JPH01271167A - Polishing device using magnetic fluid - Google Patents

Polishing device using magnetic fluid

Info

Publication number
JPH01271167A
JPH01271167A JP63095650A JP9565088A JPH01271167A JP H01271167 A JPH01271167 A JP H01271167A JP 63095650 A JP63095650 A JP 63095650A JP 9565088 A JP9565088 A JP 9565088A JP H01271167 A JPH01271167 A JP H01271167A
Authority
JP
Japan
Prior art keywords
polishing
magnetic fluid
polished
spherical
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63095650A
Other languages
Japanese (ja)
Inventor
Yasushi Kato
康司 加藤
Tokuji Umehara
徳次 梅原
Shigeru Adachi
茂 足立
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP63095650A priority Critical patent/JPH01271167A/en
Publication of JPH01271167A publication Critical patent/JPH01271167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To reduce the polishing time improving surface roughness of a ball unit further enhancing its polishing efficiency by charging spherical workpiece therebetween with a spacer. CONSTITUTION:While holding a group of spherical workpieces 3, arranged on a circumference, by a driving lap 1, float 5 receiving levitating force by a magnetic field formed in magnetic fluid 7 by a magnet 6 and the internal peripheral surface of a guide ring 4, the driving lap 1 is rotated, polishing these spherical workpiece 3. When these workpieces are polished, the adjacent spherical workpieces 3 are charged therebetween with a spacer 8. By this charging spacer 8, the spherical workpieces 3 can be prevented from colliding against each other during polishing, and the workpiece 3 enables its surface roughness and polishing efficiency to be improve, as the result the polishing time can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁性流体を用いた研磨装置に関し、さらに詳
しくは砥粒を含有する磁性流体を磁場の作用下で使用し
、ボールベアリング等に使用される球体を研磨して真球
度の高い球体を効率良く製造するための装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a polishing device using a magnetic fluid, and more specifically, a polishing device that uses a magnetic fluid containing abrasive grains under the action of a magnetic field to polish a ball bearing or the like. The present invention relates to an apparatus for efficiently manufacturing spheres with high sphericity by polishing used spheres.

[従来の技術] 従来、砥粒を含有する磁性流体からなる研磨用液を磁場
の作用下で使用してボールベアリング等に使用される球
体を研磨する方法および装置が特開昭62−17316
6号公報に開示されている。
[Prior Art] Conventionally, a method and apparatus for polishing spheres used in ball bearings, etc. using a polishing liquid made of a magnetic fluid containing abrasive grains under the action of a magnetic field has been disclosed in Japanese Patent Laid-Open No. 17316/1983.
It is disclosed in Publication No. 6.

同公報に記載された研磨方法および装置は、砥粒を含有
する磁性流体中に浸漬した球体を、磁性流体の外部の一
方の側より働く外部磁場の作用により排出力を与えて、
その対向側に位置させた駆動用治具(駆動ラップ)の面
に押し付け、それによって該駆動用治具の運動を球体に
伝達して砥粒を含有する磁性流体中で運動させ、該球体
の運動を案内面によって制御することを特徴とするもの
である。
The polishing method and apparatus described in the publication apply ejection force to a sphere immersed in a magnetic fluid containing abrasive grains by the action of an external magnetic field acting from one side outside the magnetic fluid.
It is pressed against the surface of a driving jig (driving lap) located on the opposite side, thereby transmitting the motion of the driving jig to the sphere and causing it to move in the magnetic fluid containing abrasive grains. The feature is that the movement is controlled by a guide surface.

またこの際、球体の外部磁場側に位置するように浮力板
(浮子)を挿入すると、この浮力板にも外部磁場の作用
による排出力が与えられ、球体をより強く駆動用治具の
駆動面(接触面)に押し付けるので研磨効率が著しく向
上することが開示されている。
Also, at this time, if a buoyancy plate (float) is inserted so as to be located on the external magnetic field side of the sphere, ejection force is also applied to this buoyancy plate due to the action of the external magnetic field, and the sphere is more strongly pushed to the drive surface of the driving jig. It is disclosed that the polishing efficiency is significantly improved because the polishing is pressed against the (contact surface).

前記研磨装置では、球体の運動を制御するために駆動ラ
ップの下面にV型溝や仕切板を設け、球体の運動の案内
面としての機能を持たせて研磨効率および真球度の向上
を図っている。また別の方法として、駆動ラップの下端
を倒置三角錐状にして球体が倒置三角錐の斜面、円筒状
容器(ガイドリング)および浮力板との間に押し付けら
れた状態で運動させて研磨して真球度の向上を図ってい
る。
In the polishing device, a V-shaped groove and a partition plate are provided on the lower surface of the driving lap to control the movement of the sphere, and the plate functions as a guide surface for the movement of the sphere, thereby improving polishing efficiency and sphericity. ing. Another method is to polish the lower end of the driving lap by making it into an inverted triangular pyramid shape and moving the sphere while being pressed between the slope of the inverted triangular pyramid, the cylindrical container (guide ring), and the buoyancy plate. Efforts are being made to improve sphericity.

しかし、このような従来の研磨装置を用いた場合には、
得られた球体の真球度において必ずしも充分なものでは
なく、また研磨効率においても満足できるものではない
However, when using such conventional polishing equipment,
The sphericity of the obtained spheres is not necessarily sufficient, and the polishing efficiency is also not satisfactory.

[発明が解決しようとする課題] このような従来の研磨装置で研磨する場合、SiCのよ
うな脆性を有するセラミック製球体では、研磨中に球体
相互の衝突によって面粗さや真球度の向上に限度があっ
た。
[Problems to be Solved by the Invention] When polishing with such conventional polishing equipment, brittle ceramic spheres such as SiC may collide with each other during polishing, resulting in improvements in surface roughness and sphericity. There was a limit.

本発明は、砥粒を含有する磁性流体を用いる研磨装置に
おいて被研磨物の真球度および面粗さをさらに向上させ
た研磨装置を提供することを目的とする。
An object of the present invention is to provide a polishing apparatus that uses a magnetic fluid containing abrasive grains and further improves the sphericity and surface roughness of an object to be polished.

[課題を解決するための手段] 本発明者等は、上記目的を達成するために鋭意検討をし
た結果、研磨中に被研磨物相互間の衝突を防止するため
に、該球状の被研磨物間に衝撃吸収性のある材料からな
るスペーサーを装填することにより、研磨中に球体相互
の衝突がまったくなく、球体の真球度および研磨効率が
極めて向上する本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors have developed a spherical polished object to prevent collisions between the polished objects during polishing. By loading a spacer made of a shock-absorbing material between them, the present invention has been completed in which there is no collision between the spheres at all during polishing, and the sphericity of the spheres and polishing efficiency are greatly improved.

すなわち本発明は、ガイドリングと、砥粒を含む磁性流
体に浸漬された浮子と、回転可能な駆動ラップと、該磁
性流体に磁場を形成して該磁性流体と共に該浮子に浮揚
力を与える磁場形成手段とを備え、球状の被研磨物を該
駆動ラップ、浮揚力を受けた浮子およびガイドリング内
壁面により該磁性流体中で保持しつつ、該駆動ラップを
回転させることにより研磨する研磨装置において、該球
状の被研磨物間にスペーサーを装填して研磨することを
特徴とする研磨装置にある。
That is, the present invention includes a guide ring, a float immersed in a magnetic fluid containing abrasive grains, a rotatable drive wrap, and a magnetic field that forms a magnetic field in the magnetic fluid and gives a levitation force to the float together with the magnetic fluid. A polishing device for polishing a spherical object to be polished by rotating the driving lap while holding the spherical object in the magnetic fluid by the driving lap, a float receiving a buoyant force, and an inner wall surface of a guide ring. , a polishing apparatus characterized in that a spacer is loaded between the spherical objects to be polished for polishing.

以下、本発明の磁性流体を用いた研磨装置を図面に基づ
いて説明する。
Hereinafter, a polishing apparatus using a magnetic fluid according to the present invention will be explained based on the drawings.

第1図は本発明の研磨装置の一例を示す断面図、第2図
は本発明の研磨装置に用いられるスペーサーの一例を示
す図である。図中1は駆動ラップ、2は駆動ラップ下端
部の球状の被研磨物との接触面、3は球状の被研磨物(
被研磨球体)、4はガイドリング、5は浮子、6は磁石
、7は砥粒を含む磁性流体、Eは駆動ラップ下端部の接
触面の傾斜角をそれぞれ示す。
FIG. 1 is a sectional view showing an example of a polishing apparatus of the present invention, and FIG. 2 is a diagram showing an example of a spacer used in the polishing apparatus of the present invention. In the figure, 1 is the driving lap, 2 is the contact surface of the lower end of the driving lap with the spherical object to be polished, and 3 is the spherical object to be polished (
4 is a guide ring, 5 is a float, 6 is a magnet, 7 is a magnetic fluid containing abrasive grains, and E is the inclination angle of the contact surface at the lower end of the driving lap.

第1図に示される研磨装置では、砥粒を含む磁性流体7
中に浮子5を浸漬し、該磁性流体7に磁石6等により外
部磁場を作用させて浮子5に浮力を与え、その浮力によ
って浮子5を上昇させ、被研磨球体3を浮子5上端部の
接触面、駆動ラップ1下端部の接触面2およびガイドリ
ング4の内壁面で保持する。そして、駆動ラップ1を駆
動させ、水平方向に回転させることによって、被研磨球
体3にその回転による運動が伝達され、砥粒を含有する
磁性流体7中で運動するようになる。この被研磨球体3
と砥粒を含有する磁性流体7との間に相対運動が生じる
ことによって、被研磨球体3が保持されている面、特に
駆動ラップ1下端部のテーパー状の接触面2において研
磨が効率良く行なわれる。
In the polishing apparatus shown in FIG. 1, a magnetic fluid 7 containing abrasive grains is used.
The float 5 is immersed in the liquid, and an external magnetic field is applied to the magnetic fluid 7 using a magnet 6 or the like to give buoyancy to the float 5. The float 5 is raised by the buoyancy, and the sphere 3 to be polished is brought into contact with the upper end of the float 5. It is held by the contact surface 2 of the lower end of the drive wrap 1 and the inner wall surface of the guide ring 4. Then, by driving the driving lap 1 and rotating it in the horizontal direction, the movement of the rotation is transmitted to the spherical object 3 to be polished, so that it moves in the magnetic fluid 7 containing abrasive grains. This polished sphere 3
By generating a relative movement between the magnetic fluid 7 containing the abrasive grains, polishing is efficiently performed on the surface where the spherical object 3 to be polished is held, particularly on the tapered contact surface 2 at the lower end of the drive lap 1. It will be done.

第1図の研磨装置に示される駆動ラップ1は、垂直軸を
中心として水平回転が可能であり、下端部に接触面2を
有している。また、この駆動ラップ1は被研磨球体3の
研磨によって摩耗するので、その度に駆動ラップ1を下
降させる必要から、上下動も可能としている。この接触
面2は浮子5とガイドリング4の内壁面との間の軌道上
に被研磨球体3を保持し、安定かつスムーズに回転研磨
するために重要な段別を果しており、球体の真球度の向
上に寄与する。ここで接触面2の鉛直方向に対して外周
方向の傾斜角Eが20〜80度である時に球体の真球度
の向上が得られる。接触面2の傾斜角Eが80度を超え
た場合は被研磨球体3をガイドリング4の内壁面に押し
付ける力が弱くなり、また20度未満の場合は被研磨球
体3に効果的に接触面2から加工圧がかからないため、
それぞれ被研磨球体3の運動が不安定となり真球度が向
上せず、好ましくない。
The drive lap 1 shown in the polishing apparatus of FIG. 1 is capable of horizontal rotation about a vertical axis and has a contact surface 2 at its lower end. Further, since the driving lap 1 is worn out by polishing the spherical body 3 to be polished, it is necessary to lower the driving lap 1 each time, so that vertical movement is also possible. This contact surface 2 plays an important role in holding the spherical object 3 to be polished on the orbit between the float 5 and the inner wall surface of the guide ring 4, and performs stable and smooth rotational polishing. This contributes to improving the level of performance. Here, when the inclination angle E of the contact surface 2 in the outer circumferential direction with respect to the vertical direction is 20 to 80 degrees, the sphericity of the sphere can be improved. If the inclination angle E of the contact surface 2 exceeds 80 degrees, the force pressing the sphere 3 to be polished against the inner wall surface of the guide ring 4 will be weak, and if it is less than 20 degrees, the contact surface will not effectively press the sphere 3 to be polished. Since no processing pressure is applied from 2,
In each case, the motion of the polished sphere 3 becomes unstable and the sphericity does not improve, which is not preferable.

また駆動ラップ1の他の形状として円筒状のものでもよ
く、この場合も接触面の傾斜角Eは20〜80度の範囲
が好ましい。
Further, another shape of the drive wrap 1 may be a cylindrical one, and in this case as well, the inclination angle E of the contact surface is preferably in the range of 20 to 80 degrees.

駆動ラップ1の材質としては、荒削りの場合には特に限
定はされず、5US304等のステンレス鋼、真鍮、ア
ルミニウム等の金属等が例示され、また仕上げの場合に
は鋳鉄やセラミックス等の脆性材料あるいは樹脂等から
なるものが好ましい。第1図の研磨装置に設けられてる
ガイドリンク4は、駆動ラップ1の接触面2および浮子
5と共に回転する被研磨球体3を研磨中一定に保持して
、球体の真球度の向上に寄与する。ここでガイドリング
4の内壁面は、球体の研磨中にガイドリングの振動を抑
制する材料であることが好ましく、例えばゴムや弾性率
の高いプラスチックをガイドリング4の内壁面にライニ
ングして使用される。
The material of the driving lap 1 is not particularly limited in the case of rough machining, and examples include stainless steel such as 5US304, metals such as brass and aluminum, and in the case of finishing, brittle materials such as cast iron and ceramics, etc. Preferably, it is made of resin or the like. The guide link 4 provided in the polishing apparatus shown in FIG. 1 keeps the polished sphere 3 rotating together with the contact surface 2 of the driving lap 1 and the float 5 constant during polishing, thereby contributing to improving the sphericity of the sphere. do. Here, the inner wall surface of the guide ring 4 is preferably made of a material that suppresses the vibration of the guide ring during polishing of the sphere. For example, the inner wall surface of the guide ring 4 is lined with rubber or plastic with a high elastic modulus. Ru.

次に研磨装置の磁性流体中に浸漬されている浮子5は、
磁石6等の外部磁場の作用により浮力が与えられて、浮
子5は浮上して被研磨球体3を駆動ラップ1下端部の接
触面2等に強く押し付ける作用をする。この浮子5は、
前記駆動ラップIの接触面2およびガイドリング4の内
壁面と共に、回転する被研磨球体3を研磨中一定に保持
して真球度の向上に寄与する。被研磨球体3と接する部
分の浮子5の形状としては、1点で接触する平面状また
はチルパー状のほか、2点または円周部分で接触するよ
うに、その断面がV字、またはR伏皿状の凹部を設けて
もよい。
Next, the float 5 immersed in the magnetic fluid of the polishing device is
Buoyancy is applied by the action of an external magnetic field such as the magnet 6, and the float 5 floats to strongly press the spherical object 3 to be polished against the contact surface 2 of the lower end of the drive lap 1. This float 5 is
Together with the contact surface 2 of the driving lap I and the inner wall surface of the guide ring 4, the rotating spherical object 3 to be polished is held constant during polishing, thereby contributing to improving the sphericity. The shape of the float 5 in contact with the spherical object 3 to be polished may be a flat shape or a chiller shape that makes contact at one point, or a V-shaped cross section or an R-shaped dish so that it makes contact at two points or a circumferential portion. A recessed portion may be provided.

浮子5の材質としては、金属、プラスチック、セラミッ
クス、ゴム等の種々の材料を適宜選択して使用できる。
As the material of the float 5, various materials such as metal, plastic, ceramics, rubber, etc. can be appropriately selected and used.

浮子5に働く浮力は、下方より働く外部磁場の強さ、浮
子5の大きさ、磁石6等から浮子5までの距離等により
決定され、これらを変化させることによって所要の加工
圧を任意に制御することができる。
The buoyant force acting on the float 5 is determined by the strength of the external magnetic field acting from below, the size of the float 5, the distance from the magnet 6 etc. to the float 5, etc., and by changing these, the required processing pressure can be controlled arbitrarily. can do.

浮子5の比重は砥粒を含有する磁性流体7の比重よりも
軽いことは絶対的な条件ではなく、下方より働く外部磁
場の作用により浮力を生じるものであればよい。
It is not an absolute condition that the specific gravity of the float 5 is lighter than the specific gravity of the magnetic fluid 7 containing abrasive grains, but it is sufficient that the float 5 can generate buoyancy by the action of an external magnetic field acting from below.

本発明で用いられる第2図に示されるスペーサーは、S
ICのような脆性を有するセラミック製被研磨球体を研
磨する場合に、特に有効である。
The spacer shown in FIG. 2 used in the present invention is S
This is particularly effective when polishing brittle ceramic spheres such as ICs.

これらのスペーサーを被研磨球体3の間に装填すること
により、該被研磨球体を研磨中一定に保持して球体相互
の衝突を防止し、面粗さを向上させる効果がある。スペ
ーサーの形状としては、第2図(a)〜(d)に示され
るものに限定されず、球体相互の衝突を有効に防止でき
る形状であればよい。このスペーサーは、被研磨球体3
を研磨装置に装填する時に同時に装填して用いてもよい
By loading these spacers between the spheres 3 to be polished, the spheres to be polished are held constant during polishing to prevent collisions between the spheres and improve the surface roughness. The shape of the spacer is not limited to those shown in FIGS. 2(a) to 2(d), and any shape may be used as long as it can effectively prevent the spheres from colliding with each other. This spacer is attached to the polished sphere 3.
It may also be used by loading it at the same time as loading it into the polishing device.

また、スペーサーに用いられる材質としては、衝フ吸収
性があり、被研磨球体に対する摩擦係数の小さいもので
あればよく、例えばフッソ系樹脂、ポリアミド系樹脂、
ポリイミド系樹脂、アクリル樹脂、硬質塩化ビニル樹脂
などが好ましく用いられる。
The material used for the spacer may be any material as long as it has impact absorption properties and has a small coefficient of friction against the polished sphere, such as fluorocarbon resin, polyamide resin, etc.
Polyimide resins, acrylic resins, hard vinyl chloride resins, and the like are preferably used.

磁性流体7としては、水または油を媒体としてフェライ
トまたはマグネタイト等を分散させたもの等を用いる。
As the magnetic fluid 7, one in which ferrite or magnetite is dispersed using water or oil as a medium is used.

磁性流体7中に含有される砥粒は、公知の研磨用砥粒を
適宜選択して使用することができる。例えば八Ω203
 (コランダム)、5iC(炭化ケイ素;カーボランダ
ム)、ダイヤモンド等であり、あるいは磁性を付加した
砥粒でもよい。
As the abrasive grains contained in the magnetic fluid 7, known polishing abrasive grains can be appropriately selected and used. For example, 8Ω203
(corundum), 5iC (silicon carbide; carborundum), diamond, etc., or abrasive grains with added magnetism may be used.

外部磁場として使用する磁石6は、単一磁石または極性
を揃えて配置した6i1石群であってもよいが、むしろ
隣り合う磁石の極が互いに異なるように(図で矢印で示
す)組み合わせた磁石群であることが好ましい。磁石群
を隣り合う磁石の極が互いに異なるように組み合わせる
のは、砥粒と浮子5の浮力を増し、また水平方向にも磁
気排出力を作用させ、被研磨球体3の運動方向に抗する
ように砥粒を保持するためである。この磁石または磁石
群は永久磁石でも電磁石でもよい。
The magnet 6 used as the external magnetic field may be a single magnet or a group of 6i1 stones arranged with the same polarity, but rather it may be a combination of magnets such that adjacent magnets have different poles (indicated by arrows in the figure). Preferably, it is a group. Combining a group of magnets so that the poles of adjacent magnets are different from each other increases the buoyancy of the abrasive grains and the float 5, and also causes a magnetic discharge force to act in the horizontal direction, so as to resist the direction of movement of the polished sphere 3. This is to keep the abrasive grains in place. This magnet or group of magnets may be a permanent magnet or an electromagnet.

また、本発明に適用される被研磨球体3としては、Si
C%Si、N4等のセラミックスまたは金属等からなる
ものが用いられ、研磨された球体はボールベアリング等
の用途に供せられる。
Further, as the polished sphere 3 applied to the present invention, Si
A material made of ceramic or metal such as C%Si, N4, etc. is used, and the polished sphere is used for applications such as ball bearings.

なお、本発明においては被研磨球体について述べたが、
被研磨球体のみならず、平板や円筒等の研磨も可能であ
る。
In addition, although the spherical object to be polished has been described in the present invention,
It is possible to polish not only spherical objects but also flat plates, cylinders, etc.

[実施例] 以下、本発明を実施例および比較例によりさらに詳しく
説明する。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

大!ff1ll−5− 第1図に示される研磨装置において、第2図(a)に示
されるスペーサーを用いて、研磨試験を行なった。スペ
ーサーの材質としては、テフロン、ポリアミド系樹脂、
ポリイミド系樹脂、硬質塩化ビニル樹脂およびアクリル
樹脂製のものを用いた。
Big! ff1ll-5- In the polishing apparatus shown in FIG. 1, a polishing test was conducted using the spacer shown in FIG. 2(a). Spacer materials include Teflon, polyamide resin,
Those made of polyimide resin, hard vinyl chloride resin, and acrylic resin were used.

なお、この場合に駆動ラップは5US304製で接触面
は60度のものを使用した。また浮子はアクリル製で2
mm厚の平形のものを使用した。研磨試験条件は以下の
通りである。
In this case, the drive wrap was made of 5US304 and had a contact surface of 60 degrees. In addition, the float is made of acrylic and has 2
A flat one with a thickness of mm was used. The polishing test conditions are as follows.

試験条件 磁性流体     W−40(タイホー工業製)被研磨
球体の材[SiC 表面粗さ     5.0μm(R□、)球数および直
径  11球、7.1mr6研磨砥粒     SiC
GC#400研磨時間     10分 駆動ラップ回転数 900Or、p、m。
Test conditions Magnetic fluid W-40 (manufactured by Taiho Industries) Material of the sphere to be polished [SiC Surface roughness 5.0 μm (R□,) Number of spheres and diameter 11 spheres, 7.1 mr6 abrasive grain SiC
GC#400 Polishing time: 10 minutes Drive lap rotation speed: 900 Or, p, m.

これらの実施例のうち、実施例1のテフロン製のスペー
サーを用いて研磨した場合の球体表面の面粗さ試験の断
面曲線を第3図に示した。
Among these Examples, FIG. 3 shows the cross-sectional curve of the surface roughness test of the spherical surface when polished using the Teflon spacer of Example 1.

また、これらの研磨試験の結果を第1表にまとめて示し
た。
Further, the results of these polishing tests are summarized in Table 1.

比較例1 スペーサー使用せずに、実施例1〜5とまったく同一の
条件で研磨試験を行なった。
Comparative Example 1 A polishing test was conducted under exactly the same conditions as Examples 1 to 5 without using a spacer.

得られた球体表面の面粗さ試験の断面曲線を第4図に示
した。
The cross-sectional curve of the surface roughness test of the obtained spherical surface is shown in FIG.

また、この比較例の研磨試験の結果を実施例1〜5の結
果と共に第1表に示した。
Further, the results of the polishing test of this comparative example are shown in Table 1 together with the results of Examples 1 to 5.

第  1  表 第3図および第4図において、縦軸は1cI11当り1
(1ミクロンの面粗さ(R□、)を示し、横軸は1cm
当り0.2auaの球体の表面の距離を示す。
In Table 1, Figures 3 and 4, the vertical axis is 1 per 1cI11.
(Shows surface roughness (R□,) of 1 micron, horizontal axis is 1 cm
The distance between the surfaces of the spheres is 0.2 aua.

以上の実施例および比較例から明らなように、研磨装置
において耐摩耗性ゴムまた弾性を有するプラスチック製
のスペーサーを装填して研磨した場合には、スペーサー
を装填せずに研磨した場合に比較して面粗さが極めて向
上していることがわかる。
As is clear from the above Examples and Comparative Examples, when polishing was performed with a spacer made of wear-resistant rubber or elastic plastic loaded in the polishing machine, the comparison was made when polishing was performed without loading a spacer. It can be seen that the surface roughness is significantly improved.

[発明の効果] 以上説明したように本発明の磁性流体を用いた研磨装置
によれば、表面粗さが極めて向上した球体が得られる。
[Effects of the Invention] As explained above, according to the polishing apparatus using the magnetic fluid of the present invention, a sphere with extremely improved surface roughness can be obtained.

また、研磨効率が向上することにより研磨時間が短縮し
経済性が向上する。
Furthermore, by improving polishing efficiency, polishing time is shortened and economical efficiency is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る研磨装置の一例を示す側断面図
、 第2図(a)〜(d)は、本発明に用いられるスペーサ
ーの一例を示す上面図、 第3図は、実施例1で得られた球体表面の面粗さ試験の
断面曲線を示す図、 第4図は、比較例1で得られた球体表面の面粗さ試験の
断面曲線を示す図である。 に駆動ラップ、 2:駆動ラップ下端部の接触面、 3:被研磨球体、 4ニガイドリング、 5:浮子、 6 : 石ま1石、 7:砥粒を含む磁性流体、 E:駆動ラップ下端部の接触面の傾斜角、8ニスペーサ
−0
FIG. 1 is a side sectional view showing an example of a polishing apparatus according to the present invention, FIGS. 2(a) to (d) are top views showing an example of a spacer used in the present invention, and FIG. 4 is a diagram showing a cross-sectional curve of the surface roughness test of the spherical surface obtained in Comparative Example 1. FIG. driving lap, 2: contact surface at lower end of driving lap, 3: sphere to be polished, 4 guide ring, 5: float, 6: stone, 7: magnetic fluid containing abrasive grains, E: lower end of driving lap Inclination angle of the contact surface of the part, 8 Ni spacer - 0

Claims (1)

【特許請求の範囲】[Claims] 1、ガイドリングと、砥粒を含む磁性流体に浸漬された
浮子と、回転可能な駆動ラップと、該磁性流体に磁場を
形成して該磁性流体と共に該浮子に浮揚力を与える磁場
形成手段とを備え、球状の被研磨物を該駆動ラップ、浮
揚力を受けた浮子およびガイドリング内壁面により該磁
性流体中で保持しつつ、該駆動ラップを回転させること
により研磨する研磨装置において、円周上に配列された
該球状の被研磨物間にスペーサーを装填して研磨するこ
とを特徴とする研磨装置。
1. A guide ring, a float immersed in a magnetic fluid containing abrasive grains, a rotatable drive wrap, and a magnetic field forming means that forms a magnetic field in the magnetic fluid to give a levitation force to the float together with the magnetic fluid. A polishing apparatus that polishes a spherical object to be polished by rotating the driving lap while holding the spherical workpiece in the magnetic fluid by the driving lap, a float receiving a buoyant force, and the inner wall surface of the guide ring. A polishing apparatus characterized in that a spacer is loaded between the spherical objects to be polished arranged on top of the polishing apparatus.
JP63095650A 1988-04-20 1988-04-20 Polishing device using magnetic fluid Pending JPH01271167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095650A JPH01271167A (en) 1988-04-20 1988-04-20 Polishing device using magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095650A JPH01271167A (en) 1988-04-20 1988-04-20 Polishing device using magnetic fluid

Publications (1)

Publication Number Publication Date
JPH01271167A true JPH01271167A (en) 1989-10-30

Family

ID=14143376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095650A Pending JPH01271167A (en) 1988-04-20 1988-04-20 Polishing device using magnetic fluid

Country Status (1)

Country Link
JP (1) JPH01271167A (en)

Similar Documents

Publication Publication Date Title
Umehara et al. Magnetic fluid grinding–a new technique for finishing advanced ceramics
SE464565B (en) PROCEDURES FOR GRINDING USING A MAGNETIC FLUID AND DEVICE THEREOF
US20170043448A1 (en) Method and apparatus for performing targeted polishing via manipulation of magnetic-abrasive fluid
US5957753A (en) Magnetic float polishing of magnetic materials
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
WO1994004313A1 (en) Magnetorheological polishing devices and methods
WO2006030854A1 (en) Complex profile body polishing method and polishing apparatus
CN210081434U (en) Magnetic solid state rheological effect polishing device for thin-wall special-shaped curved surface
JPH01271167A (en) Polishing device using magnetic fluid
JPH0541394B2 (en)
JPH029567A (en) Polishing device employing magnetic fluid
JPH0584656A (en) Magnetic fluid polishing method
JPH01271163A (en) Polishing device using magnetic fluid
JPH01271161A (en) Polishing device using magnetic fluid
JPH01271162A (en) Polishing device using magnetic fluid
JPH01271164A (en) Polishing device using magnetic fluid
CN109759905A (en) A kind of Magnetorheological Polishing system of processing
JPH0248169A (en) Grinder with magnetic fluid
JP2006082213A (en) Method of cutting work and cutting work/mirror polishing device
JPH08257897A (en) Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain
JP2000042908A (en) Polishing method and device for silicone ball
JPH01271166A (en) Polishing device using magnetic fluid
JPH01271168A (en) Polishing device using magnetic fluid
JPH01271165A (en) Polishing device using magnetic fluid
JPH0541395B2 (en)