JPH0261059A - Vapor deposition apparatus - Google Patents

Vapor deposition apparatus

Info

Publication number
JPH0261059A
JPH0261059A JP21032388A JP21032388A JPH0261059A JP H0261059 A JPH0261059 A JP H0261059A JP 21032388 A JP21032388 A JP 21032388A JP 21032388 A JP21032388 A JP 21032388A JP H0261059 A JPH0261059 A JP H0261059A
Authority
JP
Japan
Prior art keywords
hearth
liner
vapor deposition
electron beam
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21032388A
Other languages
Japanese (ja)
Inventor
Masanori Sadano
貞野 昌則
Hiroshi Takeuchi
寛 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21032388A priority Critical patent/JPH0261059A/en
Publication of JPH0261059A publication Critical patent/JPH0261059A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably attain the control of high vapor deposition rate with superior reproducibility by providing a hearth liner of a specific shape between an evaporation source and a hearth in an electron beam-heating-type vacuum vapor deposition apparatus. CONSTITUTION:At the time of vapor-depositing Al by means of an electron beam heating-type vacuum vapor deposition apparatus, a BN composite is formed as a hearth liner 4 on the internal surface of a hearth 1 made of Cu for Al evaporation used for heating and evaporating Al for vapor deposition by means of electron beam irradiation, in which Al 3 as an evaporation source is melted and evaporated. Since this hearth liner 4 has a shape in which thickness is continuously changed from side face toward the base and respective planes facing each other have spherical shapes, respectively, resonance hardly occurs in the vibrations generated in the molten Al 3 as the evaporation source, and further, concentration of stress is removed and cracking due to heat shock is prevented, and, as a result, the effects of improving and stabilizing the evaporation velocity of Al and prolonging the service life of the liner 4 can be produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体分野で薄膜形成に使用する蒸着装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vapor deposition apparatus used for forming thin films in the semiconductor field.

従来の技術 電子ビーム加熱式真空蒸着法は、非常に大きな電力密度
を蒸発源に投入することが可能であり、抵抗加熱式では
不可能であった高融点材料の蒸発が可能となシ、あわせ
て蒸着材料を水冷式・・−ス中で溶解するため、ハース
との反応がなく高純度な膜を安定して蒸着出来る方式と
して知られている。しかし、水冷式ハースを用いるため
、AlやCuなど熱伝導性の高い材料を蒸発させる際に
は、電力効率が低下し、例えばAlの蒸発においては冷
却損失が80%前後になり、高い蒸着レートを作るには
大電力での溶解、または大口径のハースが必要であった
。この様な冷却損失の改善法としてハースライナ−が考
えられ、W 、 Ta等の高融点金属や、BN(ボロン
ナイトライド)コンポジット等のセラミックよシ成るハ
ースライナ−が実用化され効果を上げている。
Conventional technology Electron beam heating vacuum evaporation allows extremely high power density to be applied to the evaporation source, making it possible to evaporate high melting point materials, which was not possible with resistance heating. Since the deposition material is dissolved in a water-cooled bath, it is known as a method that can stably deposit a high-purity film without any reaction with the hearth. However, since a water-cooled hearth is used, power efficiency decreases when evaporating materials with high thermal conductivity such as Al and Cu. For example, when evaporating Al, the cooling loss is around 80%, resulting in a high evaporation rate. To make it, melting with high power or a large-diameter hearth was necessary. Hearth liners have been considered as a method for improving such cooling loss, and hearth liners made of high melting point metals such as W and Ta, and ceramics such as BN (boron nitride) composites have been put into practical use and have been effective.

一方、電子ビーム加熱式蒸発源においては、電子ビーム
のエネルギーによって、溶けた蒸発材料の表面に振動現
象を生じることが知られている。
On the other hand, in an electron beam heated evaporation source, it is known that the energy of the electron beam causes a vibration phenomenon on the surface of the melted evaporation material.

この現象は断熱性の高いノ・−スライナーを用いた場合
によく生じ、特にム1等の様に密度が低く融点の割に沸
点が高い材料においては著しくある条件下では振動が共
振状態となって非常に激しくなり、溶解した金属が小さ
な球になって飛び上がる状態が観察されることがある。
This phenomenon often occurs when a highly insulating nose liner is used, and under certain conditions the vibrations can become resonant, especially in materials such as Mu1, which have a low density and a high boiling point relative to their melting point. The molten metal may become so violent that small balls of molten metal can be seen flying up.

また、人lの様にライナー材料と濡れ易い材料において
は、ハースライナ−を用いた蒸発の際に・上述した振動
現象によって溶解した金属の液面が赤熱したハースライ
ナ−の上縁に達することがあり、これによって擬似的に
蒸着面積が拡大されるため、蒸発レートの変動が激しく
なり、あるレート以上になると、安定したレートで蒸発
を継続することが困難であった。
In addition, when using a material that easily wets the liner material, such as a metal, during evaporation using the hearth liner, the liquid level of the molten metal may reach the red-hot upper edge of the hearth liner due to the above-mentioned vibration phenomenon. Since this artificially expands the evaporation area, the evaporation rate fluctuates rapidly, and when it exceeds a certain rate, it is difficult to continue evaporation at a stable rate.

また従来の技術における第2の問題点として、ヒートシ
ョック及び蒸発材の熱膨張によってセラミック製ハース
ライナ−に応力がかかり、ライナーに割れを生じるとい
う現象がある。特に一般に使われている第3図に示す様
な形状のハースライナ−においては、底面と側面の接す
る境界線に沿って応力が集中し、この部分から割れを生
じ、激しい時には割れた部分から溶解したAgかにじみ
出して直接水冷ハースに接触し、ライナーの断熱効果が
低下してレートの変動を生じていた。なお、第3図にお
いては、1は銅ハース、2はハースライナ−13は人l
ソースである。
A second problem with the conventional technology is that stress is applied to the ceramic hearth liner due to heat shock and thermal expansion of the evaporator, causing cracks in the liner. In particular, in commonly used hearth liners with the shape shown in Figure 3, stress concentrates along the boundary line where the bottom and side surfaces meet, causing cracks to occur in this area and, in severe cases, to melting from the cracked area. Ag oozed out and came into direct contact with the water-cooled hearth, reducing the insulation effect of the liner and causing rate fluctuations. In addition, in Fig. 3, 1 is a copper hearth, 2 is a hearth liner, and 13 is a person's hearth.
It's the source.

発明が解決しようとする課題 先述した溶湯の振動現象は、電子ビームのパフ、溶湯の
質量、粘度、ライナーの形状、容量等によって生じ、共
振現象になると湯面の振動が周期的に変化する等の現象
が見られる。
Problems to be Solved by the Invention The vibration phenomenon of the molten metal mentioned earlier is caused by the puff of the electron beam, the mass and viscosity of the molten metal, the shape and capacity of the liner, etc. When a resonance phenomenon occurs, the vibration of the molten metal surface changes periodically, etc. This phenomenon can be seen.

特にAdは融点の割に沸点が高く蒸発状態では粘度が低
く質量も比較的小さいため、共振時には湯面の振幅が大
きく溶湯が飛び跳ねることもある。
In particular, Ad has a high boiling point relative to its melting point, has a low viscosity in the evaporated state, and has a relatively small mass, so when it resonates, the amplitude of the molten metal surface is large and the molten metal may jump.

また、Alは金属とのぬれ性が良く反応しやすいため、
W、Cu、Ta等の金属性ライナーを使用することは不
可能であり、Alに有効なハースライナ−の材料として
はBNコンポジットが知られている。実公昭61−20
032号ではBNコンポジットdライナーの形状効果に
よって蒸着レートを向上する方法が考えられている。
In addition, Al has good wettability with metals and reacts easily, so
It is impossible to use metal liners such as W, Cu, Ta, etc., and BN composite is known as a hearth liner material that is effective for Al. Jitsukō 61-20
No. 032 considers a method of improving the deposition rate by utilizing the shape effect of the BN composite d-liner.

しかし、BNコンポジット等のセラミック系ハースライ
ナ−はヒートショックの応力集中による割れを生じる欠
点がある。
However, ceramic hearth liners such as BN composites have the disadvantage of cracking due to stress concentration due to heat shock.

本発明は、上述した電子ビーム加熱式蒸着法の欠点を改
良し、ハースライナ−を用いた際の蒸発速度の向上と安
定化、及びライナーの長寿命化をはかシ、生産性にすぐ
れた蒸着装置を実現するものである。
The present invention improves the drawbacks of the electron beam heating vapor deposition method described above, improves and stabilizes the evaporation rate when using a hearth liner, and extends the life of the liner, resulting in highly productive vapor deposition. This is what realizes the device.

課題を解決するだめの手段 本発明は以上の欠点を解消するだめに、・・−スライナ
ーを厚みが側面から底面にかけて連続的に変化する形状
としたものである。
Means for Solving the Problems In order to solve the above-mentioned drawbacks, the present invention provides a liner with a shape in which the thickness changes continuously from the side surface to the bottom surface.

作用 この構成により、ハースライナ−を厚みが側面から底面
にかけて連続的に変化する形状としているため、対抗す
る面が球状となシ、共振が起こりにくく、また応力の集
中がなくなシ、ヒートンヨックによる割れを防ぐことが
できる。
Function: With this configuration, the hearth liner has a shape in which the thickness changes continuously from the side to the bottom, so the opposing surfaces are spherical, making it difficult for resonance to occur, and eliminating stress concentration. It can prevent cracking.

実施例 以下に本発明について第1図、第2図を用いて説明する
EXAMPLES The present invention will be explained below with reference to FIGS. 1 and 2.

第1図は本発明の一実施例による蒸着装置におけるムl
蒸着用ノ・−スライナ一部分を示す図である。即ち銅・
・−ス1に従来とは形状の異なるノ・−スライナ−4を
挿入してAlンース3をその中に入れるものである。第
1図の様に、ノ・−スライナー4は厚みが側面から底面
にかけて連続的に変化する形状であり、対抗する面が球
状になるため共振が起こりに〈〈なり、まだ応力の集中
がなくなり、ヒートショックによる割れを防ぐことがで
きる。
FIG. 1 shows the mulch in a vapor deposition apparatus according to an embodiment of the present invention.
It is a figure which shows a part of the liner for vapor deposition. That is, copper
- A liner 4 having a different shape from the conventional liner is inserted into the base 1, and the Al liner 3 is placed therein. As shown in Figure 1, the thickness of the no-sliner 4 changes continuously from the side to the bottom, and since the opposing surfaces are spherical, resonance occurs and there is no stress concentration. , can prevent cracking due to heat shock.

第1図の形状のBNコンポジット製ハースライナ−を内
側を2Rで作成し、複数回蒸着を行なったところ、レー
トのばらつきが大きくなる電子ビームのパワーは、4,
2KWとなり、従来形状の3.7KWより大きくなる。
When a hearth liner made of BN composite with the shape shown in Fig. 1 was made with 2R on the inside and evaporation was performed multiple times, the power of the electron beam at which the rate variation became large was 4,
It is 2KW, which is larger than the conventional shape's 3.7KW.

さらに、6000人/履講のレートを得るためには、第
1図の形状では3.5 KWの電子ビームのパワーが必
要であればよいに対して、従来は4.○KWのパワーが
必要となる(第2図参照)。
Furthermore, in order to obtain a rate of 6,000 students/course enrollment, the configuration shown in Figure 1 only requires an electron beam power of 3.5 KW, whereas the conventional configuration requires only 4.5 KW of electron beam power. ○KW power is required (see Figure 2).

また、ハースライナ−の割れの発生も、従来の場合は1
0回程度で発生していたが、形状の変更により20回の
蒸着後も割れは発生しなくなった。
In addition, the occurrence of cracks in the hearth liner has been reduced to 1 in the conventional case.
Cracking occurred after about 0 depositions, but by changing the shape, cracking no longer occurred even after 20 depositions.

発明の効果 ハースライナ−の厚みを側面から底面に連続的に変化さ
せることによって、共振現象の発生する電子ビームノパ
ワーが、3.7KWから4.2KWまで大きくすること
が可能となり、それによるレートの効果も大きい。
Effects of the Invention By continuously changing the thickness of the hearth liner from the side to the bottom, the electron beam power at which the resonance phenomenon occurs can be increased from 3.7KW to 4.2KW, and the rate can be increased accordingly. The effect is also great.

また、厚みが厚くなることより断熱効果が向上し、それ
により同じパワーで高いレートが得られる。
In addition, the increased thickness improves the insulation effect, which allows a higher rate to be obtained with the same power.

さらに、厚みを連続的に変化させることで応力の集中す
る箇所がなくなシ、ヒートンヨノクによる割れの発生が
抑えられる。
Furthermore, by continuously changing the thickness, there are no points where stress is concentrated, and the occurrence of cracks due to heat cracks is suppressed.

なお、本発明の効果を球状の例で説明したが、基本的に
は連続的に変化した形状においては、同様の効果を得る
ことが出来る。
Although the effect of the present invention has been explained using a spherical example, basically the same effect can be obtained with a shape that changes continuously.

以上の様に、本発明のハースライナ−は、高い蒸着レー
トの制御が、再現性良く、安定して得られるもので、高
品質のものが生産性の面においても極めて有利となり、
工業的ならびに実用的価値の犬なるものである。
As described above, the hearth liner of the present invention can stably control a high vapor deposition rate with good reproducibility, and a high-quality one is extremely advantageous in terms of productivity.
It is a dog of industrial and practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による蒸着装置の・・−スラ
イナ一部分の断面図、第2図は電子ビームパワー−蒸着
レートの特性図、第3図は従来のハースライナ−の断面
図である。 1・・・・・・銅ハース、3・・・・・・Agソース、
4・・・・・ハースライナ− !・・−多用ハース を吾ビーム土オ (にW) で
Fig. 1 is a sectional view of a part of a liner of a vapor deposition apparatus according to an embodiment of the present invention, Fig. 2 is a characteristic diagram of electron beam power-evaporation rate, and Fig. 3 is a sectional view of a conventional hearth liner. . 1... Copper hearth, 3... Ag source,
4... Hearth Liner!・・・-Multi-purpose hearth with I beam soil o (ni W)

Claims (1)

【特許請求の範囲】[Claims] 蒸発源とハースの間にハースライナーを介在させ、かつ
そのハースライナーを厚みが側面から底面にかけて連続
的に変化する形状とした蒸着装置。
A vapor deposition device in which a hearth liner is interposed between an evaporation source and a hearth, and the thickness of the hearth liner changes continuously from the side to the bottom.
JP21032388A 1988-08-24 1988-08-24 Vapor deposition apparatus Pending JPH0261059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21032388A JPH0261059A (en) 1988-08-24 1988-08-24 Vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21032388A JPH0261059A (en) 1988-08-24 1988-08-24 Vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JPH0261059A true JPH0261059A (en) 1990-03-01

Family

ID=16587523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21032388A Pending JPH0261059A (en) 1988-08-24 1988-08-24 Vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JPH0261059A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235504A (en) * 1991-03-15 1993-08-10 Emerson Electric Co. High power-factor converter for motor drives and power supplies
CN102268641A (en) * 2011-06-29 2011-12-07 彩虹(佛山)平板显示有限公司 Method for coating glass cover plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235504A (en) * 1991-03-15 1993-08-10 Emerson Electric Co. High power-factor converter for motor drives and power supplies
CN102268641A (en) * 2011-06-29 2011-12-07 彩虹(佛山)平板显示有限公司 Method for coating glass cover plate

Similar Documents

Publication Publication Date Title
EP0107858B1 (en) Flame-sprayed ferrous alloy enhanced boiling surface
JPS5919192B2 (en) Pyrolytic boron nitride coated boat for metal evaporation
JPH04246170A (en) Aluminum target for magnetron spattering and method of its manufacture
US2265243A (en) Method of forming composite metal structures
WO2003071000A1 (en) Method and device for coating a substrate
JPH0261059A (en) Vapor deposition apparatus
US3356487A (en) Prevention of splattering during vaporization processing
CA2271933C (en) Ceramic evaporation boats having improved initial wetting performance and properties
WO2004057052A1 (en) Resistance-heated boat and manufacturing method thereof
JPH08218166A (en) Method for joining target for sputtering
JPH0222463A (en) Production of metallic thin film
JPH01275750A (en) Thin metallic film manufacturing equipment
Jardine et al. Cavitation-erosion resistance of thick-film thermally sprayed niti
JPH03170661A (en) Method for evaporating sublimable metal
JPH02305958A (en) Vapor deposition device
RU94028267A (en) Method of surface metal working
JP2000297361A (en) Formation of hyper-fine particle film and device for forming hyper-fine particle film
RU2092970C1 (en) Method for joining glass and piezoelectric crystal with aluminium base alloy layer
JPH0230754A (en) Vacuum deposition method
JPS61288065A (en) Target
JPS6393855A (en) Vapor deposition device
US3337310A (en) Composite titanium boride bars
JPS6043914B2 (en) Sputtering film forming method
EP0660884B1 (en) Melting method at vacuum evaporation
Mawella et al. Metallic Glass Surface Layers of Fe80 P13 C7 Alloy by Rapid Quenching