JPH0541395B2 - - Google Patents

Info

Publication number
JPH0541395B2
JPH0541395B2 JP62026443A JP2644387A JPH0541395B2 JP H0541395 B2 JPH0541395 B2 JP H0541395B2 JP 62026443 A JP62026443 A JP 62026443A JP 2644387 A JP2644387 A JP 2644387A JP H0541395 B2 JPH0541395 B2 JP H0541395B2
Authority
JP
Japan
Prior art keywords
abrasive grains
polished
float
magnetic fluid
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62026443A
Other languages
Japanese (ja)
Other versions
JPS63196368A (en
Inventor
Yasushi Kato
Tokuji Umehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP62026443A priority Critical patent/JPS63196368A/en
Priority to US07/152,937 priority patent/US4821466A/en
Priority to SE8800380A priority patent/SE464565B/en
Priority to DE3803773A priority patent/DE3803773A1/en
Publication of JPS63196368A publication Critical patent/JPS63196368A/en
Publication of JPH0541395B2 publication Critical patent/JPH0541395B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 発明の目的 産業上の利用分野 この発明は、砥粒を含有する磁性流体を磁場の
作用下で使用して非球体状の被研磨物の表面を研
磨する方法、特に砥粒の運動を磁性流体と浮子と
磁場との組合せにより制御して、高い効率で研磨
する方法に関するものである。 従来の技術 磁性流体に砥粒を含有させた研磨用液を磁場の
作用下で使用して物体の表面を研磨する方法とし
ては、特開昭54−10499号、特開昭57−163057号、
特開昭57−158280号、特開昭58−77447号、特開
昭59−102569号、特開昭60−67057号、特開昭60
−118466号、特開昭0−167761号、特開昭60−
186368号、特開昭60−191759号、特開昭60−
242963号等の明細書に各種の提案がなされてい
る。 これらの、磁性流体に砥粒を含有させた研磨用
液を磁場の作用下で使用して物体の表面を研磨す
る方法の基本的原理を第8図により説明すると、
容器1に満たされた砥粒を含有する磁性流体2中
に被研磨物3の被研磨面が浸漬するように設置
し、容器1の下に磁石4を配置して磁性流体の下
方より外部磁場を作用させる。このようにすると
砥粒は上部に浮上して被研磨物に接触する高密度
の砥粒層を形成する。そこで被研磨物と砥粒を含
有する磁性流体との間に相対運動、図示の場合は
被研磨物を垂直軸を中心として回転させることに
よる相対運動を与えると、砥粒層と接触している
被研磨面は研磨される。 別法として、外部磁場を回転させて砥粒を含有
する磁性流体を回転させることにより被研磨物と
砥粒を含有する磁性流体との間に相対運動を与え
る方法もある。 しかしこれら従来法は、研磨の目的は達成し得
るものの、いずれも研磨率(単位時間当りの研磨
量)が非常に小さく効率が悪いために、原理的に
は可能であつても実用化された例はない。 発明が解決しようとする問題点 本発明は砥粒を含有する磁性流体を用いる研磨
方法において、被研磨物の表面を効率よく研磨す
る方法を提供することを目的とする。 ロ 発明の構成 問題点を解決するための手段 本発明の研磨方法は、砥粒を含有する磁性流体
中に非球体状の被研磨物及びその下方に浮子を浸
漬し、磁性流体に外部磁場を作用させることによ
り浮子に浮力を与え、その浮力によつて浮子の作
用面と非球体状の被研磨物との間の砥粒を被研磨
物に押しつけると共に、被研磨物と砥粒を含有す
る磁性流体との間に相対運動を与えることよりな
る。 本発明方法を、典型的な適用例の一つについて
具体的に説明する。 第1A図及び第1B図は複数個の非球体状の被
研磨物(以下単に被研磨物という)を同時研磨す
る場合の具体例の一つであり、第1A図は上方か
ら見た図、第1B図は側断面図である。 第1A図及び第1B図に示すように、被研磨物
3は駆動治具としての円板6の下面に回転自在に
取付けられ、容器1中の砥粒を含有する磁性流体
2の液面近傍に浸漬される。ここで砥粒を含有す
る磁性流体2中に浮子5を浸漬し、磁性流体の下
方より磁石4により外部磁場を作用させると、砥
粒には浮力が作用して上方に浮上し磁性流体の上
部に高密度の砥粒層を形成するが、それとともに
浮子5にも浮力が与えられ、浮子5は浮上してそ
の上方に存在する砥粒を被研磨物面に強く押しつ
ける。この状態で駆動円板6を垂直軸61を中心
として回転させると、砥粒に接触している下面が
研磨される。この場合、浮子5の作用によつて、
浮子を使用しない場合に比べて研磨率は著しく向
上する。 発生する研磨力は、浮子に働く浮力と、浮子の
研磨方向への抵抗力としての剛性により決定され
る。研磨方向への剛性は、浮子の材質、質量、形
状及びそれによる流体抵抗等の要素により決定さ
れる。 浮子の材質としては、金属、プラスチツク、セ
ラミツクス、ゴム等、種々の材料を目的に応じて
選択使用できる。 浮子に働く浮力は、下方より働く外部磁場の強
さ、浮子の大きさ、浮子までの距離等により決定
され、これらを変化させることによつて所要の加
工圧を任意に制御することができる。 浮子の比重は砥粒を含有する磁性流体の比重よ
りも軽いことは絶対必要な条件ではなく、下方よ
り働く外部磁場の作用により浮力を生じるもので
あればよい。 浮子の形状は、被研磨物の被研磨面の形状、例
えば平面、曲面、凹凸面などの表面形状に応じ
て、被研磨物の被研磨面との間隔がどの部分でも
一定になるような形状にするのが好ましい。 浮子の表面は平滑でもよいが、第6A図又は第
6B図に部分拡大断面図として示すように、その
上部表面に多数の溝又は凹部を設けて砥粒の保持
を容易にしたものを使用することが好ましい。あ
るいは第6C図に部分拡大断面図として示すよう
に、多数の連通孔を有するものを使用して砥粒の
補給を容易にしたものを使用してもよい。 被研磨物と磁性流体に混合された砥粒との相対
運動は、被研磨物の回転、往復、振動その他の運
動、砥粒を含有する磁性流体の運動、磁場の変動
のほか、浮子の運動及びこれらを組合せた運動に
よつて行われる。 磁性流体中に含有される砥粒は、公知の研磨用
砥粒を適宜選択して使用することができる。例え
ばAl2O3(コランダム)、SiC(炭化ケイ素:オーボ
ランダム)、ダイヤモンド等であり、あるいは磁
性を付加した砥粒でもよい。 外部磁場として使用する磁石4は、単一磁石ま
たは極性を揃えて配置した磁石群であつてもよい
が、むしろ隣り合う磁石の極が互いに異なるよう
に(図で矢印で示す)組合せた磁石群であること
が好ましい。磁石群を隣り合う磁石の極が互いに
異なるように組合せるのは、砥粒と浮子の浮力を
増し、また水平方向にも磁気排出力を作用させ、
被研磨物の運動方向に抗するように砥粒を保持す
るためである。 この磁石または磁石群は永久磁石でも電磁石で
もよい。 また磁石は容器1の下部のほか、一方の側部に
配置して水平あるいは傾斜方向などの適宜方向の
磁場勾配を発生させてもよく、いずれの場合も磁
性流体の一方の側から外部磁場を作用させ、対向
側に浮力を発生させればよい。 第2A図及び第2B図は、第1A図及び第1B
図と同様の複数個の被研磨物を同時研磨する場合
の他の具体例を説明するための図で、第2A図は
上方から見た図、第2B図は側断面図である。こ
の場合には、複数個の被研磨物3を駆動円板6と
浮子5との間に、砥粒を含有するる磁性流体2中
に浮遊する状態に配置される。これに下方から外
部磁場を作用させると、砥粒を含有する磁性流体
2中に浸漬した浮子5が浮上してその上方に存在
する砥粒が被研磨物3の下面に押しつけられる。
駆動円板6を垂直軸61を中心として回転する
と、被研磨物3は円板6、その外周壁62、浮子
5の制約下に砥粒を含有する磁性流体中で遊動
し、被研磨物3の下面あるいは上下面が研磨され
る。 第3A図及び第3B図はリング又は円板の側面
を研磨する場合を説明するための図で、第3A図
は上方から見た図、第3B図は側断面図である。
リング又は円板状の被研磨物3を水平回転軸61
に取り付けて回転させ、砥粒を含有する磁性流体
中2に浸漬した浮子5を浮上させてその上方に存
在する砥粒を回転するリング又は円板状の被研磨
物3の側面に押しつければ、その側面が効率的に
研磨される。この場合浮子5の中心に回転軸7を
設けることが望ましい。 第4図は深溝を有する円柱を研磨する場合を説
明するための図である。深溝を有する円柱状の被
研磨物3を治具63で水平に支持し回転させると
共に、深溝に対応する凹凸形状を有する浮子51
を使用してその上方に存在する砥粒を回転する被
研磨物3の下面に押しつければ、その側面が深溝
部分まで効率的に研磨される。この場合浮子51
が不規則な横揺れをしないようにガイドピン71
で横方向の運動を規制している。 第5図は細孔を有する被研磨物3の細孔内を研
磨する場合を説明するための図で、ホルダー64
に固定した被研磨物の細孔35が水平方向になる
ように設置し、細孔35の内部に針状の浮子52
を挿入する。被研磨物3を水平往復運動させると
細孔35内部が効率的に研磨される。 細孔35の断面が円形であり、外形も円柱ある
いは正多角柱である場合には、被研磨物3を回転
運動させてもよい。リング内面あるいはパイプ内
面を研磨する場合も被研磨面形状に合わせた浮子
を磁場による浮力によつて内面方向に作用させる
ことにより、同様な方法で行うことができる。 本発明による浮子を用いる研磨方法は、以上の
具体例に限定されるものではなく、砥粒を含有す
る磁性流体を用いる各種の研磨方法に応用可能で
ある。 実施例 1 第7図に示した装置を使用し、第1表に示す条
件で研磨した。試験結果を第2表に示す。
B. Purpose of the Invention Industrial Field of Application This invention relates to a method of polishing the surface of a non-spherical object to be polished using a magnetic fluid containing abrasive grains under the action of a magnetic field, and in particular a method of polishing the surface of a non-spherical object to be polished. The present invention relates to a highly efficient polishing method controlled by a combination of a fluid, a float, and a magnetic field. Prior Art Methods for polishing the surface of an object using a polishing liquid containing abrasive grains in a magnetic fluid under the action of a magnetic field are disclosed in Japanese Patent Application Laid-open No. 54-10499, Japanese Patent Application Laid-Open No. 57-163057,
JP-A-57-158280, JP-A-58-77447, JP-A-59-102569, JP-A-60-67057, JP-A-60
-118466, JP-A-0-167761, JP-A-60-
No. 186368, JP-A-60-191759, JP-A-60-
Various proposals have been made in specifications such as No. 242963. The basic principle of these methods of polishing the surface of an object using a polishing liquid containing abrasive grains in a magnetic fluid under the action of a magnetic field is explained with reference to FIG.
A container 1 is installed so that the polished surface of the object 3 is immersed in a magnetic fluid 2 containing abrasive grains, and a magnet 4 is placed under the container 1 to apply an external magnetic field from below the magnetic fluid. to act. In this way, the abrasive grains float to the top and form a high-density abrasive grain layer that comes into contact with the object to be polished. Therefore, when relative motion is applied between the object to be polished and the magnetic fluid containing abrasive grains, in the case shown in the figure, the object to be polished is rotated around a vertical axis, so that it comes into contact with the abrasive grain layer. The surface to be polished is polished. Alternatively, there is a method of applying relative motion between the object to be polished and the magnetic fluid containing abrasive grains by rotating an external magnetic field to rotate the magnetic fluid containing abrasive grains. However, although these conventional methods can achieve the purpose of polishing, the polishing rate (amount of polishing per unit time) is very small and inefficient, so even though they are possible in principle, they have not been put into practical use. There are no examples. Problems to be Solved by the Invention An object of the present invention is to provide a method for efficiently polishing the surface of an object to be polished in a polishing method using a magnetic fluid containing abrasive grains. B. Means for Solving the Constituent Problems of the Invention The polishing method of the present invention involves immersing a non-spherical object to be polished and a float below it in a magnetic fluid containing abrasive grains, and applying an external magnetic field to the magnetic fluid. By acting, buoyancy is imparted to the float, and the buoyancy forces the abrasive grains between the working surface of the float and the non-spherical object to be polished onto the object to be polished, and contains the object to be polished and the abrasive grains. It consists of providing relative motion between the magnetic fluid and the magnetic fluid. The method of the present invention will be specifically explained using one typical application example. 1A and 1B are one specific example of simultaneously polishing a plurality of non-spherical objects to be polished (hereinafter simply referred to as objects to be polished), and FIG. 1A is a view seen from above; FIG. 1B is a side sectional view. As shown in FIGS. 1A and 1B, the object to be polished 3 is rotatably attached to the lower surface of a disk 6 as a driving jig, and is placed near the liquid level of the magnetic fluid 2 containing abrasive grains in the container 1. immersed in. Here, when the float 5 is immersed in the magnetic fluid 2 containing abrasive grains and an external magnetic field is applied by the magnet 4 from below the magnetic fluid, buoyancy acts on the abrasive grains and they float upwards. At the same time, a high-density abrasive grain layer is formed, and at the same time, buoyancy is given to the float 5, and the float 5 floats and strongly presses the abrasive grains present above it against the surface of the object to be polished. When the drive disk 6 is rotated about the vertical axis 61 in this state, the lower surface in contact with the abrasive grains is polished. In this case, due to the action of the float 5,
The polishing rate is significantly improved compared to when no float is used. The generated polishing force is determined by the buoyant force acting on the float and the rigidity of the float as a resistance force in the polishing direction. The rigidity in the polishing direction is determined by factors such as the material, mass, shape, and fluid resistance of the float. As the material of the float, various materials such as metal, plastic, ceramics, rubber, etc. can be selected depending on the purpose. The buoyant force acting on the float is determined by the strength of the external magnetic field acting from below, the size of the float, the distance to the float, etc., and by changing these factors, the required processing pressure can be controlled as desired. It is not an absolutely necessary condition that the specific gravity of the float is lighter than the specific gravity of the magnetic fluid containing abrasive grains, but it is sufficient that it generates buoyancy by the action of an external magnetic field acting from below. The shape of the float is such that the distance between it and the surface of the object to be polished is constant regardless of the shape of the surface to be polished, such as flat, curved, or uneven surface. It is preferable to The surface of the float may be smooth, but as shown in FIG. 6A or FIG. 6B as a partially enlarged sectional view, a float with a large number of grooves or recesses on its upper surface to facilitate retention of abrasive grains is used. It is preferable. Alternatively, as shown in FIG. 6C as a partially enlarged cross-sectional view, one having a large number of communicating holes may be used to facilitate the replenishment of abrasive grains. The relative motion between the object to be polished and the abrasive grains mixed in the magnetic fluid includes the rotation, reciprocation, vibration and other movements of the object to be polished, the movement of the magnetic fluid containing the abrasive grains, the fluctuation of the magnetic field, and the movement of the float. and exercises that combine these. As the abrasive grains contained in the magnetic fluid, known polishing abrasive grains can be appropriately selected and used. For example, Al 2 O 3 (corundum), SiC (silicon carbide: orborundum), diamond, etc., or abrasive grains with added magnetism may be used. The magnet 4 used as the external magnetic field may be a single magnet or a group of magnets arranged with the same polarity, but rather a group of magnets arranged so that adjacent magnets have different polarities (as indicated by arrows in the figure). It is preferable that Combining a group of magnets so that the poles of adjacent magnets are different from each other increases the buoyancy of the abrasive grains and floats, and also causes magnetic ejection force to act in the horizontal direction.
This is to hold the abrasive grains against the direction of movement of the object to be polished. This magnet or group of magnets may be a permanent magnet or an electromagnet. In addition to the lower part of the container 1, the magnet may be placed on one side of the container 1 to generate a magnetic field gradient in an appropriate direction, such as horizontally or in an inclined direction. In either case, an external magnetic field is applied from one side of the magnetic fluid. All you have to do is to apply this force to generate buoyancy on the opposite side. Figure 2A and Figure 2B are Figures 1A and 1B.
FIG. 2A is a view seen from above, and FIG. 2B is a sectional side view. In this case, a plurality of objects 3 to be polished are placed between the drive disk 6 and the float 5 so as to be suspended in the magnetic fluid 2 containing abrasive grains. When an external magnetic field is applied to this from below, the float 5 immersed in the magnetic fluid 2 containing abrasive grains floats up, and the abrasive grains present above are pressed against the lower surface of the object 3 to be polished.
When the driving disk 6 is rotated about the vertical axis 61, the object 3 to be polished moves freely in the magnetic fluid containing abrasive grains under the constraints of the disk 6, its outer peripheral wall 62, and the float 5, The lower or upper and lower surfaces of the are polished. 3A and 3B are diagrams for explaining the case of polishing the side surface of a ring or disk, with FIG. 3A being a view seen from above and FIG. 3B being a side sectional view.
A ring or disk-shaped object 3 is rotated around a horizontal rotation shaft 61.
If the float 5 immersed in the magnetic fluid 2 containing abrasive grains is floated and the abrasive grains present above are pressed against the side surface of the rotating ring or disk-shaped object 3, , its sides are polished efficiently. In this case, it is desirable to provide the rotating shaft 7 at the center of the float 5. FIG. 4 is a diagram for explaining the case of polishing a cylinder having deep grooves. A cylindrical polished object 3 having deep grooves is horizontally supported and rotated by a jig 63, and a float 51 has an uneven shape corresponding to the deep grooves.
If the abrasive grains present above are pressed against the lower surface of the rotating workpiece 3 using a grinder, the side surface will be efficiently polished down to the deep groove portion. In this case, the float 51
Guide pin 71 to prevent irregular sideways movement.
regulates lateral movement. FIG. 5 is a diagram for explaining the case where the inside of the pores of the object to be polished 3 having pores is polished.
The object to be polished is installed so that the pores 35 of the object to be polished are in the horizontal direction, and a needle-shaped float 52 is installed inside the pores 35.
Insert. When the object 3 to be polished is horizontally reciprocated, the inside of the pore 35 is efficiently polished. When the cross section of the pore 35 is circular and the outer shape is also a cylinder or a regular polygonal cylinder, the object to be polished 3 may be rotated. When polishing the inner surface of a ring or pipe, a similar method can be used by applying a float adapted to the shape of the surface to be polished toward the inner surface using the buoyancy of a magnetic field. The polishing method using a float according to the present invention is not limited to the above specific example, but can be applied to various polishing methods using a magnetic fluid containing abrasive grains. Example 1 Using the apparatus shown in FIG. 7, polishing was carried out under the conditions shown in Table 1. The test results are shown in Table 2.

【表】 なお研磨率は、試験片下面の端部の断面曲線よ
り求めた。 比較例 1 浮子を使用しなかつた以外は、実施例1と同じ
装置を用い、同様な条件で研磨試験を行つた。結
果を第2表に示す。この場合の研磨率も、実施例
1と同様に試験片下面の端部の断面曲線より求め
た。
[Table] The polishing rate was determined from the cross-sectional curve of the end of the lower surface of the test piece. Comparative Example 1 A polishing test was conducted under the same conditions using the same equipment as in Example 1, except that no float was used. The results are shown in Table 2. The polishing rate in this case was also determined from the cross-sectional curve of the end of the lower surface of the test piece in the same manner as in Example 1.

【表】 浮子を使用した場合(実施例1)、浮子を使用
しない場合(比較例1)の60倍の研磨率が得られ
る。 ハ 発明の効果 本発明の研磨方法は、砥粒を含有する磁性流体
中で行われるので、被研磨物への加工力の負荷系
が柔構造であり、従つて過負荷や衝撃力が発生し
にくく、セラミツクなどの脆性材料やアルミニウ
ムなどの延性材料など難加工性材料の研磨を損傷
あるいは加工変質などの発生を最小に抑制しつつ
行うことができる。 また研磨による発熱を効率よく除去できるの
で、上記柔構造負荷の効果と相俟つて高速研磨が
可能となり、研磨効率が向上する。 さらに本発明における最大の特色は、従来の磁
性流体を用いる研磨方法では加工圧力は主として
砥粒の浮力によるが、砥粒の浮力は加工圧として
は小さいために研磨率が非常に小さいのに対し、
本発明では浮子を用いるためにその浮力によつて
砥粒が被研磨面に強く押しつけられ、加工圧が著
しく高められると同時に浮子が研磨方向への抵抗
体となる結果、研磨率が顕著に向上することであ
る。 また浮子の形状を被研磨面の形状に応じて適宜
に変えることにより、複雑な表面の研磨が可能で
ある。
[Table] When a float is used (Example 1), a polishing rate 60 times higher than when a float is not used (Comparative Example 1) is obtained. C. Effects of the Invention Since the polishing method of the present invention is carried out in a magnetic fluid containing abrasive grains, the loading system for applying processing force to the object to be polished has a flexible structure, and therefore overload and impact force do not occur. It is possible to polish difficult-to-process materials such as brittle materials such as ceramics and ductile materials such as aluminum while minimizing damage or processing deterioration. Furthermore, since the heat generated by polishing can be efficiently removed, together with the effect of the soft structural load mentioned above, high-speed polishing becomes possible and the polishing efficiency improves. Furthermore, the greatest feature of the present invention is that in the conventional polishing method using magnetic fluid, the processing pressure is mainly due to the buoyancy of the abrasive grains, but the buoyancy of the abrasive grains is small as a processing pressure, so the polishing rate is very small. ,
In the present invention, since a float is used, the abrasive grains are strongly pressed against the surface to be polished due to the buoyancy, and the processing pressure is significantly increased. At the same time, the float acts as a resistor in the polishing direction, resulting in a marked improvement in the polishing rate. It is to be. Further, by appropriately changing the shape of the float depending on the shape of the surface to be polished, it is possible to polish a complicated surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図及び第1B図、第2A図及び第2B
図、第3A図及び第3B図、第4図ならびに第5
図はそれぞれ本発明の具体的実施態様を説明する
ための図、第6A図、第6B図及び第6C図は本
発明で使用する浮子の部分拡大断面構造例を示す
図、第7図は実施例1で用いた装置を示す図、第
8図は従来法を説明するための図である。
Figure 1A and Figure 1B, Figure 2A and Figure 2B
Figures 3A and 3B, 4 and 5
The figures are for explaining specific embodiments of the present invention, Figures 6A, 6B, and 6C are partially enlarged cross-sectional structural examples of the float used in the present invention, and Figure 7 is an example of an embodiment of the present invention. FIG. 8, which shows the apparatus used in Example 1, is a diagram for explaining the conventional method.

Claims (1)

【特許請求の範囲】 1 砥粒を含有する磁性流体中に非球体状の被研
磨物及びその下方に浮子を浸漬し、磁性流体に外
部磁場を作用させることにより浮子に浮力を与
え、その浮力によつて浮子の作用面と非球体状の
被研磨物との間の砥粒を被研磨物に押しつけると
共に、被研磨物と砥粒を含有する磁性流体との間
に相対運動を与えることよりなる非球体状の被研
磨物の研磨方法。 2 非球体状の被研磨物を水平往復運動又は回転
運動又は振動させることにより被研磨物と砥粒を
含有する磁性流体との間に相対運動を与える特許
請求の範囲第1項記載の研磨方法。 3 外部磁場を変動させて砥粒を含有する磁性流
体を流動させることにより非球体状の被研磨物と
砥粒を含有する磁性流体との間に相対運動を与え
る特許請求の範囲第1項記載の研磨方法。 4 浮子として、その作用面に多数の溝又は凹部
を設けたものを使用する特許請求の範囲第1項記
載の研磨方法。 5 浮子として、磁性流体と砥粒のための多数の
連通孔を有するものを使用する特許請求の範囲第
1項記載の研磨方法。 6 非球体状の被研磨物が浮子と駆動治具との間
に挟まれて砥粒を含有する磁性流体中に浮遊して
いる特許請求の範囲第1項記載の研磨方法。 7 磁性流体に作用させる外部磁場として、隣り
合う磁石の極が互いに異なるように組合せた磁石
群を用いる特許請求の範囲第1項記載の研磨方
法。
[Claims] 1. A non-spherical object to be polished and a float below it are immersed in a magnetic fluid containing abrasive grains, and an external magnetic field is applied to the magnetic fluid to impart buoyancy to the float. By pressing the abrasive grains between the working surface of the float and the non-spherical workpiece onto the workpiece, and giving relative motion between the workpiece and the magnetic fluid containing the abrasive grains. A method of polishing a non-spherical object to be polished. 2. A polishing method according to claim 1, in which a non-spherical object to be polished is horizontally reciprocated, rotated, or vibrated to provide relative motion between the object to be polished and a magnetic fluid containing abrasive grains. . 3. Claim 1 that provides relative motion between a non-spherical object to be polished and the magnetic fluid containing abrasive grains by varying an external magnetic field and causing the magnetic fluid containing abrasive grains to flow. polishing method. 4. The polishing method according to claim 1, wherein a float having a large number of grooves or recesses on its working surface is used. 5. The polishing method according to claim 1, wherein a float having a large number of communication holes for the magnetic fluid and the abrasive grains is used. 6. The polishing method according to claim 1, wherein a non-spherical object to be polished is sandwiched between a float and a driving jig and suspended in a magnetic fluid containing abrasive grains. 7. The polishing method according to claim 1, which uses a group of magnets in which adjacent magnets have different poles as the external magnetic field that acts on the magnetic fluid.
JP62026443A 1987-02-09 1987-02-09 Polishing method using magnetic fluid Granted JPS63196368A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62026443A JPS63196368A (en) 1987-02-09 1987-02-09 Polishing method using magnetic fluid
US07/152,937 US4821466A (en) 1987-02-09 1988-02-05 Method for grinding using a magnetic fluid and an apparatus thereof
SE8800380A SE464565B (en) 1987-02-09 1988-02-05 PROCEDURES FOR GRINDING USING A MAGNETIC FLUID AND DEVICE THEREOF
DE3803773A DE3803773A1 (en) 1987-02-09 1988-02-08 GRINDING METHOD USING A MAGNETIC FLUID AND DEVICE THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026443A JPS63196368A (en) 1987-02-09 1987-02-09 Polishing method using magnetic fluid

Publications (2)

Publication Number Publication Date
JPS63196368A JPS63196368A (en) 1988-08-15
JPH0541395B2 true JPH0541395B2 (en) 1993-06-23

Family

ID=12193649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026443A Granted JPS63196368A (en) 1987-02-09 1987-02-09 Polishing method using magnetic fluid

Country Status (1)

Country Link
JP (1) JPS63196368A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4011524B2 (en) 2003-07-09 2007-11-21 ポップリベット・ファスナー株式会社 Stud welding equipment
KR100997898B1 (en) 2008-09-26 2010-12-02 인하대학교 산학협력단 Method For Forming Channel On Bio Chip
CN107116455B (en) * 2017-05-03 2019-02-22 宁波工程学院 A kind of micro- texture former of inner surface self-centering based on jet stream

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173166A (en) * 1985-08-08 1987-07-30 Jgc Corp Sphere polishing method using magnetic fluid and polishing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173166A (en) * 1985-08-08 1987-07-30 Jgc Corp Sphere polishing method using magnetic fluid and polishing device

Also Published As

Publication number Publication date
JPS63196368A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
US4821466A (en) Method for grinding using a magnetic fluid and an apparatus thereof
US5232875A (en) Method and apparatus for improving planarity of chemical-mechanical planarization operations
US4918870A (en) Floating subcarriers for wafer polishing apparatus
US20130273816A1 (en) Automatic polishing device for surface finishing of complex-curved-profile parts
TWI288047B (en) Polishing machines including under-pads and methods for mechanical and/or chemical-mechanical polishing of microfeature workpieces
EP0318135A2 (en) Abrading tool and process of manufacturing the same
Umehara et al. Magnetic fluid grinding–a new technique for finishing advanced ceramics
US5957753A (en) Magnetic float polishing of magnetic materials
WO2017030979A1 (en) Method and apparatus for performing targeted polishing via manipulation of magnetic-abrasive fluid
WO1994004313A1 (en) Magnetorheological polishing devices and methods
EP1178868A1 (en) Ferrofluidic finishing
JPH0541395B2 (en)
JPS62173166A (en) Sphere polishing method using magnetic fluid and polishing device
JPH0584656A (en) Magnetic fluid polishing method
CN1164396C (en) Chamfering method of rare earth alloy and separating method and device for ball-milling medium
JP4121086B2 (en) Abrasive embedding tool for lapping machine
JPH01234160A (en) Polishing and polishing device
JPH0248169A (en) Grinder with magnetic fluid
JPH01271163A (en) Polishing device using magnetic fluid
JPS6219363A (en) Polishing inner surface of small hole
JPH01271161A (en) Polishing device using magnetic fluid
JPH01271167A (en) Polishing device using magnetic fluid
EP0441865A1 (en) Orbital and/or reciprocal machining with a viscous plastic medium
JPH01135466A (en) Polishing device using magnetic fluid
JPH029567A (en) Polishing device employing magnetic fluid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term