JPS61264716A - Recrystallizing method of polycrystalline silicon on insulating substrate - Google Patents

Recrystallizing method of polycrystalline silicon on insulating substrate

Info

Publication number
JPS61264716A
JPS61264716A JP60105903A JP10590385A JPS61264716A JP S61264716 A JPS61264716 A JP S61264716A JP 60105903 A JP60105903 A JP 60105903A JP 10590385 A JP10590385 A JP 10590385A JP S61264716 A JPS61264716 A JP S61264716A
Authority
JP
Japan
Prior art keywords
susceptor
polycrystalline silicon
insulating substrate
recesses
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60105903A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60105903A priority Critical patent/JPS61264716A/en
Publication of JPS61264716A publication Critical patent/JPS61264716A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enhance the reliability by placing an insulating substrate on a susceptor formed with recesses on a special part, melting a polycrystalline Si by the heat of the susceptor due to the high frequency heat, and solidifying the Si layer part above the recesses from the center. CONSTITUTION:A plurality of recesses 24 are formed on a susceptor 21. The recesses 24 correspond to the prescribed region for a semiconductor element formed in the following steps. An insulating substrate 23 attached with a polycrystalline Si film 22 is placed at the set position on the susceptor 21. The susceptor 21 is heated by the high frequency heat 12 in an inert atmosphere to melt the film 22. Then, when the heated state is altered to a cooled state, the melted part above the recesses starts solidifying from the center. When the cooling is further advanced, the melted Si part of a semiconductor element forming region is solidified from the center to start crystal growth, thereby forming the special part in one crystal grain range. Since the Si film part above the contacting position is melted and recrystallized, the film part becomes to contain slightly larger grain diameter than that at the initial time.

Description

【発明の詳細な説明】 〔概 要〕 絶縁基板上多結晶シリコン膜を再結晶化して結晶粒界の
ない領域を形成するために、この領域に対応する凹所を
有するサセプタを高周波加熱してその上に載置された絶
縁基板上の多結晶シリコン膜を融解し、凹所上方の多結
晶シリコン膜部分の中央から凝固させる。
[Detailed Description of the Invention] [Summary] In order to recrystallize a polycrystalline silicon film on an insulating substrate to form a region without grain boundaries, a susceptor having a recess corresponding to this region is heated with high frequency. The polycrystalline silicon film on the insulating substrate placed thereon is melted and solidified from the center of the polycrystalline silicon film portion above the recess.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造に用いるSOI基板(Si
licon On Insulating 5ubst
rate)に関するものであり、より詳しくは、絶縁基
板上の多結晶シリコン膜を再結晶化して半導体素子形成
用領域を形成する方法に関するものである。
The present invention relates to an SOI substrate (Si
licon On Insulating 5ubst
More specifically, it relates to a method of recrystallizing a polycrystalline silicon film on an insulating substrate to form a region for forming a semiconductor element.

〔従来の技術〕[Conventional technology]

絶縁基板である溶融石英(すなわち、石英ガラス、Si
O□)の基板上に化学的気相成長法(CVD法)によっ
て多結晶シリコン膜を形成し、この基板を高周波加熱さ
れるサセプタ(例えば、カーボン製)上に載せてサセプ
タからの熱によって多結晶シリコン膜を溶融し、そして
再結晶化することが、次のようなやり方で行なわれてい
た。第5図に示すように、細長い突起部1を有するカー
ボンサセプタ2を用意し、突起高さの厚さの石英板3を
突起部1の両側に配置する。突起部1の寸法は、例えば
、lfi幅で500μm高さ程度である。このサセプタ
72上に(すなわち、突起部1と石英板3上に)多結晶
シリコン膜4を有する溶融石英絶縁基板5を搭載してス
ライドさせて、絶縁基板5の一方の端から他方端までを
突起部1に順次接触させる。
The insulating substrate is fused silica (i.e. quartz glass, Si
A polycrystalline silicon film is formed by chemical vapor deposition (CVD) on a substrate of O Melting and recrystallizing crystalline silicon films has been performed in the following manner. As shown in FIG. 5, a carbon susceptor 2 having an elongated protrusion 1 is prepared, and quartz plates 3 having a thickness equal to the height of the protrusion are placed on both sides of the protrusion 1. The dimensions of the protrusion 1 are, for example, approximately 500 μm in lfi width and height. A fused silica insulating substrate 5 having a polycrystalline silicon film 4 is mounted on the susceptor 72 (that is, on the protrusion 1 and the quartz plate 3), and is slid from one end of the insulating substrate 5 to the other end. The projections 1 are brought into contact with each other in sequence.

サセプタ2を高周波加熱して、サセプタ2の突起部1の
上方の多結晶シリコン膜4部分のみを溶融し、石英板3
上方の多結晶シリコン膜部分はシリコンの融点よりも少
し低い温度とすることができる。したがって、ゾーンメ
ルティング方式で絶縁基板5上の多結晶シリコン膜を再
結晶化することができ、結果としてシリコンの粒径(g
rain 5ize)を大きくする。このことは、SO
I技術としての絶縁膜(又は基板)上にシリコン単結晶
膜を形成する種々の方法(例えば、前田和夫著、最新L
SIプロセス技術、(1983)、 p、632 (工
業調査会〕参照)のように単結晶化することができない
が、半導体素子形成領域だけでも粒界のない部分とする
ことを狙っていた。
The susceptor 2 is heated with high frequency to melt only the portion of the polycrystalline silicon film 4 above the protrusion 1 of the susceptor 2, and the quartz plate 3 is melted.
The temperature of the upper polycrystalline silicon film portion can be a little lower than the melting point of silicon. Therefore, the polycrystalline silicon film on the insulating substrate 5 can be recrystallized by the zone melting method, and as a result, the silicon grain size (g
rain 5ize). This means that SO
Various methods of forming a silicon single crystal film on an insulating film (or substrate) as I technology (for example, Kazuo Maeda, latest L
Although it is not possible to achieve single crystallization as in SI Process Technology, (1983), p. 632 (see Kogyo Kenkyukai), the aim was to make the semiconductor element formation region free of grain boundaries.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した多結晶シリコン膜の再結晶化では、個々のシリ
コン粒径をかなり大きくすることができるが、半導体素
子形成領域である特定領域を意図的に粒界のない部分と
することができない。
Although the above-mentioned recrystallization of a polycrystalline silicon film can considerably increase the size of each silicon grain, it is not possible to intentionally make a specific region where a semiconductor element is formed without grain boundaries.

〔問題を解決するための手段〕[Means to solve the problem]

本発明では絶縁基板上の多結晶シリコン膜の特定部分(
領域)を粒界のないシリコン結晶とするために、高周波
加熱されるサセプタにこの特定部分に対応するところに
凹所を形成しておき、このサセプタ上に絶縁基板を載せ
て高周波加熱によるサセプタの熱で多結晶シリコン膜を
溶融し、凹所上方の多結晶シリコン層部分での中心部か
ら凝固させて多結晶シリコン膜全体を再結晶化する。
In the present invention, a specific portion of a polycrystalline silicon film on an insulating substrate (
In order to make the susceptor (region) a silicon crystal without grain boundaries, a recess is formed in the susceptor to be radio-frequency heated at a location corresponding to this specific part, an insulating substrate is placed on the susceptor, and the susceptor is heated by radio-frequency heating. The polycrystalline silicon film is melted by heat and solidified from the center of the polycrystalline silicon layer above the recess to recrystallize the entire polycrystalline silicon film.

〔作 用〕[For production]

特定の多結晶シリコン層部分の中心部から凝固させるた
めには、加熱して多結晶シリコン膜を溶融するときに、
サセプタに接触している絶縁基板部分上の多結晶シリコ
ン膜部分溶融体をサセプタに接触していない(凹所上の
)絶縁基板部分上の多結晶シリコン膜部分溶融体よりも
高温状態にして溶融体温度の均一化は行なわない。温度
差がある状態で溶融体の温度を下げていくと、最も低い
温度である凹所上方のシリコン溶融体部分の中心部が最
初に融点(Melting Po1nt)以下になりこ
こから凝固が始まって少なくとも凹所上方部分く領域)
は粒界のない部分とすることができる。
In order to solidify from the center of a specific polycrystalline silicon layer, when heating and melting the polycrystalline silicon film,
The partially melted polycrystalline silicon film on the part of the insulating substrate that is in contact with the susceptor is melted by heating it to a higher temperature than the partially melted polycrystalline silicon film on the part of the insulating substrate that is not in contact with the susceptor (on the recess). Body temperature is not equalized. When the temperature of the molten material is lowered while there is a temperature difference, the center of the silicon molten material above the recess, where the temperature is the lowest, first becomes below the melting point, and solidification begins from there until at least upper part of the recess)
can be a part without grain boundaries.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の好ましい実施態様例
によって本発明を説明する。
Hereinafter, the present invention will be described by way of preferred embodiments thereof with reference to the accompanying drawings.

第1図および第2図に示すように、高周波加熱されるサ
セプタ21とこのサセプタ上に載置する多結晶シリコン
膜22付絶縁基板23とを用意する。
As shown in FIGS. 1 and 2, a susceptor 21 to be subjected to high-frequency heating and an insulating substrate 23 with a polycrystalline silicon film 22 placed on the susceptor are prepared.

絶縁基板23は溶融石英製で、厚さが400−500μ
mの板であるのが好ましく、厚くなるとサセプタから多
結晶シリコン膜への伝熱において多結晶シリコン膜での
温度差が十分に形成できなくなる。
The insulating substrate 23 is made of fused silica and has a thickness of 400-500μ.
It is preferable that the plate has a thickness of m, and if it becomes thick, a sufficient temperature difference in the polycrystalline silicon film cannot be formed in heat transfer from the susceptor to the polycrystalline silicon film.

絶縁基板の材料には石英あるいはガラスを使用すること
もできる。この絶縁基板23上へ多結晶シリコン膜22
の形成は公知の方法(CVD法など)で行なわれて、そ
の形成厚さは、例えば、0.4μmである。
Quartz or glass can also be used as the material for the insulating substrate. Polycrystalline silicon film 22 is applied onto this insulating substrate 23.
is formed by a known method (CVD method, etc.), and the formed thickness is, for example, 0.4 μm.

サセプタ21は高周波加熱によって加熱できかつシリコ
ンの融点(1420℃)よりも高融点な材料であるカー
ボンから作られ、入手容易でありかつ加工容易である。
The susceptor 21 is made of carbon, which is a material that can be heated by high-frequency heating and has a melting point higher than that of silicon (1420° C.), and is easily available and easy to process.

このカーボンサセプタ21に複数の凹所24を設けるわ
けであり、これら凹所24は後工程で形成する半導体素
子(MOS )ランジスタなど)のための所定領域に対
応しており、また、その深さは絶縁基板22が接触しな
ければ良いのであって特に限定はないが、加工が簡単な
深さである。
A plurality of recesses 24 are provided in this carbon susceptor 21, and these recesses 24 correspond to predetermined areas for semiconductor devices (MOS transistors, etc.) to be formed in a later process, and their depths are The depth is not particularly limited as long as the insulating substrate 22 does not come into contact with it, but it is a depth that is easy to process.

絶縁基板上多結晶シリコンの再結晶化が次のようにして
行なわれる。
Recrystallization of polycrystalline silicon on an insulating substrate is performed as follows.

多結晶シリコン膜22の付いた絶縁基板23をサセプタ
21の上に設定位置で搭載する。不活性雰囲気中にサセ
プタ21を配置し、高周波加熱装置(誘電加熱装置)に
電力を与えてサセプタ21を加熱する。サセプタ21の
熱は凹所以外の接触箇所を通して絶縁基板23へ伝わり
さらに多結晶シリコン膜22へ伝わる。このために、多
結晶シリコン膜22での凹所24上方部分は接触部分よ
り伝熱が遅くなって少し温度が低くなっている。
An insulating substrate 23 with a polycrystalline silicon film 22 is mounted on the susceptor 21 at a set position. The susceptor 21 is placed in an inert atmosphere, and the susceptor 21 is heated by applying power to a high frequency heating device (dielectric heating device). Heat from the susceptor 21 is transmitted to the insulating substrate 23 through contact points other than the recesses, and further to the polycrystalline silicon film 22. For this reason, heat transfer is slower in the polycrystalline silicon film 22 above the recess 24 than in the contact area, and the temperature is a little lower.

そこで予熱段階として多結晶シリコン膜全体が約100
0℃となるように保持するのが好ましい。さらに、加熱
してシリコンの融点以上にして多結晶シリコン膜22を
溶融する。このときの多結晶シリコン膜すなわち、溶融
体1の温度プロフィルが第3図(B)に示すようになる
。加熱においては、急激な温度上昇は材料の熱膨張係数
に依存して絶縁基板の反あるいは多結晶シリコン膜の剥
がれなどを招き、これが多結晶シリコン膜の所定の加熱
を乱すことになるので、高周波電力を第4図(A)およ
び(B)に示すように漸増させて加熱する。
Therefore, as a preheating step, the entire polycrystalline silicon film is
It is preferable to maintain the temperature at 0°C. Furthermore, the polycrystalline silicon film 22 is melted by heating to a temperature higher than the melting point of silicon. The temperature profile of the polycrystalline silicon film, that is, the melt 1 at this time, is as shown in FIG. 3(B). When heating, a rapid temperature rise can cause the insulating substrate to warp or the polycrystalline silicon film to peel off depending on the thermal expansion coefficient of the material, which disturbs the prescribed heating of the polycrystalline silicon film. Heating is performed by gradually increasing the power as shown in FIGS. 4(A) and 4(B).

次に、高周波電力を下げるかあるいは切って加熱状態か
ら冷却状態へ移行させると、サセプタ21との接触箇所
上方の溶融体部分のほうが冷却速度が凹所24上方の溶
融体部分よりも早いとはいえ、第3図(C)に示すよう
な温度プロフィルが得られることとなる。このことは凹
所上方の溶融体部分の中心部から凝固が始まることを意
味しており、凹所上方と接触箇所上方との温度が少なく
なって来ているとはいえ、接触箇所上方では依然として
溶融体である。さらに冷却が進むと第3図(D)および
(E)に示す溶融状態から再結晶したシリコン膜の温度
プロフィルが得られる。このような再結晶化においては
、凹所上方位置部分、すなわち、半導体素子形成領域の
シリコン溶融体ではその中心から凝固して結晶成長が始
まりこの特定部分(領域)程度を1個の結晶粒範囲内と
することができる。接触上方位置での多結晶シリコン膜
部分は溶融・再結晶工程を経るので、当初よりも多少粒
径の大きな多結晶シリコン膜部分となる。このようにし
て絶縁基板上の多結晶シリコン膜を溶融・再結晶してS
OI基板が得られる。
Next, when the high-frequency power is lowered or cut off to transition from the heating state to the cooling state, the cooling rate of the molten material above the contact point with the susceptor 21 is faster than that of the molten material above the recess 24. No, a temperature profile as shown in FIG. 3(C) will be obtained. This means that solidification begins from the center of the molten part above the recess, and even though the temperature above the recess and the contact point is decreasing, the temperature above the contact point is still low. It is a molten body. As the cooling progresses further, the temperature profile of the silicon film recrystallized from the molten state as shown in FIGS. 3(D) and 3(E) is obtained. In such recrystallization, the silicon melt in the upper part of the recess, that is, in the semiconductor element formation area, solidifies from the center and crystal growth begins, and this specific part (region) is divided into one crystal grain range. It can be within. Since the polycrystalline silicon film portion at the position above the contact undergoes a melting and recrystallization process, the polycrystalline silicon film portion becomes a polycrystalline silicon film portion whose grain size is somewhat larger than the initial one. In this way, the polycrystalline silicon film on the insulating substrate is melted and recrystallized.
An OI substrate is obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法にしたがって上述したように再結晶化すべ
き膜の温度分布制御を行なうことによって絶縁基板上の
多結晶シリコン膜を再結晶化すると、半導体素子形成領
域とする特定部分を結晶粒界のない結晶部分とすること
ができる。したがって信親性の高い半導体素子を形成す
ることのできるSol基板が得られる。
When a polycrystalline silicon film on an insulating substrate is recrystallized by controlling the temperature distribution of the film to be recrystallized as described above according to the method of the present invention, a specific portion to be a semiconductor element formation region is There can be no crystalline parts. Therefore, a Sol substrate on which highly reliable semiconductor elements can be formed can be obtained.

【図面の簡単な説明】 第1図は、本発明に係る再結晶方法を説明するためのサ
セプタおよび搭載した多結晶シリコン膜付き絶縁基板の
概略断面図であり、 第2図は、第1図中線■−■でのサセプタの平面図であ
り、 第3図(A)は、第1図の部分1[rAの拡大断面図で
あり、 第3図(B)〜第3図(E)は、第3図(A)の多結晶
シリコン膜の時間経過での温度分布(プロフィル)を示
す図であり、 第4図(A)および第4図(B)は、加熱のために高周
波電力を与えるときの時間と電力との関係を示す図であ
り、 第5図は、従来の絶縁基板上多結晶シリコン膜再結晶化
を説明するためのサセプタおよび搭載した基板の概略断
面図である。 21・・・サセプタ、 22・・・多結晶シリコン膜、 23・・・絶縁基板、 24・・・凹所、 M、 P、・・・シリコンの融点。 第1図 本発明に係る再結晶方法を説明する図 第2図 第1図中線n−nでの平面図 21−m−サセプタ 24−一凹所
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic cross-sectional view of a susceptor and an insulating substrate with a polycrystalline silicon film mounted thereon for explaining the recrystallization method according to the present invention, and FIG. 3(A) is an enlarged sectional view of portion 1[rA of FIG. 1; FIG. 3(B) to FIG. 3(E) 4(A) and 4(B) show the temperature distribution (profile) of the polycrystalline silicon film over time in FIG. 3(A), and FIG. 4(A) and FIG. FIG. 5 is a schematic cross-sectional view of a susceptor and a mounted substrate for explaining conventional recrystallization of a polycrystalline silicon film on an insulating substrate. 21... Susceptor, 22... Polycrystalline silicon film, 23... Insulating substrate, 24... Recess, M, P,... Melting point of silicon. Fig. 1 A diagram explaining the recrystallization method according to the present invention Fig. 2 A plan view taken along line nn in Fig. 1 21-m-susceptor 24-one recess

Claims (1)

【特許請求の範囲】 1、工程(ア)〜(エ): (ア)絶縁基板上に多結晶シリコン層を形成する工程; (イ)半導体素子形成領域に対応する部分に凹所を有す
るサセプタ上に前記絶縁基板を搭載する工程; (ウ)前記サセプタを高周波加熱によって加熱してその
熱で前記多結晶シリコン層を溶融状態にする工程; (エ)前記凹所の上方の前記多結晶シリコン層での半導
体素子形成領域における中心部から凝固させて該領域に
結晶粒界を形成することなく前記多結晶シリコン層全体
を再結晶化する工程;からなることを特徴とする絶縁基
板上多結晶シリコンの再結晶化方法。 2、前記高周波加熱での電力を漸増して加熱することを
特徴とする特許請求の範囲第1項記載の方法。
[Claims] 1. Steps (a) to (e): (a) Step of forming a polycrystalline silicon layer on an insulating substrate; (b) A susceptor having a recess in a portion corresponding to a semiconductor element formation region (c) heating the susceptor by high-frequency heating and melting the polycrystalline silicon layer with the heat; (d) the polycrystalline silicon above the recess; a step of recrystallizing the entire polycrystalline silicon layer without forming crystal grain boundaries in the region by solidifying it from the center in a region where a semiconductor element is formed in the layer; Method of recrystallizing silicon. 2. The method according to claim 1, wherein the heating is performed by gradually increasing the electric power of the high-frequency heating.
JP60105903A 1985-05-20 1985-05-20 Recrystallizing method of polycrystalline silicon on insulating substrate Pending JPS61264716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60105903A JPS61264716A (en) 1985-05-20 1985-05-20 Recrystallizing method of polycrystalline silicon on insulating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60105903A JPS61264716A (en) 1985-05-20 1985-05-20 Recrystallizing method of polycrystalline silicon on insulating substrate

Publications (1)

Publication Number Publication Date
JPS61264716A true JPS61264716A (en) 1986-11-22

Family

ID=14419838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60105903A Pending JPS61264716A (en) 1985-05-20 1985-05-20 Recrystallizing method of polycrystalline silicon on insulating substrate

Country Status (1)

Country Link
JP (1) JPS61264716A (en)

Similar Documents

Publication Publication Date Title
US4670088A (en) Lateral epitaxial growth by seeded solidification
EP0087426B1 (en) Lateral epitaxial growth by seeded solidification
Celler et al. Seeded recrystallization of thick polysilicon films on oxidized 3‐in. wafers
JPS5939790A (en) Production of single crystal
JPS61264716A (en) Recrystallizing method of polycrystalline silicon on insulating substrate
JPS6144785A (en) Manufacture of thin film of semiconductor single crystal
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JPH0614511B2 (en) Crystallization method of semiconductor thin film
Kobayashi et al. Zone-melting recrystallization of polycrystalline silicon films on fused silica substrates using RF-Heated carbon susceptor
JPS59138329A (en) Fabrication of single crystal thin film on insulative substrate
JPH0354819A (en) Manufacture of soi substrate
JPS6083322A (en) Crystallizing method of semiconductor thin-film
JPS6265317A (en) Wafer structure for formation of semiconductor single crystal film
JPH0556315B2 (en)
JPS5880831A (en) Manufacture of substrate for semiconductor device
JPS6076117A (en) Method for crystallization of semiconductor thin film
KR890008943A (en) Method of manufacturing single crystal layer on substrate
JPS61251019A (en) Method for recrystallization of non-single crystal silicon on insulated substrate
JPS5856457A (en) Manufacture of semiconductor device
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JP2656466B2 (en) Semiconductor substrate manufacturing method
JPS61123125A (en) Manufacture of semiconductor device
JPH0118575B2 (en)
JPH0223027B2 (en)
JPH0410213B2 (en)