、望しくは200mm/
sec程度が目安であり、冷却手段8の走査速度も
それに合わせるようにする。
FIG. 2 shows another embodiment of the present invention, in which a coolant is passed through a metal pipe 8a without holes as a cooling means 8, followed by a heating means 3, and the semiconductor wafer 1 is scanned. It is something. In this case, the refrigerant is liquid such as water, helium,
Liquids or gases such as nitrogen are possible. Note that cooling efficiency can be increased by blackening the surface of the pipe 8a. In this case as well, the effect is the same as in the case of FIG. In the embodiments shown in FIGS. 1 and 2, if the heating means 3 is a carbon heater, the scanning speed is 0.1 to 10 mm/sec, preferably 2.
mm/sec, 1 to 100 for laser beam generation means
mm/sec, preferably 20 mm/sec, 50 to 5000 mm/sec, preferably 200 mm/sec in the case of electron beam generating means
A rough guideline is about seconds, and the scanning speed of the cooling means 8 should be adjusted accordingly.

発明の効果 上述せる本発明によれば、加熱手段に後続する
冷却手段を設けて半導体薄膜の溶融領域に続く再
結晶化領域の温度勾配を急峻にするようにしたの
で、半導体薄膜の加熱手段によつて溶融された
後、固化冷却されて再結晶される領域の潜熱の放
散が急速に行われるので、サブグレインバウンダ
リイの如き小傾角の結晶粒界の発生が著しく減少
し、高品質の半導体単結晶薄膜を得ることができ
る。
Effects of the Invention According to the present invention described above, the cooling means following the heating means is provided to steepen the temperature gradient in the recrystallization region following the melting region of the semiconductor thin film. As a result, the latent heat in the region that is melted, solidified, cooled, and recrystallized is rapidly dissipated, which significantly reduces the occurrence of small-angle grain boundaries such as subgrain boundaries, resulting in high-quality semiconductors. A single crystal thin film can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による半導体単結晶
薄膜の製造方法を適用する製造装置の各例を示す
斜視図、第3図は従来の半導体単結晶薄膜の製造
方法の適用される製造装置の一例を示す斜視図、
第4図は半導体ウエハの構造を示す断面図、第5
図は第3図の製造装置の説明に供するる説明図で
ある。 1は半導体薄膜を有する半導体ウエハ、2は加
熱板、3は加熱手段、8は冷却手段、4は基板、
5は半導体薄膜、6はキヤツプ層である。
1 and 2 are perspective views showing examples of manufacturing equipment to which the method for manufacturing a semiconductor single crystal thin film according to the present invention is applied, and FIG. 3 is a manufacturing equipment to which a conventional method for manufacturing a semiconductor single crystal thin film is applied. A perspective view showing an example of
Figure 4 is a sectional view showing the structure of a semiconductor wafer, Figure 5 is a sectional view showing the structure of a semiconductor wafer.
The figure is an explanatory view for explaining the manufacturing apparatus of FIG. 3. 1 is a semiconductor wafer having a semiconductor thin film, 2 is a heating plate, 3 is a heating means, 8 is a cooling means, 4 is a substrate,
5 is a semiconductor thin film, and 6 is a cap layer.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体層に対して相対的に加熱手段を走査さ
せて、上記半導体層を溶融させた後、固化冷却し
て半導体単結晶薄膜を形成するようにした半導体
単結晶薄膜の製造方法に於いて、上記加熱手段に
後続する冷却手段を設け、上記半導体層の溶融領
域に続く再結晶化領域の温度勾配を急峻にするよ
うにしたことを特徴とする半導体単結晶薄膜の製
造方法。
1. In a method for manufacturing a semiconductor single crystal thin film, the semiconductor layer is melted by scanning a heating means relative to the semiconductor layer, and then solidified and cooled to form a semiconductor single crystal thin film. A method for producing a semiconductor single crystal thin film, characterized in that a cooling means is provided subsequent to the heating means to steepen the temperature gradient in a recrystallized region following the melted region of the semiconductor layer.
JP16619284A 1984-08-08 1984-08-08 Manufacture of thin film of semiconductor single crystal Granted JPS6144786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16619284A JPS6144786A (en) 1984-08-08 1984-08-08 Manufacture of thin film of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16619284A JPS6144786A (en) 1984-08-08 1984-08-08 Manufacture of thin film of semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS6144786A JPS6144786A (en) 1986-03-04
JPH0556315B2 true JPH0556315B2 (en) 1993-08-19

Family

ID=15826791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16619284A Granted JPS6144786A (en) 1984-08-08 1984-08-08 Manufacture of thin film of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS6144786A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2797104B2 (en) * 1988-10-21 1998-09-17 正國 鈴木 Method for manufacturing semiconductor crystal layer
JP2840081B2 (en) * 1989-06-09 1998-12-24 株式会社リコー Semiconductor thin film manufacturing method
JP2981221B1 (en) * 1998-11-25 1999-11-22 株式会社東京機械製作所 Web paper tension control device for rotary press
US20090191348A1 (en) * 2008-01-25 2009-07-30 Henry Hieslmair Zone melt recrystallization for inorganic films
JP7244256B2 (en) * 2018-11-08 2023-03-22 住友重機械工業株式会社 LASER ANNEALER, WAFER HOLDER AND LASER ANNEALING METHOD

Also Published As

Publication number Publication date
JPS6144786A (en) 1986-03-04

Similar Documents

Publication Publication Date Title
JPH0556315B2 (en)
JPS63102265A (en) Manufacture of semiconductor device
JPH0419698B2 (en)
JPS62160781A (en) Laser light projecting apparatus
JPS6144785A (en) Manufacture of thin film of semiconductor single crystal
JPS61222111A (en) Manufacture of semiconductor device
JPH02112227A (en) Manufacture of semiconductor crystal layer
Cline Silicon thin films formed on an insulator by recrystallization
JPS6396908A (en) Device for laser-beam irradiation
JP2996997B2 (en) Laser melting recrystallization method for semiconductor thin film
JPH01131092A (en) Formation of semiconductor single crystal
JPS6076117A (en) Method for crystallization of semiconductor thin film
JPS60160623A (en) Method and apparatus for manufacturing semiconductor device
JPS6352407A (en) Manufacture of semiconductor substrate
JPS6163018A (en) Manufacture of semiconductor thin film crystal layer
JPH038101B2 (en)
JP2847549B2 (en) Method for manufacturing semiconductor device
JPH0371767B2 (en)
JPH02211617A (en) Manufacture of semiconductor device
JPS6235511A (en) Manufacture of semiconductor thin film crystal layer
JPH0355975B2 (en)
JPS61136219A (en) Formation of single crystal si film
Yoon et al. Excimer-Laser Crystallization of Si Films Via Bi-Directional Irradiation of Dual-Layer Films on Transparent Substrates
JPS61264716A (en) Recrystallizing method of polycrystalline silicon on insulating substrate
Kamgar et al. Linear Zone-Melt Recrystallized Si Films using Incoherent Light

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term