JPH01271164A - Polishing device using magnetic fluid - Google Patents

Polishing device using magnetic fluid

Info

Publication number
JPH01271164A
JPH01271164A JP63094630A JP9463088A JPH01271164A JP H01271164 A JPH01271164 A JP H01271164A JP 63094630 A JP63094630 A JP 63094630A JP 9463088 A JP9463088 A JP 9463088A JP H01271164 A JPH01271164 A JP H01271164A
Authority
JP
Japan
Prior art keywords
polishing
magnetic fluid
lap
float
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63094630A
Other languages
Japanese (ja)
Inventor
Yasushi Kato
康司 加藤
Tokuji Umehara
徳次 梅原
Shigeru Adachi
茂 足立
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP63094630A priority Critical patent/JPH01271164A/en
Publication of JPH01271164A publication Critical patent/JPH01271164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To obtain a ball unit of high sphericity further enhancing polishing efficiency enabling long time continuous polishing to be performed by fixing an abrasive grain to a driving lap bottom end part in its contact surface with a spherical workpiece. CONSTITUTION:While holding a spherical workpiece 3 in magnetic fluid 7 by a driving lap 1, float 5 given floating force by the magnetic field formed in the magnetic fluid 7 by a magnetic field forming means (magnet) 6 and the internal peripheral surface of a guide ring 4, the driving lap 1 is rotated, polishing this workpiece 3. Here an abrasive grain 8 is fixed to the driving lap 1 in its bottom end contact surface 2 coming into contact with the workpiece 3. Thus enabling the workpiece 3 to improve its sphericity and polishing efficiency, continuous polishing can be performed over a long time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁性流体を用いた研磨装置に関し、さらに詳
しくは磁性流体を磁場の作用下で使用し、ボールベアリ
ング等に使用される球体を研磨して真球度の高い球体を
効率良く製造するための装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a polishing device using a magnetic fluid, and more specifically, a polishing device that uses a magnetic fluid under the action of a magnetic field to polish a sphere used in a ball bearing or the like. The present invention relates to an apparatus for efficiently manufacturing spheres with high sphericity by polishing.

[従来の技術] 従来、砥粒を含有する磁性流体からなる研磨用液を磁場
の作用下で使用してボールベアリング等に使用される球
体を研磨する方法および装置が特開昭62−17316
6号公報に開示されている。同公報に記載された研磨方
法および装置は、磁性流体中に浸漬した球体を、磁性流
体の外部の一方の側より働く外部磁場の作用により排出
力を与えて、その対向側に位置させた駆動用治具(駆動
ラップ)の面に押し付け、それによって該駆動用治具の
運動を球体に伝達して磁性流体中で゛里勤させ、該球体
の運動を案内面によって制御することを特徴とするもの
である。
[Prior Art] Conventionally, a method and apparatus for polishing spheres used in ball bearings, etc. using a polishing liquid made of a magnetic fluid containing abrasive grains under the action of a magnetic field has been disclosed in Japanese Patent Laid-Open No. 17316/1983.
It is disclosed in Publication No. 6. The polishing method and device described in the publication apply ejection force to a sphere immersed in a magnetic fluid by the action of an external magnetic field acting from one side outside the magnetic fluid, and drive the sphere to be positioned on the opposite side. The sphere is pressed against the surface of a driving jig (driving lap), thereby transmitting the motion of the driving jig to the sphere to operate in the magnetic fluid, and the movement of the sphere is controlled by a guide surface. It is something to do.

またこの際、球体の外部磁場側に位置するように浮力板
(浮子)を挿入すると、この浮力板にも外部6n場の作
用による排出力が与えられ、球体をより強く駆動用治具
の研磨面に押し付けるので研磨効率が著しく向上するこ
とが開示されている。
At this time, if a buoyancy plate (float) is inserted so as to be located on the external magnetic field side of the sphere, a discharge force is also applied to this buoyancy plate due to the action of the external 6n field, and the sphere is more strongly polished by the driving jig. It is disclosed that the polishing efficiency is significantly improved because the polishing material is pressed against the surface.

前記研磨装置では、球体の運動を制御するために駆動ラ
ップの下面にV型溝や仕切板を設け、球体の運動の案内
面としての機能を持たせて研磨効率および真球度の向上
を図っている。また別の方法として、駆動ラップの下端
を倒置三角錐状にして球体が倒置三角能の斜面、円筒状
容器(ガイドリング)および浮力板との間に押し付けら
れた状態で運動させて研磨して真球度の向上を図ってい
る。
In the polishing device, a V-shaped groove and a partition plate are provided on the lower surface of the driving lap to control the movement of the sphere, and the plate functions as a guide surface for the movement of the sphere, thereby improving polishing efficiency and sphericity. ing. Another method is to polish the lower end of the driving lap by making it into an inverted triangular pyramid shape and moving the sphere while being pressed between the slope of the inverted triangular shape, the cylindrical container (guide ring), and the buoyancy plate. Efforts are being made to improve sphericity.

[発明が解決しようとする課題] しかし、このような従来の研磨装置を用いた場合には、
得られた球体の真球度において必ずしも充分なものでは
なく、また研磨効率においても満足できるものではない
[Problem to be solved by the invention] However, when such a conventional polishing device is used,
The sphericity of the obtained spheres is not necessarily sufficient, and the polishing efficiency is also not satisfactory.

すなわち、従来の砥粒を含有する磁性流体を用いる研磨
装置では、全砥粒が研磨に関与しているわけではなく、
また被研磨物同士の衝突により砥粒が粉砕されるため、
必ずしも充分な真球度および研磨効率を得るには至って
いなかった。
In other words, in conventional polishing devices that use magnetic fluid containing abrasive grains, not all the abrasive grains are involved in polishing.
In addition, since the abrasive grains are crushed by the collision between the objects to be polished,
It has not always been possible to obtain sufficient sphericity and polishing efficiency.

本発明は、磁性流体を用いる研磨装置において、球体の
真球度および研磨効率をさらに向上させた研磨装置を提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polishing device that uses a magnetic fluid and further improves the sphericity of the sphere and the polishing efficiency.

[課題を解決するための手段および作用コ本発明者等は
、上記目的を達成するために鋭意検討をした結果、駆動
ラップ下端部の球状の被研磨物との接触面に砥粒を固定
させることにより、被研磨物の真球度および研磨効率が
向上する本発明を完成するに至った。
[Means and Effects for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors fixed abrasive grains on the lower end of the drive lap on the contact surface with the spherical object to be polished. As a result, the present invention has been completed, which improves the sphericity of the object to be polished and the polishing efficiency.

すなわち本発明は、ガイドリングと、磁性流体に浸漬さ
れた浮子と、回転可能な駆動ラップと、該磁性流体に磁
場を形成して該磁性流体と共に該浮子に浮揚力を与える
磁場形成手段とを備え、球状の被研磨物を該駆動ラップ
、浮揚力を受けた浮子およびガイドリング内壁面により
該磁性流体中で保持しつつ、該駆動ラップを回転させる
ことにより、研磨する研磨装置において、駆動ラップ下
端部の該球状の被研磨物との接触面に砥粒を固定したこ
とを特徴とする研磨装置にある。
That is, the present invention includes a guide ring, a float immersed in a magnetic fluid, a rotatable drive wrap, and a magnetic field forming means that forms a magnetic field in the magnetic fluid to give a levitation force to the float together with the magnetic fluid. A polishing apparatus comprising: a driving lap for polishing a spherical object to be polished by rotating the driving lap while holding the spherical object in the magnetic fluid by the driving lap, a float receiving a buoyant force, and an inner wall surface of a guide ring; There is a polishing device characterized in that abrasive grains are fixed to a lower end portion of the surface that contacts the spherical object to be polished.

以下、本発明の磁性流体を用いた研磨装置を図面に基づ
いて説明する。
Hereinafter, a polishing apparatus using a magnetic fluid according to the present invention will be explained based on the drawings.

第1図は本発明の研磨装置の一例を示す断面図である。FIG. 1 is a sectional view showing an example of the polishing apparatus of the present invention.

図中1は駆動ラップ、2は球状の被研磨物との接触面、
3は球状の被研磨物(被研磨球体)、4はガイドリング
、5は浮子、6は磁石、7は磁性流体、8は固定砥粒を
それぞれ示す。
In the figure, 1 is the drive lap, 2 is the contact surface with the spherical object to be polished,
3 is a spherical object to be polished (a spherical object to be polished), 4 is a guide ring, 5 is a float, 6 is a magnet, 7 is a magnetic fluid, and 8 is a fixed abrasive grain.

第1図に示される研磨装置では、磁性流体7中に浮子5
を浸漬し、該磁性流体7に磁石6等により外部磁場を作
用させて浮子5に浮力を与え、その浮力によって浮子5
を上昇させ、被研磨球体3を浮子5上端部の接触面、駆
動ラップ1下端部の接触面2およびガイドリング4の内
壁面で保持する。そして、駆動ラップ1を駆動させ、水
平方向に回転させることによって、被研磨球体3にその
回転による運動が伝達され、磁性流体7中で運動するよ
うになる。この被研磨球体3と接触面2に固定された固
定砥粒8とが摺動することによって、研磨が効率良く行
なわれる。
In the polishing apparatus shown in FIG. 1, a float 5 is placed in a magnetic fluid 7.
is immersed in the magnetic fluid 7, an external magnetic field is applied to the magnetic fluid 7 using a magnet 6, etc. to give buoyancy to the float 5, and the buoyancy causes the float 5 to float.
is raised, and the polished sphere 3 is held by the contact surface of the upper end of the float 5, the contact surface 2 of the lower end of the drive wrap 1, and the inner wall surface of the guide ring 4. Then, by driving the driving lap 1 and rotating it in the horizontal direction, the movement of the rotation is transmitted to the spherical object 3 to be polished, so that it moves in the magnetic fluid 7. Polishing is performed efficiently by sliding the spherical body 3 to be polished and the fixed abrasive grains 8 fixed to the contact surface 2.

第1図において駆動ラップ1は、垂直軸を中心として水
平回転が可能であり、下端部に接触面2を有している。
In FIG. 1, a drive wrap 1 is capable of horizontal rotation about a vertical axis and has a contact surface 2 at its lower end.

この接触面2の傾斜角度は20〜80度の範囲が好まし
い。また駆動ラップ1の他の形状としては第2図に示さ
れるような円筒状のものでもよく、この場合も研磨面の
角度は20〜80度の範囲が好ましい。
The angle of inclination of this contact surface 2 is preferably in the range of 20 to 80 degrees. Further, as another shape of the drive lap 1, it may be cylindrical as shown in FIG. 2, and in this case as well, the angle of the polished surface is preferably in the range of 20 to 80 degrees.

駆動ラップ1の材質としては、特に制限されないが、例
えばSO5304等のステンレス鋼、真鍮、アルミニウ
ム等の金属等が挙げられる。
The material of the drive wrap 1 is not particularly limited, but includes, for example, stainless steel such as SO5304, metals such as brass, and aluminum.

本発明においては、上記した駆動ラップ1のテーパー状
の接触面2に固定砥粒8が固定されている。ここでいう
固定砥粒とは、ダイヤモンド、炭化ケイ素、窒化ホウ素
またはコランダム等のアルミナが例示される。これら固
定砥粒8の固定方法としては6通常行なわれる研削用砥
石の製造法がそのまま適用できる。具体的にはダイヤモ
ンドを用いる時には、接触面2にダイヤモンド砥粒の分
散メツキを行ない電着させ固定し、また、炭化ケイ素、
アルミナ、窒化ホウ素からなる砥石を用いる場合には、
樹脂等を接着材として駆動ラップの先端に固着する。こ
のように、接触面2に砥粒を固定さゼることによって、
磁性流体中に遊離砥粒を入れたものに比べて、研磨効率
が高くなり、また長時間の連続研磨が可能である。この
理由は、遊離砥粒を用いた場合には、全遊離砥粒が研磨
に関与1ノでいるわ(プではit <、また被研磨球体
3同士の衝突によっで砥粒が粉砕されてしまい、長時間
の使用によりて研磨効率が低下するが、固定砥粒を用い
た場合には、このような問題が生じないからである。
In the present invention, fixed abrasive grains 8 are fixed to the tapered contact surface 2 of the drive lap 1 described above. The fixed abrasive grains mentioned here are exemplified by diamond, silicon carbide, boron nitride, or alumina such as corundum. As a method for fixing these fixed abrasive grains 8, a commonly used manufacturing method for grinding wheels can be applied as is. Specifically, when diamond is used, the contact surface 2 is plated with diamond abrasive grains dispersed and fixed by electrodeposition, and silicon carbide,
When using a grindstone made of alumina or boron nitride,
It is fixed to the tip of the drive wrap using resin or the like as an adhesive. In this way, by fixing the abrasive grains to the contact surface 2,
Compared to magnetic fluid containing free abrasive grains, polishing efficiency is higher and continuous polishing for a long time is possible. The reason for this is that when free abrasive grains are used, all the free abrasive grains participate in polishing (in the case of it <, and the abrasive grains are crushed by the collision between the polished spheres 3). This is because, although polishing efficiency decreases due to long-term use, such problems do not occur when fixed abrasive grains are used.

また、本発明に用いられる固定砥粒8として、ダイヤモ
ンドを用いた場合には、ダイヤモンドの硬度に起因して
、駆動ラップ1下端部の接触面2の形状がほとんど変化
せず、駆動ラップ1の長寿命化、安定化にも寄与する。
Furthermore, when diamond is used as the fixed abrasive grains 8 used in the present invention, the shape of the contact surface 2 at the lower end of the drive lap 1 hardly changes due to the hardness of diamond, and the shape of the contact surface 2 of the drive lap 1 does not change much. It also contributes to longer life and stability.

また、第1図の研磨装置に設けられてるガイドリング4
の内壁面は、ガイドリングの振動を抑制するためにゴム
あるいは樹脂等でライニングされていることが好ましい
In addition, the guide ring 4 provided in the polishing device shown in FIG.
The inner wall surface of the guide ring is preferably lined with rubber or resin to suppress vibration of the guide ring.

次に研磨装置の磁性流体中に浸漬されている浮子5は、
6ス1石6等の外部磁場の作用により浮力が与えらて、
浮子5は浮上して被研磨球体3を駆動ラップ1下端部の
接触面2等に強く押しイ」りる作用をする。この浮子5
は、前記駆動ラップ1の接触面2およびガイドリング4
の内壁面と共に、回転する被研磨球体3を研磨中一定に
保持して真球宴の同士に寄与する。被研磨球体3と接す
る部分の浮子5の形状としては、−点で接触する平面状
またはテーパー状のほか、2点または円周部分で接触す
るように、その断面がV字、またはR伏皿状の凹部を設
げてもよい。
Next, the float 5 immersed in the magnetic fluid of the polishing device is
Buoyancy is given by the action of an external magnetic field such as 6th stone 6,
The float 5 floats and strongly pushes the spherical object 3 to be polished against the contact surface 2 of the lower end of the drive lap 1. This float 5
are the contact surface 2 of the drive wrap 1 and the guide ring 4
Together with the inner wall surface of the rotating polishing target sphere 3, it is held constant during polishing to contribute to perfect spherical alignment. The shape of the float 5 in contact with the spherical object 3 to be polished may be a flat or tapered shape that makes contact at a negative point, or a V-shaped cross section or an R-shaped dish that makes contact at two points or a circumferential portion. A recessed portion may be provided.

浮子5の材質としては、金属、プラスチック、セラミッ
クス、ゴム等の種々の材料を適宜選択して使用できる。
As the material of the float 5, various materials such as metal, plastic, ceramics, rubber, etc. can be appropriately selected and used.

浮子に働く浮力は、下方より働く外部磁場の強さ、浮子
の大きさ、浮子までの距離等により決定され、これらを
変化させることによって所要の加工圧を任意に制御する
ことができる。
The buoyant force acting on the float is determined by the strength of the external magnetic field acting from below, the size of the float, the distance to the float, etc., and by changing these factors, the required processing pressure can be arbitrarily controlled.

浮子の比重は磁性流体の比重よりも軽いことは絶対的な
条件ではなく、下方より働く外部磁場の作用により浮力
を生じるものであればよい。
It is not an absolute requirement that the specific gravity of the float be lighter than the specific gravity of the magnetic fluid, but it is sufficient as long as it generates buoyancy by the action of an external magnetic field acting from below.

611性流体7としては、水または油を媒体としてフェ
ライトまたはマグネタイト等を分散させたものを用いる
As the 611 fluid 7, one in which ferrite, magnetite, etc. is dispersed using water or oil as a medium is used.

外部6n場として使用する磁石6は、単一磁石、極性を
揃えて配置した磁石群または隣り合う磁石の極が互いに
異なるように(図中、矢印で示す)組み合わせた磁石群
であってもよい。この磁石または磁石群は永久磁石でも
電磁石でもよい。
The magnet 6 used as the external 6n field may be a single magnet, a group of magnets arranged with the same polarity, or a group of magnets combined so that adjacent magnets have different poles (indicated by arrows in the figure). . This magnet or group of magnets may be a permanent magnet or an electromagnet.

また、本発明に適用される被研磨球体3としては、Si
c、St= N4等のセラミックスまたは金属等からな
るものが用いられ、研磨された球体はボールベアリング
等の用途に供せられる。
Further, as the polished sphere 3 applied to the present invention, Si
A material made of ceramic or metal such as St=N4 is used, and the polished sphere is used for ball bearings and the like.

なお、本発明においては被研磨球体について述べたが、
被研磨球体のみならず、平板や円筒等の研磨も可能であ
る。
In addition, although the spherical object to be polished has been described in the present invention,
It is possible to polish not only spherical objects but also flat plates, cylinders, etc.

[実施例] 以下、本発明を実施例および比較例に基づき、さらに詳
しく説明する。
[Examples] Hereinafter, the present invention will be explained in more detail based on Examples and Comparative Examples.

実施例 第1図に示したような装置のウレタンゴムを内張すした
真鍮ガイドリング(内径37mm)に、所定量の磁性流
体(W−40;タイホー工業(株)製)および厚さ2 
mmのアクリルの円板状浮子を人ね、直径的7.7■の
Si、N4の被研磨球体(当初の真球宴400μm)を
11個容器内に入れて、被研磨球体との接触面にダイヤ
モンド砥粒(#400 ; G E製)を電着により固
定させた駆動ラップを毎分9000回転させ、10分間
または40分間研磨した後、被研磨球体を水にて水洗し
、研磨効率および真球宴を算出しその結果を第1表に示
した。
Example A predetermined amount of magnetic fluid (W-40; manufactured by Taiho Kogyo Co., Ltd.) and a thickness of 2 mm were added to a brass guide ring (inner diameter 37 mm) lined with urethane rubber of the device shown in Fig. 1.
An acrylic disk-shaped float of 1.0 mm in diameter was placed in a container, and 11 Si and N4 spheres (initial true spheres of 400 μm) with a diameter of 7.7 mm were placed in a container, and the surface in contact with the polished spheres was placed in a container. After polishing for 10 or 40 minutes using a driving lap to which diamond abrasive grains (#400; manufactured by GE) were fixed by electrodeposition at 9000 revolutions per minute, the sphere to be polished was rinsed with water to improve polishing efficiency and accuracy. The ball banquet was calculated and the results are shown in Table 1.

比較例 磁性流体中にダイヤモンド砥粒(#400:GE製)を
含有させ、被研磨球体との接触面にダイヤモンド砥粒を
固定させていない駆動ラップを用いた以外は実施例1と
同様にして研磨を行ない研工g効率および真球宴を算出
しその結果を第1表に示した。
Comparative Example The procedure was the same as in Example 1, except that diamond abrasive grains (#400: manufactured by GE) were contained in the magnetic fluid and a driving lap was used in which the diamond abrasive grains were not fixed on the contact surface with the sphere to be polished. Polishing was performed, and the grinding efficiency and true sphere performance were calculated, and the results are shown in Table 1.

寒−」−一圭 申1.10分間研研磨後定 *2.40分間研磨後測定
第1表に示されるように、駆動ラップ先端の接触面に砥
粒を固定させた実施例は、遊離砥粒を用いた比較例に比
べ、10分間研磨後に測定した研磨効率で3倍、40分
間研磨後に測定した研磨効率で9倍優れている。また、
真球度においても、実施例は比較例に比べ40倍以上優
れている。
1. Determined after polishing for 10 minutes *2. Measured after polishing for 40 minutes As shown in Table 1, examples in which abrasive grains were fixed to the contact surface of the tip of the driving lap showed that the free Compared to the comparative example using abrasive grains, the polishing efficiency measured after polishing for 10 minutes is three times better, and the polishing efficiency measured after polishing for 40 minutes is nine times better. Also,
In terms of sphericity, the examples are also 40 times or more superior to the comparative examples.

[発明の効果] 以上説明したように、本発明の研磨装置によれば、真球
度の高い球体が得られ、しかも研磨効率が高く、長時間
連続研磨も可能である。
[Effects of the Invention] As explained above, according to the polishing apparatus of the present invention, a sphere with high sphericity can be obtained, the polishing efficiency is high, and continuous polishing for a long time is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る研磨装置の一例を示す側断面図
、 第2図は、本発明に用いられる駆動ラップの一例を示す
側断面図である。 1:駆動ラップ、  2:接触面、 3:被研磨球体、  4ニガイドリング、5:浮子、 
    6:磁石、 7;磁性流体、  8;固定砥粒。
FIG. 1 is a side sectional view showing an example of a polishing apparatus according to the present invention, and FIG. 2 is a side sectional view showing an example of a driving lap used in the present invention. 1: Driving lap, 2: Contact surface, 3: Polished sphere, 4 Guide ring, 5: Float,
6: Magnet, 7: Magnetic fluid, 8: Fixed abrasive grain.

Claims (1)

【特許請求の範囲】 1、ガイドリングと、磁性流体に浸漬された浮子と、回
転可能な駆動ラップと、該磁性流体に磁場を形成して該
磁性流体と共に該浮子に浮揚力を与える磁場形成手段と
を備え、球状の被研磨物を該駆動ラップ、浮揚力を受け
た浮子およびガイドリング内壁面により該磁性流体中で
保持しつつ、該駆動ラップを回転させることにより、研
磨する研磨装置において、駆動ラップ下端部の該球状の
被研磨物との接触面に砥粒を固定させたことを特徴とす
る研磨装置。 2、前記固定砥粒がダイヤモンド、炭化ケイ素、アルミ
ナおよび窒化ホウ素から選ばれるいずれか1種からなる
請求項1記載の研磨装置。
[Claims] 1. A guide ring, a float immersed in a magnetic fluid, a rotatable driving wrap, and a magnetic field forming device that forms a magnetic field in the magnetic fluid to provide a levitation force to the float together with the magnetic fluid. In a polishing apparatus for polishing a spherical object to be polished by rotating the driving lap while holding the spherical object in the magnetic fluid by the driving lap, a float receiving a buoyant force, and an inner wall surface of a guide ring. A polishing device characterized in that abrasive grains are fixed to the lower end of the drive lap on the contact surface with the spherical object to be polished. 2. The polishing apparatus according to claim 1, wherein the fixed abrasive grains are made of one selected from diamond, silicon carbide, alumina, and boron nitride.
JP63094630A 1988-04-19 1988-04-19 Polishing device using magnetic fluid Pending JPH01271164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094630A JPH01271164A (en) 1988-04-19 1988-04-19 Polishing device using magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094630A JPH01271164A (en) 1988-04-19 1988-04-19 Polishing device using magnetic fluid

Publications (1)

Publication Number Publication Date
JPH01271164A true JPH01271164A (en) 1989-10-30

Family

ID=14115583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094630A Pending JPH01271164A (en) 1988-04-19 1988-04-19 Polishing device using magnetic fluid

Country Status (1)

Country Link
JP (1) JPH01271164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065292A1 (en) * 2020-09-24 2022-03-31 Ntn株式会社 Processing device, ceramic sphere, and rolling bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065292A1 (en) * 2020-09-24 2022-03-31 Ntn株式会社 Processing device, ceramic sphere, and rolling bearing

Similar Documents

Publication Publication Date Title
JP5294637B2 (en) Method and apparatus for polishing ceramic spheres
Umehara et al. Magnetic fluid grinding–a new technique for finishing advanced ceramics
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
CN108544305A (en) A kind of device of the magnetorheological auxiliary V-groove high-efficiency high-accuracy polishing Ceramic Balls of cluster
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
WO1994004313A1 (en) Magnetorheological polishing devices and methods
JPH0343146A (en) Non-contact processing method for spherical surface
JPH01271164A (en) Polishing device using magnetic fluid
WO2006030854A1 (en) Complex profile body polishing method and polishing apparatus
JPS62173166A (en) Sphere polishing method using magnetic fluid and polishing device
JPH01271163A (en) Polishing device using magnetic fluid
JPH01271161A (en) Polishing device using magnetic fluid
JPH0248169A (en) Grinder with magnetic fluid
JPH01271162A (en) Polishing device using magnetic fluid
JPH029567A (en) Polishing device employing magnetic fluid
JPH08257897A (en) Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain
JPH01271166A (en) Polishing device using magnetic fluid
JPH01271167A (en) Polishing device using magnetic fluid
JP2006082213A (en) Method of cutting work and cutting work/mirror polishing device
JPH01271168A (en) Polishing device using magnetic fluid
JPS63196368A (en) Polishing method using magnetic fluid
JPH0241866A (en) Polishing device using magnetic fluid
JP2000042908A (en) Polishing method and device for silicone ball
KR101591569B1 (en) Polishing apparatus for the aspheric lens
JP3845209B2 (en) Lens polishing method and apparatus