JPH01263907A - Thin film type multiple element magnetic head - Google Patents

Thin film type multiple element magnetic head

Info

Publication number
JPH01263907A
JPH01263907A JP9134288A JP9134288A JPH01263907A JP H01263907 A JPH01263907 A JP H01263907A JP 9134288 A JP9134288 A JP 9134288A JP 9134288 A JP9134288 A JP 9134288A JP H01263907 A JPH01263907 A JP H01263907A
Authority
JP
Japan
Prior art keywords
magnetic head
magnetic
radius
gap
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9134288A
Other languages
Japanese (ja)
Inventor
Seiji Kishimoto
清治 岸本
Hiroaki Ono
裕明 小野
Hiroshi Akai
寛 赤井
Nobuo Arai
信夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9134288A priority Critical patent/JPH01263907A/en
Publication of JPH01263907A publication Critical patent/JPH01263907A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/52Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with simultaneous movement of head and record carrier, e.g. rotation of head
    • G11B5/53Disposition or mounting of heads on rotating support
    • G11B5/531Disposition of more than one recording or reproducing head on support rotating cyclically around an axis
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To eliminate the dispersion of performance and to obtain a desired magnetic tape contact pressure by equalizing the curvature radius of points, at which the magnetic gap of three magnetic heads is at '0', with the curvature radius of the points on the tape sliding surface of the respective magnetic heads, and specifying the curvature radius. CONSTITUTION:At least three magnetic head elements 3a-3c are formed on the same substrate, and in a thin film type multiple magnetic head 1 mounting the elements on a rotary cylinder 2, a curvature radius R of points 4a to 4c at the gap depth '0' of the mutually adjacent magnetic head elements 3a to 3c is made approximately the same as the curvature radius of the gap tips (tape sliding surface) of the magnetic head elements 3a to 3c. Further, the curvature radius R is in the range of 1/4 of a rotary cylinder radius RS. Thus, the gap depth of the respective magnetic head elements are made the same, the dispersion is not generated in a feature, a life can be extended, and the tape contact pressure for the respective magnetic heads can be made the same in the best conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、同一基板上に少なくとも3個の磁気ヘッド素
子を設は九多素子薄膜磁気ヘッドに係り、特に、各磁気
ヘッド素子のギャップ深さをほぼ等しくして相互間の性
能を揃えることが可能な多素子薄膜磁気ヘッドに関する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a nine-element thin film magnetic head in which at least three magnetic head elements are arranged on the same substrate, and particularly relates to a method for improving the gap depth of each magnetic head element. The present invention relates to a multi-element thin-film magnetic head that can make the performance of the magnetic head substantially equal.

〔従来の技術〕[Conventional technology]

従来、同一基板上に複数の磁気ヘッドを薄膜技術によシ
形成したものとして、特開昭60−45915号公報に
記載のものがあるが、これは、磁気ディスクの平坦な記
録再生面と摺接する平坦な摺接面に複数トラック例えば
2トラツク用の磁気ギャップを臨ましたものであって、
少なくとも5以上の磁気ヘッド素子を、磁気テープの相
対移動方向に沿って配列することKついては伺も考慮さ
れていない。
Conventionally, there is a method described in Japanese Unexamined Patent Application Publication No. 60-45915 in which a plurality of magnetic heads are formed on the same substrate using thin film technology. A magnetic gap for multiple tracks, for example, two tracks, is provided on the flat sliding contact surface.
No consideration is given to arranging at least five or more magnetic head elements along the direction of relative movement of the magnetic tape.

一方、VTRの回転磁気ヘプトに用いられる薄膜磁気ヘ
ッドとして、第6図に示すように、同一基板1上に2個
の磁気ヘッド素子(図では、その磁性薄膜部分のみ1に
5α、 5bで示す)をヘッド回転方向く沿って近接し
て配列したものが知られている。基板1は、磁気ギャッ
プ5α、 5hに所定のギャップ深さhが得られるよう
に図の上部が研摩されて、所定の曲率のテープ摺接面6
が形成される。
On the other hand, as shown in FIG. 6, a thin film magnetic head used in a rotating magnetic hept of a VTR has two magnetic head elements on the same substrate 1 (in the figure, only the magnetic thin film portions are indicated by 1, 5α, and 5b). ) are arranged closely along the direction of rotation of the head. The upper part of the substrate 1 is polished so as to obtain a predetermined gap depth h in the magnetic gaps 5α and 5h, and a tape sliding contact surface 6 with a predetermined curvature is formed.
is formed.

その後、基板1は、図示しない回転シリンダ上にテープ
摺接面6が回転シリンダの外周から少し突出するように
取付けられて、回転ヘッドが出来上る。第6図の薄膜磁
気ヘヅドにおいて、各磁気ヘッド素子5α、 5Aの性
能を左右する要因として、ギャップ深さ人が挙げられ、
特性を揃えるためにはギャップ深さ人にばらつきがない
ようにする必要がある。なお、PI、 P2はギャップ
深さ零の点、7はギャップ深さ零の点を結ぶ直線である
Thereafter, the substrate 1 is mounted on a rotating cylinder (not shown) so that the tape sliding surface 6 slightly protrudes from the outer periphery of the rotating cylinder, thereby completing a rotating head. In the thin film magnetic head shown in FIG. 6, the gap depth is cited as a factor that influences the performance of each magnetic head element 5α, 5A.
In order to make the characteristics uniform, it is necessary to ensure that there is no variation in the gap depth between people. Note that PI and P2 are points with zero gap depth, and 7 is a straight line connecting the points with zero gap depth.

第6図では、1つの基板に2個の薄膜磁気ヘッド素子の
みを形成した場合であるため、ギャップ深さh−4(揃
えるには、ギヤリプ深さ零〇点P1.P2(及び直線7
)の高さが揃い、又、摺接面6におけるギャップ5a、
 5Aの高さが揃うだけでよく、5個以上の薄膜磁気ヘ
ッドt−1つの基板上に近接して配列した上、この基板
を回転シリンダ上に搭載した回転磁気ヘッド装置におい
て、各磁気ヘッド素子間に生じる性能上のばらつき等の
問題については何も考慮されていない。
In FIG. 6, since only two thin film magnetic head elements are formed on one substrate, the gap depth h-4 (in order to align the gear rip depth zero point P1, P2 (and the straight line 7
) are the same height, and the gap 5a in the sliding surface 6,
In a rotating magnetic head device in which five or more thin film magnetic heads are arranged closely on one substrate and this substrate is mounted on a rotating cylinder, each magnetic head element needs to be aligned at the same height. No consideration is given to problems such as variations in performance that occur between the two methods.

ところで、最近、8ミリムービーカメラ一体型VTRや
デジタルVTR等において、1つの回転シリンダに搭載
される磁気ヘッド素子の個数が9個又は8〜12個のよ
うに増加し、これに伴って回転シリンダ上の一個所に回
転方向に前後に近接して5個以上の磁気へヴド素子が配
列されるようになって来ている。この場合、前後する各
磁気ヘッド素子の磁気空隙方向を異ならしめていわゆる
ダブルアジマスヘッドを構成している。このため、前後
する3個以上の磁気ヘッド素子の各々は、別々に作成し
たものであって、同一基板上に作成したものではない。
By the way, recently, the number of magnetic head elements mounted on one rotating cylinder has increased to 9 or 8 to 12 in 8mm movie camera integrated VTRs, digital VTRs, etc. Five or more magnetic heaving elements are now arranged close to each other in the rotational direction at one location on the top. In this case, a so-called double azimuth head is constructed by making the magnetic gap directions of the front and rear magnetic head elements different. For this reason, three or more magnetic head elements before and after each are manufactured separately and not on the same substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、いずれも、同一基板上に回転方向に
近接して、ダブルアジマス等の少なくとも3個の磁気ヘ
ッド素子を薄膜技術により形成し九上、この基板を回転
シリンダ上に搭載して回転磁気ヘッドを得る場合に生じ
る、多素子薄膜磁気ヘッドのヘッド素子間のギャップ深
さのばらつきの問題については、全く配慮されていなか
った。
In all of the above conventional techniques, at least three magnetic head elements such as double azimuth are formed on the same substrate in close proximity in the rotational direction using thin film technology, and this substrate is mounted on a rotating cylinder and rotated. No consideration was given to the problem of variations in gap depth between head elements of a multi-element thin film magnetic head, which occurs when obtaining a magnetic head.

これら5個以上の磁気ヘッドを別々に薄膜技術で作成し
切り出して後、所定のギャップ深さとなるように1つ1
つのテープ摺接面を研摩し、これを組合せる方法では、
作業工程が多くなる。
After creating and cutting out these five or more magnetic heads separately using thin film technology, one by one to achieve a predetermined gap depth.
In the method of polishing two tape sliding surfaces and combining them,
The number of work steps increases.

他方、回転へヴドにおいて、上記の前後に近接5個以上
の磁気ヘッド素子は、できる限夛磁気テープとの接触圧
(ヘッドタヅチ)が同一であるようにそれらの磁気ヘッ
ド素子のテープ摺接面の形状、位置を設計する必要があ
る。第6図のように近接2個の磁気ヘッド素子の場合は
、その摺接面6上にギャップ面を回転シリンダの外周か
ら同一長の所定長だけ突出させるように摺接面6を研摩
すればよい。しかし、近接3個以上の磁気ヘッド素子に
対し所望の接触圧を与えるようなテープ摺接面の形状、
位置については、伺も考慮されていなかった。
On the other hand, in a rotating head, five or more magnetic head elements adjacent to each other in the front and back are arranged so that the contact pressure (head contact) with the magnetic tape is as much as possible on the tape sliding contact surface of the magnetic head elements. It is necessary to design the shape and position of the In the case of two adjacent magnetic head elements as shown in FIG. 6, the sliding surfaces 6 should be polished so that the gap surface on the sliding surfaces 6 protrudes from the outer periphery of the rotary cylinder by a predetermined length of the same length. good. However, the shape of the tape sliding contact surface is such that it applies a desired contact pressure to three or more adjacent magnetic head elements.
The location was not even considered.

そこで、第6図の磁気ヘッド素子2個の場合を5個以上
の場合に拡張し、1つの基板1上に5個の磁性薄膜3α
、 54. scを、ギャップの深さが零となる点Pl
、 P2. Psが同一の高さ(直線7上)となるよう
に形成した後、上面を円弧状に研摩して所要のテープ摺
接面を形成することが考えられる(図は省略)。しかし
、この方法では、中央の磁気ヘッド素子3bの磁気ギャ
ップ深さがその前後の磁気ヘッド素子5a、 SCの磁
気ギャップ深さよりも太きくなるため、特性が揃わなく
なるとともに、使用するにつれてテープ摺接面が摩耗し
て行くと、中央の磁気ヘッド素子5bよりも前後の磁気
へヴド素子5α、 5cの方が早く劣化してしまうとい
う問題が生じる。
Therefore, the case of two magnetic head elements in FIG. 6 is expanded to the case of five or more magnetic head elements, and five magnetic thin films 3
, 54. sc is the point Pl where the gap depth is zero
, P2. It is conceivable to form the tape so that Ps has the same height (on the straight line 7) and then polish the upper surface into an arc shape to form the required tape sliding contact surface (not shown). However, in this method, the magnetic gap depth of the central magnetic head element 3b becomes larger than the magnetic gap depth of the magnetic head elements 5a and SC before and after it, so the characteristics become inconsistent and the tape sliding contact deteriorates as the magnetic head element 3b is used. As the surfaces wear out, a problem arises in that the front and rear magnetic head elements 5α and 5c deteriorate faster than the central magnetic head element 5b.

従って、本発明の目的は、上記従来技術の問題点を解消
し、同一基板上にヘッド回転方向の前後に少なくとも3
個の磁気ヘッド素子を近接配置した回転磁気ヘッド用の
薄膜型多素子磁気ヘッドにおいて、各磁気ヘッド素子の
ギャップ深さの不揃いに起因する性能のばらつきを除去
すると共に、各磁気ヘッド素子に対して所望の磁気テー
プ接触圧の得られる薄膜型多素子磁気へラド全提供する
ことにある。
Therefore, it is an object of the present invention to solve the problems of the prior art described above, and to provide at least three images on the same substrate in the front and back of the rotational direction of the head.
In a thin-film multi-element magnetic head for a rotating magnetic head in which several magnetic head elements are arranged close to each other, it is possible to eliminate variations in performance due to uneven gap depths of each magnetic head element, and to The object of the present invention is to provide a thin film type multi-element magnetic disk that can obtain a desired magnetic tape contact pressure.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明け、同一基板上に少な
くとも5個の磁気ヘッド素子をへりド回転方向の前後に
近接して配列し、前記基板を回転シリンダ上に、前記少
なくとも5個の磁気ヘッド素子の磁気テープ摺接面上の
各々の磁気ギャップ部が前記回転シリンダの外周から僅
かに突出するように耶9付けられた薄膜型多素子磁気ヘ
ッドにおいて、相隣接する5個の磁気ヘッドの磁気ギャ
ップ深さが零となる3点で定まる曲率半径を、それら3
個の磁気ヘッドの磁気ギャップのテープ摺接面上の5点
(ギャップの先端)で定まる曲率半径にほぼ等しくする
と共に1前記回転シリンダの半径iRsとするとき、こ
れらの曲率半径R1k。
In order to achieve the above object, the present invention arranges at least five magnetic head elements on the same substrate in close proximity to each other in the front and back directions of rotation of the edge, and the substrate is placed on a rotating cylinder so that the at least five magnetic head elements In a thin-film multi-element magnetic head in which each magnetic gap portion on the magnetic tape sliding contact surface of the head element is provided with a lip 9 so as to slightly protrude from the outer periphery of the rotary cylinder, five adjacent magnetic heads are The radius of curvature determined by the three points where the magnetic gap depth is zero is defined by those three points.
The radius of curvature R1k is approximately equal to the radius of curvature determined by five points (tips of the gap) on the tape sliding surface of the magnetic gap of the magnetic heads, and the radius of the rotating cylinder iRs.

几s>R> 1/4Rs の関係を満たすように選定する。几>R> 1/4Rs Select so that the following relationship is satisfied.

〔作用〕[Effect]

上記構成に基づく本発明の作用を、第2図、第3図、及
び第4図の模式図によって説明する。
The operation of the present invention based on the above configuration will be explained with reference to the schematic diagrams of FIGS. 2, 3, and 4.

まず第2図で、2は回転シリンダで、その外周面をも表
わすものとし、これに、1個の磁気へ。
First, in Fig. 2, 2 is a rotating cylinder, and its outer peripheral surface is also represented, and one magnetic field is connected to this.

ド素子を突き出し!l′dで搭載し、磁気テープ(図示
せず)を該回転シリンダ2に巻付は走行する場合を説明
する。磁気テープは、図の左方から回転シリンダ2の外
周に接し、点Q1でシリンダ2の外周から離れて、前記
1個の磁気ヘッド素子の磁気ギャップ先端(テープ摺接
面上の点)P点まで直線Q1Pに沿って進み、更にP点
から92点まで直線PQ2に沿って進み、92点で再び
外周面2に接するものとする。なお、ここでは、磁気ギ
ャップの深さは10数μm程度で、シリンダ半径の20
m程度に比べて十分小さいので、図示していない。又、
磁気ギャップをもつ磁性コア(磁性薄膜)のコア長(シ
リンダ回転方向くおけるテープ摺接面の長さ)について
も図示していない。線分PQ1と線分PQ2は、P点か
らシリンダ2に引いた接線になっている。
Stick out the element! A case will be described in which the rotary cylinder 2 is mounted on the rotary cylinder 2 and a magnetic tape (not shown) is wound around the rotary cylinder 2. The magnetic tape contacts the outer periphery of the rotating cylinder 2 from the left side of the figure, moves away from the outer periphery of the cylinder 2 at a point Q1, and reaches the tip of the magnetic gap of the one magnetic head element (a point on the tape sliding surface) at a point P. It is assumed that the line travels along the straight line Q1P up to the point P, then travels along the straight line PQ2 from the point P to the 92nd point, and again touches the outer peripheral surface 2 at the 92nd point. In this case, the depth of the magnetic gap is about 10-odd μm, which is about 20 μm of the cylinder radius.
It is not shown because it is sufficiently small compared to about m. or,
The core length (the length of the tape sliding surface in the cylinder rotation direction) of the magnetic core (magnetic thin film) having a magnetic gap is also not shown. Line segment PQ1 and line segment PQ2 are tangent lines drawn from point P to cylinder 2.

従りて、5点Q11PIQ2で決まる円弧の位置関係が
、良好なヘッドタッチを得るための基本となる。
Therefore, the positional relationship of the arcs determined by the five points Q11PIQ2 is the basis for obtaining a good head touch.

この関係は、点Q1.Q2に隣接ヘッドをその磁気ギャ
ップ先端(テープ摺接面のギャップ位置)が来ろように
置いた場合(3点Q’、P*Q2にそれぞれ磁気ギャッ
プを配置した場合)にも同様に成り立っ。ここで、Ql
、p、及びQ2における磁気ギヤリプを、それぞれ第1
.第2.及び第3の磁気ギヤ9プと呼ぶ。
This relationship is based on point Q1. The same holds true when a head adjacent to Q2 is placed so that the tip of its magnetic gap (the gap position of the tape sliding surface) is placed (when magnetic gaps are placed at three points Q' and P*Q2, respectively). Here, Ql
, p, and Q2 as the first
.. Second. and a third magnetic gear 9p.

このときの5点Q1.P#Q2を通る円が一義的に決ま
り、この円の曲率半径Rは幾何学的に求まる。
5 points Q1 at this time. A circle passing through P#Q2 is uniquely determined, and the radius of curvature R of this circle is determined geometrically.

(0は円2の中心)との交点をそれぞれH10′とすル
ト、乙0Q1P =LO’HP =90’、t POQ
1= 1 PO’H=θで、5角形PO’Hと3角形P
OQ1とは相似であり、点Hは線分PQ1の中点である
から、線分0’PとOPの比は1対2となる。よって、
シリンダ20半径をR8とすると、曲率半径Rは、 R=−(Rs+d) となる。通常、シリンダ半径R8は201程度であるの
に対し、突出tdは、40μm程度で、無視できる程度
に小さいから、 R中1/4Rs となる。第2図に、この円(中心0′)の円弧全点子の
間は凹んでいて、テープは、各磁気ギャップの先端近傍
のみで丸みをもって接し、912間及びPQ2間では、
はぼ直線状に進むものとする。従って、各磁気ギヤリプ
の前後の前記コア長を無視した場合、第1の磁気ギャッ
プ先端の位置をQlからしても、これら移動した点Q’
1.Q2と第2の磁気ギャップ先端P2とで決まる円の
曲率は、やけりRに等しく、いずれの位置でも直線Q、
I P (PQ2 )よりも外方に位置するので、テー
プとの良好な接触が維持される。ただし、後記のように
、第1〜第3磁気ギヤツプ間隔をあまり近ずけると相互
のクロストークが生じるので、これを避ける必要がある
ことや、第1〜第3磁気ギヤツプに対するテープ接触圧
を揃える必要があることから、ば1の位置はQlPの中
点(OHとQlFとの交点)近傍、ぐ2の位置はQ2P
の中点近傍が適当である(テープ接触圧は、テープ張力
が一定のとき、ギャップ近傍の曲率半径に反比例する。
(0 is the center of circle 2) and the intersection with H10', respectively, 0Q1P = LO'HP = 90', t POQ
1 = 1 PO'H = θ, pentagon PO'H and triangle P
Since they are similar to OQ1 and point H is the midpoint of line segment PQ1, the ratio of line segments 0'P and OP is 1:2. Therefore,
When the radius of the cylinder 20 is R8, the radius of curvature R is R=-(Rs+d). Normally, the cylinder radius R8 is about 201, whereas the protrusion td is about 40 μm, which is so small that it can be ignored, so it is 1/4Rs in R. In Fig. 2, all the arc dots of this circle (center 0') are concave, and the tape contacts with roundness only near the tip of each magnetic gap, and between 912 and PQ2,
It is assumed that the path moves in a straight line. Therefore, if the core lengths before and after each magnetic gear lip are ignored, even if the position of the tip of the first magnetic gap is from Ql, the moved point Q'
1. The curvature of the circle determined by Q2 and the tip P2 of the second magnetic gap is equal to the radius R, and the straight line Q,
Since it is located further outward than I P (PQ2 ), good contact with the tape is maintained. However, as described later, if the first to third magnetic gaps are too close together, mutual crosstalk will occur, so it is necessary to avoid this, and the tape contact pressure for the first to third magnetic gaps should be avoided. Since it is necessary to align them, the position of b1 is near the midpoint of QlP (the intersection of OH and QlF), and the position of g2 is near Q2P.
(Tape contact pressure is inversely proportional to the radius of curvature near the gap when the tape tension is constant.

)。).

又、上記の説明では、各磁気ギャップ間が凹んでいて、
テープ摺接面が不連続であるとしたが、各磁気ギヤリブ
間のテープ摺接面が所定の曲率半った形状とすればよい
。テープは、シリンダ2と円弧および前記Q1.Q7お
よび前記(2にほぼ一致する)を通って、シリンダ2か
らヘッド摺接面に進む。
Also, in the above explanation, each magnetic gap is recessed,
Although the tape sliding surface is discontinuous, the tape sliding surface between each magnetic gear rib may have a shape with half a predetermined curvature. The tape is connected to the cylinder 2, the arc and the Q1. It passes through Q7 and the above (approximately the same as 2) and proceeds from the cylinder 2 to the head sliding surface.

/7−\ Q2P間、望ましくは、クロストークの点から、Q′I
又はば2の近傍に配置すればよい。
/7-\ Between Q2P, preferably from the point of view of crosstalk, Q'I
Alternatively, it may be placed near B2.

第5図は、3個のヘッド素子(第1.第2.第5の磁気
ギャップ先端)ftそれぞれP、P、P配置した場合で
ある。ここで、P、 Ql、 Q2.  θ、dは第2
図と同じであJ、PViPQlの中点(第2図のH点に
相当)、PはPQ2の中点、HOは直線PPの垂直2等
分線である。最初、第2図と同じく、テープは接線Q1
p及びPQ2にほぼ沿って進むとすると、P点及びP点
におけるテープ接触圧は零が一義的に定まり、この円の
曲率半径Rは、5角線分PQ1のほぼ4分の1となるこ
とから、曲率半径Rは、 位置4+ 、 c(2(図示せず)へ動かしても、曲率
半に良好な接触圧が得られる。しかし、上述のように、
ヘッド間のクロストークを少なくシ、各磁気ギャップに
対するテープ接触圧を揃えるため、ギャップ相互の間隔
をあまり近ずけることは望ましくない。又、第5図でも
、第2図と同様に、第1〜第5ギヤツプ間を連続したテ
ープ摺接面とすることができる。
FIG. 5 shows a case where three head elements (first, second, and fifth magnetic gap tips) ft are arranged in P, P, and P, respectively. Here, P, Ql, Q2. θ, d are the second
As shown in the figure, J is the midpoint of PViPQl (corresponding to point H in FIG. 2), P is the midpoint of PQ2, and HO is the perpendicular bisector of straight line PP. Initially, as in Figure 2, the tape is connected to the tangent Q1
Assuming that the tape travels approximately along p and PQ2, the tape contact pressure at points P and P is uniquely determined to be zero, and the radius of curvature R of this circle is approximately one-fourth of the pentagonal line segment PQ1. Even if the radius of curvature R is moved to position 4+, c (2 (not shown)), a good contact pressure can be obtained at the half curvature. However, as mentioned above,
In order to reduce crosstalk between heads and to equalize the tape contact pressure for each magnetic gap, it is not desirable to make the gaps too close to each other. Also, in FIG. 5, as in FIG. 2, it is possible to provide a continuous tape sliding contact surface between the first to fifth gaps.

5点p、p、pとして、理論上は上記曲率半径(R=τ
Rs )よりも小さな曲率半径で、テープを接触させる
ことができる位置が存在する。しかし1そのような小さ
な曲率半径で第1〜5ヘツドに対する接触圧を揃えよう
とすれば、各へリド間の間。
Assuming five points p, p, p, theoretically the above radius of curvature (R=τ
There are positions where the tape can be brought into contact with a radius of curvature smaller than Rs ). However, if you try to equalize the contact pressure for the first to fifth heads with such a small radius of curvature, the pressure between each helide.

隔が僅小となってクロストークが生じたり、設計が困難
となることから、本発明では、第3図の曲率半径TRs
ヲ下限とする。
In the present invention, the radius of curvature TRs shown in FIG.
Let this be the lower limit.

他方、第4図において、第1〜第3の磁気へラードギャ
ップ位置(ギャップ先端)P、P、Pをシリンダ20周
りに沿って配置した場合、5点P。
On the other hand, in FIG. 4, when the first to third magnetic heald gap positions (gap tips) P, P, and P are arranged along the circumference of the cylinder 20, there are five points P.

P、Pで決まる円の曲率半径Rは、はぼ、シリンダ2の
半径R8に等しくなり、これ以上曲率半径を太きくする
ことはできない。
The radius of curvature R of the circle determined by P and P is equal to the radius R8 of the cylinder 2, and the radius of curvature cannot be made thicker than this.

従って、本発明において、相隣接する5個の磁気ギャッ
プの先端(テープ摺接面上の点)が、Rs > R>T
R8 の関係を満たすように設定され、それにより、各磁気ヘ
ッドに所要の均一のテープ接触圧が付与される。
Therefore, in the present invention, the tips (points on the tape sliding surface) of five adjacent magnetic gaps satisfy Rs>R>T
It is set to satisfy the relationship R8, thereby applying a required uniform tape contact pressure to each magnetic head.

更に、本発明の重要な構成として、上記の関係は、磁気
ギャップ先端の3点だけでなく、磁気ギャップ深さが零
となる3点においても満足される。
Furthermore, as an important feature of the present invention, the above relationship is satisfied not only at the three points at the tip of the magnetic gap but also at the three points where the magnetic gap depth is zero.

この結果、各磁気ヘッドの磁気ギャップ深さhは均一と
なり、特性の揃ったものとなる。又、磁気ギャップ深さ
が均一となることにより、ヘッドのテープ摺接面の摩耗
によるヘッドの寿命も一定となり、第1.第5ヘツドが
第2ヘツドよりも先に摩耗することもなく、長寿命化が
図れる。
As a result, the magnetic gap depth h of each magnetic head becomes uniform, and the characteristics become uniform. Furthermore, since the magnetic gap depth is uniform, the life of the head due to wear of the tape sliding surface of the head is also constant. The fifth head does not wear out before the second head, and the life of the fifth head can be extended.

なお、厳密にいうと、ギャップ深さ人を揃えるためには
、ギャップ深さ零における曲率半径をギャップ深さh(
テープ摺接面)における曲率半径よりも、寸法りだけ小
さくすることになるが、通常、ギャップ深さ人は10数
μm程度で、シリンダ2の半径(2〇−程度)に比べて
極めて小さいので、無視して、両凸率半径はほぼ等しい
ものといって差支えない。
Strictly speaking, in order to equalize the gap depth, the radius of curvature at the gap depth of zero is the gap depth h(
The radius of curvature at the tape sliding contact surface must be made smaller by the dimension, but the gap depth is usually about 10-odd micrometers, which is extremely small compared to the radius of cylinder 2 (about 20-degrees). , it is safe to say that the radii of both convexities are almost equal.

〔実施例〕〔Example〕

以下に、本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described below with reference to FIG.

1f′i薄膜型多素子磁気ヘツドで、3個の磁気ヘッド
素子3α、 5h、 5cからなり、各磁気ヘッド素子
3α* 3h* 5’は相互に隣接して同一基板上に配
置され、そのテープ摺接面6は連続して1つの面を構成
している。4α、 ah、 aCは各磁気ヘッド素子3
α。
1f'i thin film type multi-element magnetic head, consisting of three magnetic head elements 3α, 5h, 5c, each magnetic head element 3α* 3h* 5' is arranged adjacent to each other on the same substrate, and the tape The sliding surface 6 continuously constitutes one surface. 4α, ah, aC are each magnetic head element 3
α.

5b、 5Cの磁気ギャップ深さ零の点、4は、5点4
α。
5b, 5C points of zero magnetic gap depth, 4 are 5 points 4
α.

4b、 4cで決まる円弧、2け薄膜磁気ヘッド1を搭
載した回転シリンダである。
It is a rotating cylinder on which a two-layer thin film magnetic head 1 is mounted and has a circular arc defined by 4b and 4c.

本実施例の場合、シリンダ2の半径R8は21 m 。In the case of this embodiment, the radius R8 of the cylinder 2 is 21 m.

各々のヘッド素子5α〜5Cのギャップ深さ零の点の円
弧4の曲率半径Rは10馴とし、ギャップ深さんは15
μm程度に揃うように加工した。5つのヘッドのギヤリ
プ間隔はそれぞれ1.0鱈である。
The radius of curvature R of the arc 4 at the point where the gap depth of each head element 5α to 5C is zero is 10, and the gap depth is 15.
Processed so that they were aligned to about μm. The gear lip spacing of each of the five heads is 1.0 cod.

本実施の薄膜磁気ヘッドを作るには、基板上に薄膜技術
により磁気ヘッド素子3α、 5b、 ”eを並べて作
成する。その際に、磁気ギャップ深さが零となる点4α
、 4A、 4Cが、予じめ設定された曲率半径R上に
並ぶように配列される。このようにして作成された薄膜
磁気ヘプトは、その前面が曲率半径Rのテープ摺接面と
なるように研摩される(例えば、半径凡の回転体に薄膜
磁気ヘッドを載せて研摩する)。この結果、磁気ギャッ
プ深さ4α、4h。
To make the thin-film magnetic head of this embodiment, magnetic head elements 3α, 5b, and ``e'' are arranged on a substrate using thin-film technology. At this time, a point 4α where the magnetic gap depth becomes zero is
, 4A, and 4C are arranged on a preset radius of curvature R. The thin film magnetic head thus prepared is polished so that its front surface becomes a tape sliding surface with a radius of curvature R (for example, the thin film magnetic head is placed on a rotating body with a radius of approximately R) and polished. As a result, the magnetic gap depth is 4α, 4h.

4Cの揃ったものができる。このように、磁性薄膜を形
成するときに、予じめ設定されている曲率半径をもつよ
うにギャップ深さ零の点を定めることにより、容易にギ
ャップ深さを揃えることができる。
You can make something that has all the 4Cs. In this way, when forming a magnetic thin film, by determining the zero gap depth point so that it has a preset radius of curvature, the gap depths can be easily made uniform.

本実施例の場合、従来技術により作成したものに比べて
、ギャップ深さは5μm程度小さくなり、再生出力のば
らつきも2db程度小さくなった。更に、ギャップ深さ
が揃ったことにより、ヘッド寿命も500時間時間長く
なった。なお、図では、ヘッドの構造を簡略化している
が、その他、種々の構造のものに対しても、本発明を適
用することができる。テープ摺接面6が5つの磁気へヴ
ド5α。
In the case of this example, the gap depth was reduced by about 5 μm, and the variation in reproduction output was reduced by about 2 db, compared to those produced by the conventional technique. Furthermore, by making the gap depth uniform, the head life was also extended by 500 hours. Although the structure of the head is simplified in the figure, the present invention can be applied to other types of structures as well. A magnetic head 5α with five tape sliding contact surfaces 6.

5h、 5cに対して連続したものを示しているが、こ
れらのヘッド5α、 5A、 5cの間に凹部を設け、
テープ摺接面6が不連続となったものにも適用できろ。
5h and 5c are shown as being continuous, but a recess is provided between these heads 5α, 5A, and 5c,
It can also be applied to those in which the tape sliding surface 6 is discontinuous.

第5図に、本発明の他の実施例を示す。本実施例では、
同一基板上に4個の磁気ヘッド素子4α。
FIG. 5 shows another embodiment of the invention. In this example,
Four magnetic head elements 4α are provided on the same substrate.

4h、 ac、 adを形成し、磁気ヘッド素子4a、
 4h、 4cのギャップ深さ零〇点PI、 P2. 
Psの曲率半径R4−9m、磁気ヘッド素子4A、 4
1?、 4dのギャップ深さ零の点P2. P3. P
4で決まる円弧4の曲率半径Rを11鱈とした。この場
合、シリンダ20半径は21闘、隣り合う磁気ヘッド素
子相互の間隔は、いずれも0.8mmである。
4h, ac, and ad, and magnetic head elements 4a,
4h, 4c gap depth zero point PI, P2.
Ps radius of curvature R4-9m, magnetic head element 4A, 4
1? , 4d, the gap depth is zero at point P2. P3. P
The radius of curvature R of the arc 4 determined by 4 was set to 11. In this case, the radius of the cylinder 20 is 21 mm, and the distance between adjacent magnetic head elements is 0.8 mm.

なお、多素子磁気ヘッドのヘッド素子数が4駁上の場合
、相隣接する5つの磁気ヘッドのギャップ深さ零の位置
で決まる曲率半径は、相等しくても良いし、異っていて
もよい。すなわち、ヘッドタダチを最適化する条件で決
めて良い。
Note that when the number of head elements in a multi-element magnetic head is four or more, the radii of curvature determined by the zero gap depth position of five adjacent magnetic heads may be the same or different. . In other words, it may be determined based on conditions that optimize the head height.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように1本発明によれば、少くとも5個の
磁気ヘッド素子を同一基板上に形成し、これを回転シリ
ンダ上に搭載した薄膜型多素子磁気ヘッドにおいて、相
隣る3個の磁気ヘッド素子のギャップ深さ零の点の曲率
半径をこれら磁気へラド素子のギャップ先端(テープ摺
動面)の曲率半径とほぼ同じにしたので、各磁気へラド
素子のギャップ深さが揃うようになって、特性にばらつ
きが生じることがなく、長寿命化が達成できる。
As detailed above, according to the present invention, in a thin film multi-element magnetic head in which at least five magnetic head elements are formed on the same substrate and mounted on a rotating cylinder, three adjacent The radius of curvature of the zero gap depth point of the magnetic head elements is made almost the same as the radius of curvature of the gap tip (tape sliding surface) of these magnetic herad elements, so the gap depths of each magnetic herad element are the same. As a result, variations in characteristics do not occur, and a longer life can be achieved.

又、前記曲率半径を回転シリンダ半径ないし回転シリン
ダ半径の4分の1の範囲とすることにより、各磁気ヘプ
トに対するテープ接触圧を最良の条件で揃えることが可
能となる等、優れた効果を奏する。
Further, by setting the radius of curvature to the radius of the rotating cylinder or a quarter of the radius of the rotating cylinder, excellent effects can be achieved, such as making it possible to equalize the tape contact pressure for each magnetic hept under the best conditions. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜型多素子磁気ヘッドの一実施例の
概略平面図、第2図、第5図、及び第4図は本発明の薄
膜型多素子磁気ヘッドの作用を説明する模式図、第5図
は本発明の他の実施例の概略平面図、第6図は従来の薄
膜型磁気ヘッドの平面図である。 1・・・薄膜型多素子磁気ヘッド、2・・・回転シリン
ダ、5α、 5A、 sc、 5d・・・磁気ヘッド素
子、4・・・ギャップ深さ零の位置を通る円、4α、 
4A、 4c、 4d・・・ギャップ深さ零の点、5α
、 5b・・・磁気ギャップ、6・・・−テープ摺接面
、7・・・ギャップ深さ零の位置を通る直線。 第1口 第2圀 晃3 区 第4聞 85凹 第4に
FIG. 1 is a schematic plan view of an embodiment of the thin-film multi-element magnetic head of the present invention, and FIGS. 2, 5, and 4 are schematic diagrams illustrating the operation of the thin-film multi-element magnetic head of the present invention. 5 is a schematic plan view of another embodiment of the present invention, and FIG. 6 is a plan view of a conventional thin film magnetic head. DESCRIPTION OF SYMBOLS 1... Thin film type multi-element magnetic head, 2... Rotating cylinder, 5α, 5A, sc, 5d... Magnetic head element, 4... Circle passing through the position of zero gap depth, 4α,
4A, 4c, 4d... Point with zero gap depth, 5α
, 5b...magnetic gap, 6...-tape sliding contact surface, 7... straight line passing through the position of zero gap depth. 1st mouth 2nd place Akira 3rd place 4th sentence 85th concave 4th place

Claims (1)

【特許請求の範囲】 1、同一基板上に少なくとも3個の磁気ヘッド素子をヘ
ッド回転方向に近接して配列し、前記基板を回転シリン
ダ上に、前記磁気ヘッド素子の磁気ギャップ部が前記回
転シリンダの周面から突出するように搭載した薄膜型多
素子磁気ヘッドにおいて、相隣接する3個の磁気ヘッド
素子の磁気ギヤップ深さが零となる3点で定まる曲率半
径を、それらの磁気ヘッド素子の磁気ギヤップのテープ
摺動面上の3点で定まる曲率半径にほぼ等しくすると共
に、前記回転シリンダの半径をR_sとするとき、前記
曲率半径Rを、R_s>R>1/4R_s の関係を満たすように選定したことを特徴とする薄膜型
多素子磁気ヘッド。
[Scope of Claims] 1. At least three magnetic head elements are arranged close to each other in the head rotation direction on the same substrate, and the substrate is placed on a rotating cylinder, and the magnetic gap portion of the magnetic head element is aligned with the rotating cylinder. In a thin film multi-element magnetic head mounted so as to protrude from the circumferential surface of the magnetic head, the radius of curvature determined by three points at which the magnetic gap depth of three adjacent magnetic head elements becomes zero is defined as the radius of curvature of the three adjacent magnetic head elements. The radius of curvature R is set to be approximately equal to the radius of curvature determined by three points on the tape sliding surface of the magnetic gap, and when the radius of the rotating cylinder is R_s, the radius of curvature R is set to satisfy the relationship R_s>R>1/4R_s. A thin-film multi-element magnetic head characterized by being selected for.
JP9134288A 1988-04-15 1988-04-15 Thin film type multiple element magnetic head Pending JPH01263907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9134288A JPH01263907A (en) 1988-04-15 1988-04-15 Thin film type multiple element magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9134288A JPH01263907A (en) 1988-04-15 1988-04-15 Thin film type multiple element magnetic head

Publications (1)

Publication Number Publication Date
JPH01263907A true JPH01263907A (en) 1989-10-20

Family

ID=14023747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9134288A Pending JPH01263907A (en) 1988-04-15 1988-04-15 Thin film type multiple element magnetic head

Country Status (1)

Country Link
JP (1) JPH01263907A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034838A (en) * 1990-05-08 1991-07-23 Eastman Kodak Company Bi-directional read while write magnetic head assembly having a wear avoidance contour
JPH03273516A (en) * 1990-03-22 1991-12-04 Matsushita Electric Ind Co Ltd Multichannel magnetic head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273516A (en) * 1990-03-22 1991-12-04 Matsushita Electric Ind Co Ltd Multichannel magnetic head
US5034838A (en) * 1990-05-08 1991-07-23 Eastman Kodak Company Bi-directional read while write magnetic head assembly having a wear avoidance contour

Similar Documents

Publication Publication Date Title
US6999274B2 (en) Servo head for magnetic tape
US7494727B2 (en) Magnetic recording medium and magnetic recording and reproducing apparatus
US4191980A (en) Transducers with tapered edge profiles and assembly thereof
US5568981A (en) Negative pressure air bearing slider
US20090034115A1 (en) Magnetic recording medium, recording /reproducing apparatus, and stamper
JPH01263907A (en) Thin film type multiple element magnetic head
JPS6118250B2 (en)
US20020057524A1 (en) Servo head having rounded leading edge and methof of using the same
US4821406A (en) Process for producing a magnetic head
US20080123209A1 (en) Magnetic recording medium, recording/reproducing apparatus, and stamper
US5225955A (en) Disk-shaped magnetic recording medium having novel textured surface
JPS6254810A (en) Thin film magnetic head
JPH0250370A (en) Floating type magnetic head
JPS5815845B2 (en) floating head
KR900007487B1 (en) Double azimuth thin film magnetic head and the method of producing the same
JPS63113989A (en) Floating head slider
JP2551582B2 (en) Thin film magnetic head
JPS60117417A (en) Magnetic recording medium
JPS62298908A (en) Magnetic head
JPH04123316A (en) Apparatus for producing magnetic recording medium
JPH02240810A (en) Multigap magnetic head
JPH0863710A (en) Magnetic head assembly
JPH07121949A (en) Rotary magnetic-head device
JPS59892B2 (en) Method for manufacturing a capacitive disk-shaped recording medium playback needle
JPH04195810A (en) Thin film magnetic head