JPS59892B2 - Method for manufacturing a capacitive disk-shaped recording medium playback needle - Google Patents

Method for manufacturing a capacitive disk-shaped recording medium playback needle

Info

Publication number
JPS59892B2
JPS59892B2 JP4816879A JP4816879A JPS59892B2 JP S59892 B2 JPS59892 B2 JP S59892B2 JP 4816879 A JP4816879 A JP 4816879A JP 4816879 A JP4816879 A JP 4816879A JP S59892 B2 JPS59892 B2 JP S59892B2
Authority
JP
Japan
Prior art keywords
polishing
needle
electrode
forming surface
electrode forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4816879A
Other languages
Japanese (ja)
Other versions
JPS55142427A (en
Inventor
健史 塩入
恵嗣 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP4816879A priority Critical patent/JPS59892B2/en
Publication of JPS55142427A publication Critical patent/JPS55142427A/en
Publication of JPS59892B2 publication Critical patent/JPS59892B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/06Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using record carriers having variable electrical capacitance; Record carriers therefor
    • G11B9/07Heads for reproducing capacitive information
    • G11B9/075Heads for reproducing capacitive information using mechanical contact with record carrier, e.g. by stylus

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【発明の詳細な説明】 本発明は静電容量型円盤状記録媒体再生針の製造方法に
係り、特に研摩加工能率の向上を図り得、且つ量産性に
適し、更には研摩自動化の可能性を向上させ得る製造方
法を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a capacitive disk-shaped recording medium reproducing needle, which is particularly capable of improving polishing efficiency, is suitable for mass production, and has the possibility of automation of polishing. The purpose is to provide a manufacturing method that can be improved.

本出願人は先に特願昭51−38809号で、スチル再
生、高速再生等の特殊再生動作を可能とした静電容量型
円盤状記録媒体再生装置を提案した。
The present applicant previously proposed in Japanese Patent Application No. 51-38809 a capacitive disk-shaped recording medium reproducing device that enables special reproduction operations such as still reproduction and high-speed reproduction.

この装置において、円盤状記録媒体(以下ビデオディス
クという)は所謂無溝型としてあり、これに適用し得る
再生針についても本出願人は種種提案している。第1図
は、本出願人が特願昭52−20065号で提案した再
生針を示し、第2図はこの再生針のディスク摺接面の形
状を示す。
In this device, the disk-shaped recording medium (hereinafter referred to as a video disk) is of a so-called grooveless type, and the applicant has proposed various playback needles that can be used for this. FIG. 1 shows a regeneration needle proposed by the present applicant in Japanese Patent Application No. 52-20065, and FIG. 2 shows the shape of the disk sliding surface of this regeneration needle.

第1図に示す完成した再生針1において、2は電極面、
3、3′、4、4’は研摩面である。研摩面3、3’は
夫々電極端縁5、5’を定め、且つディスク添接面形状
の一部の輪郭線11、11′を定める。別の研摩面4、
4’は導入部稜線6のディスク摺接面10に対する角度
βと添接面形状の一部の輪郭線12、12′を定める。
電極摺接面13は、第2図に示すよう厚さをを有し、輪
郭線11、11′の延在する方向に研摩され、針母材側
面より離れるに従つて幅が狭くなる台形状に形成される
。14は摺接面10のディスク相対走査方向に延在する
中心線であり、理想状態においては、電極幅aの中心と
導入側点15とを通る直線となる。
In the completed regenerated needle 1 shown in FIG. 1, 2 is an electrode surface;
3, 3', 4, 4' are polished surfaces. The abrasive surfaces 3, 3' define the electrode edges 5, 5', respectively, and also define the contours 11, 11' of a portion of the disc abutment surface shape. another polishing surface 4,
4' defines the angle β of the leading edge 6 with respect to the disk sliding surface 10 and the contour lines 12, 12' of a part of the shape of the abutting surface.
The electrode sliding contact surface 13 has a thickness as shown in FIG. 2, is polished in the direction in which the contour lines 11 and 11' extend, and has a trapezoidal shape whose width becomes narrower as it moves away from the side surface of the needle base material. is formed. Reference numeral 14 denotes a center line extending in the disk relative scanning direction of the sliding contact surface 10, which in an ideal state is a straight line passing through the center of the electrode width a and the introduction side point 15.

この再生針1はその製造工程に関して下記の問題点を有
する。
This regenerated needle 1 has the following problems regarding its manufacturing process.

ハ 電極面の他に四面の研摩加工を別個に行なう必要が
ある。
C. It is necessary to separately polish the four surfaces in addition to the electrode surface.

即ち上記の四面(3、3’、4、4′)は全て平面であ
るため、研摩加工は、研摩角度を別個に設定して、不連
続に行なう必要があり、加工能率が低下する。2)摺接
面10を第2図の理想形状とするためには、上記四面の
研摩加工時に研摩量を相対的に微妙に制御する必要があ
るが、この制御が実際上困難である。
That is, since all of the above-mentioned four surfaces (3, 3', 4, 4') are flat, the polishing process must be performed discontinuously by setting the polishing angles separately, which reduces the processing efficiency. 2) In order to make the sliding surface 10 have the ideal shape shown in FIG. 2, it is necessary to relatively delicately control the amount of polishing when polishing the four surfaces, but this control is difficult in practice.

より具体的に述べるに、研摩量の制御が不十分な場合に
は、デイスク摺接面は例えば第3図A,B,Cに示す種
々の形状となる。
More specifically, if the amount of polishing is insufficiently controlled, the disk sliding surface will take on various shapes as shown in FIGS. 3A, B, and C, for example.

同図Aに示すデイスク摺接面10aは導入側側面4,4
′の研摩量が不均一であることにより、中心線14に関
して左右非対称となつている。同図Bに示すデイスク摺
接面10bは、導入側側面4,4′の研摩量は等しいが
その絶対量が多すぎ、その面積が電極所定幅に対して過
度に狭くなつた摺接面を示す。同図Cに示すデイスク摺
接面10cは、上記デイスク摺接面10bとは逆に、電
極所定幅との関連で、面積が広すぎるものである。更に
は、デイスク摺接面としては、上記の関係が複合された
ものも得られる。第2図のデイスク摺接面10の実際上
の寸法は、1例として電極幅a=0.8μm程度で、各
輪郭線11,11′,12,12/の長さは夫々約10
μm程度である。
The disk sliding surface 10a shown in FIG.
Since the amount of polishing ' is non-uniform, it is asymmetrical with respect to the center line 14. The disk sliding contact surface 10b shown in FIG. show. In contrast to the disk sliding surface 10b, the disk sliding contact surface 10c shown in FIG. Furthermore, the disk sliding contact surface may have a combination of the above relationships. The actual dimensions of the disk sliding surface 10 in FIG. 2 are, for example, the electrode width a=0.8 μm, and the lengths of the contour lines 11, 11', 12, and 12/ are each about 10 μm.
It is about μm.

この場合において、各研摩面3,3/,4,4′の研摩
量が1μm程度に制御された場合にも、制御は不十分と
なり、デイスク摺接面10は非対称性が相当大となる。
従つて、上記研摩量は相当厳密に制御される必要がある
。第4図は、上記再生針1を製造する場合の一の研摩工
程を示す。
In this case, even if the polishing amount of each polishing surface 3, 3/, 4, 4' is controlled to about 1 μm, the control is insufficient and the disk sliding surface 10 becomes considerably asymmetric.
Therefore, the amount of polishing needs to be controlled quite strictly. FIG. 4 shows one polishing step in manufacturing the regenerated needle 1. As shown in FIG.

具体的には、断面矩形状の棒状針素材20(実線と一点
鎖線で示す)を研摩して最初の研摩面3を得る研摩工程
中の状態を示す。針素材20は一の長手方向側面20a
に電極21を予め付着形成されて、シヤンク22に固定
され、矢印A方向に回転する研摩媒体23に対して所定
の姿勢で設定される。即ち電極面が研摩媒体23に対し
て角度γとなり、針素材中電極端縁20bが研摩媒体2
3に対して角度δ、針素材先端縁20cが研摩媒体23
に対して角度εとなる状態に設定される。研摩加工は、
この設定状態で針素材20を矢印Aと直交又はこれと近
似する矢印B方向に往復移動させ、或は(更には)中心
24を中心として矢印C方向に揺動させつ\行なわれる
。このとき、針素材20は荷重印加装置(図示せず)に
より矢印D方向の力を付加されて、常時研摩媒体面に接
触加圧されている。研摩加工は、所定面25(第1図中
面3に相当する)が得られるまで行なわれ、二点鎖線で
示す端縁26(第1図中端縁5に相当する)が現われる
。上記研摩加工において、研摩量の制御については、研
摩加工時間を制御する時間的な制御方式、若しくは研摩
量を顕微鏡で観察する試行的な制御方式が採られている
。他の面を形成する際にも、上記設定を各面毎に行なつ
て、研摩を行なつている。
Specifically, the drawing shows a state during a polishing process in which a rod-shaped needle material 20 (indicated by a solid line and a dashed-dotted line) having a rectangular cross section is polished to obtain an initial polished surface 3. The needle material 20 has one longitudinal side surface 20a.
An electrode 21 is preliminarily formed on the shank 22 and set in a predetermined attitude relative to the polishing medium 23 rotating in the direction of arrow A. That is, the electrode surface forms an angle γ with respect to the polishing medium 23, and the electrode edge 20b in the needle material forms an angle γ with respect to the polishing medium 23.
3, the tip edge 20c of the needle material is the polishing medium 23
The angle ε is set with respect to the angle ε. The polishing process is
In this setting state, the needle material 20 is reciprocated in the direction of the arrow B, which is perpendicular to or approximate to the arrow A, or (furthermore) swung in the direction of the arrow C about the center 24. At this time, a force in the direction of arrow D is applied to the needle material 20 by a load application device (not shown), so that the needle material 20 is constantly pressed into contact with the surface of the polishing medium. The polishing process is carried out until a predetermined surface 25 (corresponding to the surface 3 in FIG. 1) is obtained, and an edge 26 (corresponding to the edge 5 in FIG. 1) shown by a two-dot chain line appears. In the above-mentioned polishing process, the amount of polishing is controlled by a temporal control method that controls the polishing time, or a trial control method that observes the amount of polishing using a microscope. When forming other surfaces, the above settings are made for each surface and polishing is performed.

従つて、第2図に示す如き形状の摺接面10を得るため
には、研摩加工毎に加工面の位置設定を行ない、更には
現在加工している面の既に加工完了している面に対する
位置精度を極めて良好に定める必要がある。
Therefore, in order to obtain the sliding surface 10 having the shape shown in FIG. It is necessary to determine positional accuracy very well.

従つて、この再生針1は加工熱線者が手造り的に試行し
て得られるものであり、量産性に乏しく、コスト高とな
る問題点があつた。また、本出願人は第5図に示す再生
針を提案している。この再生針30において、31は針
素材の外面、32は電極面である。電極は幅広部33、
一対の端縁34,34′により定まる扇形部35、及び
端縁36,36′により定まり幅37を有する細幅部3
8よりなる。39及び39′は研摩平面であり、三角形
状のデイスク摺接面40を形成すると共に、稜線41,
4「及び導入稜線42を定める。
Therefore, this regenerated needle 1 was obtained by hand-made trial work by a hot-wire processing person, and there were problems in that it was not suitable for mass production and was expensive. The applicant has also proposed a regenerated needle as shown in FIG. In this regenerated needle 30, 31 is the outer surface of the needle material, and 32 is the electrode surface. The electrode is a wide part 33,
A sector-shaped part 35 defined by a pair of edges 34, 34', and a narrow part 3 defined by edges 36, 36' and having a width 37
Consists of 8. 39 and 39' are polishing planes which form a triangular disk sliding surface 40, and ridge lines 41,
4" and define the introduction ridge line 42.

上記再生針30は、針母材平面板にマスキングにより電
極パターンを形成し、次に平面板をスライス、研摩して
針母材形状を形成し、次いで、細幅部38が中心に位置
するように面39,39′を研摩する。
The regenerated needle 30 is manufactured by forming an electrode pattern on a flat plate of the needle base material by masking, then slicing and polishing the flat plate to form the shape of the needle base material, and then making sure that the narrow part 38 is located at the center. Surfaces 39, 39' are polished.

この製造方法においては、研摩加工面は前記の場合より
少なく、また、研摩加工の制御も前記の場合より容易に
行なわれる。
In this manufacturing method, the number of surfaces to be polished is smaller than in the above case, and the control of the polishing process is also easier than in the above case.

しかし、電極パターン成形工程に問題がある。即ち、幅
37が0.8μm程度であり極く小なるため、既存のパ
ターンニングされたマスク露光方法では細幅部38が精
度よく形成されず、レーザ又は電子ビームによるパター
ンニングが必要となり、大規模な製造設備を必要とする
問題点があつた。また上記両方の再生針1及び30にお
いては、デイスク摺接面10及び40が共に頂角部を有
している。
However, there are problems with the electrode pattern forming process. That is, since the width 37 is extremely small, approximately 0.8 μm, the narrow portion 38 cannot be formed with high precision using the existing patterned mask exposure method, and patterning using a laser or electron beam is required. There was a problem that required large-scale manufacturing equipment. Further, in both of the regenerated needles 1 and 30, the disk sliding surfaces 10 and 40 both have a vertex portion.

このため、研摩加工時に、頂角部に応力集中が起きやす
く、チツピングが生じ易いという共通した問題点も有し
ている。本発明は上記諸問題点を解決したものであり、
以下図面と共にその一実施例について説明する。
For this reason, there is a common problem that stress concentration tends to occur at the apex corner portion during polishing, and chipping is likely to occur. The present invention solves the above problems,
An embodiment will be described below with reference to the drawings.

第6図は本発明になる再生針製造方法により得られた再
生針の全体形状を示し、第7図は第6図中デイスク摺接
面の形状を拡大して示す。第8図A乃至Dは本発明にな
る再生針製造方法の一実施例の製造工程を示す。第6図
に示す静電容量型円盤状記録媒体再生針50において、
51は針素材外面52に対して角度この面角をもつ電極
形成面、53は上記面51,52に連続して付着形成さ
れた電極、54a,π54bは電極面に対して所定角度
η(一〈η〈π)を成す平面である。
FIG. 6 shows the overall shape of a regenerated needle obtained by the method of manufacturing a regenerated needle according to the present invention, and FIG. 7 shows an enlarged view of the shape of the disk sliding surface in FIG. 6. FIGS. 8A to 8D show manufacturing steps of an embodiment of the regenerated needle manufacturing method according to the present invention. In the capacitive disk-shaped recording medium reproducing needle 50 shown in FIG.
Reference numeral 51 indicates an electrode forming surface having this surface angle relative to the outer surface 52 of the needle material, 53 indicates an electrode formed continuously on the surfaces 51 and 52, and 54a and π54b indicate a predetermined angle η (uniform) relative to the electrode surface. It is a plane that forms 〈η〈π).

55は、円柱状側面の一部に対応する曲面であり、その
円周方向両端は上記平面54a,54bに幾何学的に連
続する。
55 is a curved surface corresponding to a part of the cylindrical side surface, and both circumferential ends thereof are geometrically continuous with the flat surfaces 54a and 54b.

即ち平面54a,54bは夫々上記曲面55に対する接
触平面となり、両者の接続部には頂角は形成されない。
56は、曲面55と平面54aとの間の接続部を便宜的
に示す線である(実際上はこの線56は表われない)。
That is, the planes 54a and 54b each serve as contact planes with the curved surface 55, and no apex angle is formed at the connection between them.
56 is a line that conveniently indicates the connection between the curved surface 55 and the flat surface 54a (in reality, this line 56 does not appear).

57a,57bは上記平面54a,54bと電極形成面
51とが形成する稜線である。
57a and 57b are ridgelines formed by the flat surfaces 54a and 54b and the electrode forming surface 51.

電極53は、上記稜線(端縁)57a,57bにより形
状を定められ、開き角度θを有している。なお、上記曲
面55と一対の平面54a,54bは後述するように一
回の研摩工程で形成される。
The electrode 53 has a shape defined by the ridge lines (edges) 57a and 57b, and has an opening angle θ. Note that the curved surface 55 and the pair of flat surfaces 54a and 54b are formed in one polishing process as described later.

58はデイスク摺接面であり、面51に対して適宜の角
度で形成してあり、第7図に拡大して示す形状を有して
いる。
Reference numeral 58 denotes a disk sliding surface, which is formed at an appropriate angle with respect to the surface 51, and has a shape shown enlarged in FIG.

このデイスク摺接面58の形状は、面51に対する角度
の相違に応じて異なると共に、後述する加工方法によつ
ては左右非対称ともなるが、こ\では電極端縁59に対
する垂直二等分線60に関して左右対称な形状を有して
いる。また第6図中、61は摺接面58を含む仮想面を
示す。62a,62bは上記平面54a,54bの仮想
面61に対する直線状端縁であり、電極端縁π59に対
して角度η1 (内くη1〈π)を有している。
The shape of this disk sliding contact surface 58 differs depending on the angle with respect to the surface 51, and may also be asymmetrical depending on the processing method described later. It has a laterally symmetrical shape. Further, in FIG. 6, reference numeral 61 indicates a virtual surface including the sliding surface 58. 62a and 62b are linear edges of the planes 54a and 54b relative to the virtual plane 61, and have an angle η1 (within η1<π) with respect to the electrode edge π59.

63は上記曲面55の仮想面61に対する曲線状端縁で
あり、全体に亘つて略一定の曲率を有する。
63 is a curved edge of the curved surface 55 relative to the virtual surface 61, and has a substantially constant curvature throughout.

上記直線状端縁62a,62bと曲線状端縁63とは、
点64a,64bで頂角を形成することなく連続的に形
成されている。また、点65は導入側最先端部を示す。
このデイスク摺接面58は第7図より明らかなように、
電極端縁59の両端部を除いては頂角部を有さず、導入
側最先端部及び最大幅部端は共に曲線状であるため、再
生時でのデイスク損傷が従来の再生針の場合に比べて大
幅に軽減される。
The linear edges 62a, 62b and the curved edge 63 are as follows:
The points 64a and 64b are formed continuously without forming an apex angle. Further, a point 65 indicates the leading edge on the introduction side.
As is clear from FIG. 7, this disk sliding surface 58 is
Since the electrode edge 59 has no apex except for both ends, and both the tip end and the end of the widest part on the introduction side are curved, disk damage during regeneration occurs in the case of conventional regenerated needles. is significantly reduced compared to

また、デイスク摺接面58は最大幅W、相対走査方向長
さlを有する。次に本発明の要部をなす上記構成の再生
針50の製造方法について第8図A乃至Dを併せ参照し
て説明する。
Further, the disk sliding surface 58 has a maximum width W and a relative length l in the scanning direction. Next, a method for manufacturing the regenerated needle 50 having the above structure, which is a main part of the present invention, will be explained with reference to FIGS. 8A to 8D.

同図Aは針素材70を示す。Figure A shows a needle material 70.

針素材70は、1例として断面形状が正方形の棒状体(
0.2m1L×0.2詣X4mOである。針素材70中
、面71は、加工の際の基準面である。この針素材70
は、基準面71に対して角度ζを成すように研摩され、
同図Bに示すように後に電極が形成される電極形成面(
研摩面)72を有する電極形成面形成済針素材73を得
る。
The needle material 70 is, for example, a rod-shaped body with a square cross-sectional shape (
It is 0.2m1L x 0.2 pilgrimage x 4mO. A surface 71 in the needle material 70 is a reference surface during processing. This needle material 70
is polished so as to form an angle ζ with respect to the reference surface 71,
As shown in Figure B, the electrode formation surface (
A needle material 73 with an electrode-forming surface formed thereon having a polished surface 72 is obtained.

この電極形成面72は、最終的には電極端縁として表わ
れてくる面であり且つ電極が付着形成される面であるた
め、極めて良好な平担面でなければならない。この面7
2は、SlO2と水とを利用するメカニカル・ケミカル
な研摩方式により、スクラツチフリ一な面として得られ
る。次にこの針素材73の面71及び72に、スパツタ
リング又は蒸着等によりHf,Ti,Ta等の金属材料
を3000λ以下程度の厚さに付着させ、電極53を上
記面71,72の全体に亘つて形成する。
This electrode forming surface 72 is the surface that will eventually appear as the edge of the electrode and is also the surface on which the electrode is attached and formed, so it must be an extremely flat surface. This side 7
No. 2 is obtained as a scratch-free surface by a mechanical/chemical polishing method using SlO2 and water. Next, a metal material such as Hf, Ti, Ta, etc. is attached to the surfaces 71 and 72 of the needle material 73 by sputtering or vapor deposition to a thickness of about 3000λ or less, and the electrode 53 is placed over the entire surfaces 71 and 72. form.

これにより、同図Cに示す電極形成済針素材74が得ら
れる。この電極形成済針素材74は、その長手方向軸線
74aをシヤンク75の軸線76に一致させてこれに固
定され、矢印E方向に回転する回転研摩媒体77に対し
て、同図Dに示す所定の姿勢で設定されて研摩され、第
6図中曲面55と一対の平面54a,54bとを同時に
研摩形成され、電極形成面72の一部が残される。
As a result, a needle material 74 with electrodes formed thereon as shown in FIG. 3C is obtained. This electrode-formed needle material 74 is fixed to the shank 75 with its longitudinal axis 74a aligned with the axis 76 of the shank 75, and is rotated in the direction of the arrow E with respect to the rotating polishing medium 77 in a predetermined manner as shown in FIG. The curved surface 55 in FIG. 6 and the pair of flat surfaces 54a and 54b are simultaneously polished and formed, leaving a part of the electrode forming surface 72.

同図Dはこの研摩加工開始直前の状態を示す。このシヤ
ンク75を有する研摩装置(図示せず)は、軸線76を
中心にシヤンク75を所定角度範囲内で矢印G,Hで示
すように時計方向及び反時計方向(針素材側よりみた場
合の回転方向)に交互に往復回動させる機構と、シヤン
ク75を矢印I方向、即ち研摩量送り込み方向に微小ず
つ移動させる機構と、シヤンク75の研摩媒体77に対
する角度を可変調整し得る機構とを具備している。
Figure D shows the state immediately before the start of this polishing process. A polishing device (not shown) having this shank 75 rotates the shank 75 within a predetermined angular range around an axis 76 in clockwise and counterclockwise directions (as seen from the needle material side) as shown by arrows G and H. A mechanism for moving the shank 75 minutely in the direction of arrow I, that is, a polishing amount feeding direction, and a mechanism for variably adjusting the angle of the shank 75 with respect to the polishing medium 77. ing.

シヤンク75(針素材74)は、研摩媒体77に対する
傾斜角(研摩媒体77に垂直で中心線76を含む仮想面
Z内における角度)をλとして設定される。なお、電極
形成面72の中心線78を通り回転軸線76を含む仮想
面Y内での、中心線78と回転軸線76との成す角はこ
となる。更には、回転軸線76と直交する仮想面Pによ
つて切断される電極形成面72上の電極53の仮想切断
端縁79と研摩媒体77との成す角度をη。に設定する
。シヤンク75は、上記角度η。
The shank 75 (needle material 74) is set to have an inclination angle of λ with respect to the polishing medium 77 (an angle in a virtual plane Z that is perpendicular to the polishing medium 77 and includes the center line 76). Note that the angles formed by the center line 78 and the rotation axis 76 in a virtual plane Y passing through the center line 78 of the electrode forming surface 72 and including the rotation axis 76 are different. Furthermore, the angle formed by the polishing medium 77 and the virtual cut edge 79 of the electrode 53 on the electrode forming surface 72 cut by the virtual plane P perpendicular to the rotation axis 76 is η. Set to . The shank 75 is at the angle η.

で規定される位置を矢印Gで示す時計方向終端として、
2π−2ηoの範囲内で反時計方向及び時計方向に交互
に繰り返し回転する。シヤンク75の矢印Hで示す反時
計方向回転終端は、面72が研摩媒体77に対して角度
η。となる回転位置となる。更にシヤンク75は、研摩
媒体77の回転方向と直交する矢印Fl,F2方向に直
線往復運動する。針素材74は、上記往復回動及び往復
直動しながら、研摩媒体77に接触加圧し、矢印1方向
に微小づつ送り込まれて、研摩加工が行なわれる。針素
材74の往復運動過程で、曲面(円柱状側面)55が形
成され、回動最終端で平面54a,54bが形成される
。この研摩加工は、例えば回転軸線76と電極面53の
交点80の位置まで行なつた場合、第6図中二点鎖線で
示すように、各研摩面55,54a,54b,51が点
80で一点に収束するような半完成再生針81が得られ
る。この研摩加工は、研摩媒体77の面振れ、シヤンク
75の回転精度、及び研摩媒体77と針素材74との相
対位置関係について、機械的、寸法的な精度が保たれ\
ば、極めて良好な加工精度及び再現性が得られる。更に
は、研摩量の制御も、従来の場合のように研摩時間等で
間接的に制御するのではなく、研摩装置の送り込み量に
より制御され、研摩装置の高精度化に伴つて精度よく制
御される。また更には、再生針50は、従来の再生針1
での4つの研摩平面を2つの平面と一つの曲面に置き換
えたものであるが、これらの面の研摩加工は一つの研摩
加工工程内に全て包含され、研摩加工途中での研摩位置
の不連続な切換えは全く不要である。この結果、本実施
例による再生針製造方法によれば、研摩加工の能率を従
来に比べて大幅に向上し得、品質の安定した再生針を量
産性良く生産し得、更には研摩加工の自動化への可能性
を向上させ得るものである。
The position defined by is the clockwise end indicated by arrow G,
It repeatedly rotates counterclockwise and clockwise alternately within the range of 2π-2ηo. At the end of the counterclockwise rotation of the shank 75, indicated by the arrow H, the surface 72 is at an angle η with respect to the polishing medium 77. The rotational position will be . Furthermore, the shank 75 linearly reciprocates in the directions of arrows Fl and F2 perpendicular to the rotational direction of the polishing medium 77. The needle material 74 contacts and presses the polishing medium 77 while rotating and reciprocating as described above, and is fed minutely in the direction of the arrow 1 to perform the polishing process. During the reciprocating process of the needle material 74, a curved surface (cylindrical side surface) 55 is formed, and flat surfaces 54a and 54b are formed at the final end of rotation. For example, when this polishing process is performed up to the intersection point 80 between the rotation axis 76 and the electrode surface 53, each of the polished surfaces 55, 54a, 54b, and 51 will reach the point 80, as shown by the two-dot chain line in FIG. A semi-finished regenerated needle 81 that converges to one point is obtained. This polishing process maintains mechanical and dimensional accuracy regarding the surface runout of the polishing medium 77, the rotation accuracy of the shank 75, and the relative positional relationship between the polishing medium 77 and the needle material 74.
Therefore, extremely good processing accuracy and reproducibility can be obtained. Furthermore, the amount of polishing is not indirectly controlled by polishing time, etc. as in the conventional case, but is controlled by the feed amount of the polishing device, and as polishing devices become more precise, it is controlled more precisely. Ru. Furthermore, the regenerated needle 50 is different from the conventional regenerated needle 1.
The four polishing planes in the above are replaced with two planes and one curved surface, but the polishing of these surfaces is all included in one polishing process, and there is no discontinuity in the polishing position during the polishing process. No switching is necessary. As a result, according to the method for producing recycled needles according to this embodiment, the efficiency of polishing can be greatly improved compared to the conventional method, and recycled needles with stable quality can be produced with good mass productivity, and furthermore, polishing can be automated. It is possible to improve the possibility of

更には、研摩加工時に頂角部が形成されないため、従来
例におけるような加工時での頂角部チツピングの発生は
全く無い。
Furthermore, since the apex corner is not formed during the polishing process, there is no occurrence of chipping at the apex corner during the process as in the conventional example.

また上記の針素材を回動させながら行なう研摩加工時、
針素材の長手方向中研摩される部分はその先端側の一部
であるため、研摩量は比較的少ないOなお、上記研摩加
工において、研摩媒体77は矢印Eとは逆方向に回転し
てもよい。
Also, when polishing is performed while rotating the needle material mentioned above,
Since the part to be polished in the longitudinal direction of the needle material is a part of its tip end, the amount of polishing is relatively small.In addition, in the above polishing process, even if the polishing medium 77 is rotated in the opposite direction to the arrow E, good.

更には、針素材74を矢印F1方向に移動させるときに
、これを矢印H方向に回動させ、また逆に矢印F2方向
に移動させるときに、これを矢印G方向に回動させるよ
うに、直線往復運動方向とシヤンク回転角の位相を合致
させることもできる。これにより、半完成再生針81中
、一の平面54aは研摩媒体77中二点鎖線で囲んで示
す部分77aで第6図中矢印J方向に研摩され、別の平
面54bは研摩媒体77中部分77aとは直径方向上反
対側の部分77bで第6図中矢印K方向に研摩される。
この結果、電極面端縁研摩時の研摩媒体77との相対運
動方向を電極端縁57a,57bが解放端となり、電極
端縁57a及び57bは均等に且つシヤープに形成され
る。なお、針素材の直線運動方向とシヤンク回転角の位
相を上記とは逆の関係で合致させるように定めることも
できる。更に、上記研摩加工は、点80の近傍まで行な
つてもよい。
Furthermore, when moving the needle material 74 in the direction of arrow F1, it is rotated in the direction of arrow H, and conversely, when moving it in the direction of arrow F2, it is rotated in the direction of arrow G. It is also possible to match the phase of the linear reciprocating direction and the shank rotation angle. As a result, one plane 54a of the semi-finished regenerated needle 81 is polished in the direction of arrow J in FIG. A portion 77b diametrically opposite to 77a is polished in the direction of arrow K in FIG.
As a result, the electrode edges 57a and 57b become open ends in the direction of relative movement with the polishing medium 77 during electrode surface edge polishing, and the electrode edges 57a and 57b are formed evenly and sharply. Note that the linear movement direction of the needle material and the phase of the shank rotation angle can also be set to match in a relationship opposite to the above. Further, the polishing process may be performed up to the vicinity of the point 80.

例えば研摩加工を点80に到る前の時点で停止させる(
研摩量を少なくして)と、半完成再生針の先端部は第9
図Aに示す如くになる。これとは逆に研摩加工量を多く
し、点80aの位置まで研摩すると、半完成再生針の先
端部は同図Bに示す如くになる。このように最終研摩位
置を可変することにより、デイスク摺接面(各図中二点
鎖線で示す)をその面積と電極幅との割合を適宜変えて
形成し得る。なお、上記研摩加工での研摩量は従来例に
比べて相当少なくなり、研摩加工はそれだけ短時間で且
つ電極欠け等のトラブルの発生を少なくして行なわれる
For example, the polishing process is stopped before reaching point 80 (
), and the tip of the semi-finished recycled needle is
The result will be as shown in Figure A. On the other hand, if the amount of polishing is increased and the needle is polished to the point 80a, the tip of the semi-finished regenerated needle will become as shown in Figure B. By varying the final polishing position in this manner, the disk sliding surface (indicated by the two-dot chain line in each figure) can be formed by appropriately changing the ratio of its area to the electrode width. Incidentally, the amount of polishing in the above-mentioned polishing process is considerably smaller than in the conventional example, and the polishing process can be carried out in a correspondingly shorter time and with less occurrence of troubles such as electrode chipping.

また、上記研摩加工時でのシヤンク75と研摩媒体77
との成す角λは、電極の開き角θにより一義的に定まる
ものではなく、後述するように実用範囲で20る以上と
なり、針素材74は十分な余裕度をもつてシヤンク75
に固定される。
Also, the shank 75 and the polishing medium 77 during the polishing process described above.
The angle λ formed by
Fixed.

即ち、固定の仕方が制限を受けたり、また研摩時にシヤ
ンクも研摩される等の不都合は生じない。こ\で、幾何
学的考察により、上記角度λは他の角度ζ,θ,ηoと
の関係で次のように表わされる。
That is, there will be no inconveniences such as restrictions on the fixing method or the shank being polished during polishing. From a geometrical consideration, the angle λ can be expressed as follows in relation to the other angles ζ, θ, and ηo.

ρ こ\で、1例として実際的な数値を考慮してみると、θ
=2例,ηo=45な,ζ=30しとなり、従つてλ=
22.9oとなる。
ρ Now, if we consider a practical value as an example, θ
= 2 examples, ηo = 45, ζ = 30, so λ =
It becomes 22.9o.

これにより、電極53の開き角θが極めて小さく、デイ
スク摺接面が摩耗して面積が増加しても、電極幅の広が
らない極めて実用性に富む針形状が得られる。従来例の
場合には、第4図に示すように、シヤンク22の研摩媒
体23に対する角度は、電極2の開き角αにより一義的
に決定されるものである。
As a result, the opening angle θ of the electrode 53 is extremely small, and even if the disk sliding surface is worn and the area increases, an extremely practical needle shape is obtained in which the electrode width does not increase. In the case of the conventional example, the angle of the shank 22 with respect to the polishing medium 23 is uniquely determined by the opening angle α of the electrode 2, as shown in FIG.

角度αが2に程度となると、シヤンク22は研摩媒体2
3に極めて近接し、針素材の固定の仕方を制限されたり
、また、針素材研摩時にシヤンク22も同時に研摩され
研摩毎にシヤンクを廃棄することにもなる。最後に、半
完成再生針81は、第6図中仮想面61まで先端を研摩
除去され、摺接面58を形成して、完成した再生針50
を得る。
When the angle α is of the order of 2, the shank 22 is attached to the polishing medium 2.
3, the method of fixing the needle material is restricted, and the shank 22 is also polished at the same time when the needle material is polished, resulting in the shank being discarded every time the needle material is polished. Finally, the tip of the semi-finished regenerated needle 81 is polished down to the virtual surface 61 in FIG. 6 to form a sliding surface 58, and the completed regenerated needle 50
get.

こ\で、仮想面61の軸76に対する角度位置に応じて
摺接面58の形状が変化する。
Here, the shape of the sliding surface 58 changes depending on the angular position of the virtual surface 61 with respect to the axis 76.

仮想面61か軸76に対して直角である場合、第7図中
曲線状端縁63は真円の一部となり、且つη1=ηとな
り、また仮想面61が軸76に対して傾斜している場合
には上記端縁63は楕円の一部となる。また、上記実施
例においては、予め電極材料を附着形成し、その後に研
摩加工を行なつて電極端縁を定める工程順としてあるが
、これとは逆に研摩加工して電極形成面を所定形状とし
た後に、この面に電極材料を付着させる工程を採ること
もできる。
If the virtual surface 61 is perpendicular to the axis 76, the curved edge 63 in FIG. If there is, the edge 63 becomes a part of the ellipse. In addition, in the above embodiment, the electrode material is deposited and formed in advance, and then polishing is performed to define the electrode edge. After this, a step of attaching an electrode material to this surface can also be adopted.

特に針素材としてダイヤモンドを使用した場合には研摩
加工時での発熱により電極材料の酸化が起こる虞れがあ
るため、研摩加工後に電極を付着させる工程順を採るこ
とが望ましい。上述の如く、本発明になる静電容量型円
盤状記録媒体再生針の製造方法によれば、棒状針素材の
長手方向軸に対して所定角度をもつて研摩して電極が形
成される電極形成面を得、また棒状針素材を電極形成面
に対して所定角度をなす仮想軸線を中心に所定角度範囲
内で交互に回転させて電極形成面の一部を残して研摩し
電極形成面の幅寸法を規定して、電極形状及び円盤状記
録媒体に対する摺接面を定めるよう構成してあるため、
所定の電極形状及び摺接面を得るための研摩加工を設定
位置を変更することなく、高能率・高精度で行なうこと
が出来、品質の安定した再生針を量産出来、また、上記
研摩加工時での研摩量を少なく出来、更には研摩量の制
御を機械的に行ない得るため研摩自動化の可能性を向上
させることが出来、また、電極形成面の幅寸法を規制す
る工程の研摩加工前に電極形成面に電極を形成させるこ
とにより、所定形状の電極をより容易に形成することが
出来る等の優れた特長を有する。
In particular, when diamond is used as the needle material, there is a risk that the electrode material will oxidize due to heat generated during polishing, so it is desirable to adopt a process sequence in which the electrode is attached after polishing. As described above, according to the method for manufacturing a capacitive disk-shaped recording medium reproducing needle according to the present invention, electrode formation is performed by polishing a rod-shaped needle material at a predetermined angle with respect to the longitudinal axis thereof. The width of the electrode forming surface is determined by rotating the rod-shaped needle material alternately within a predetermined angle range around an imaginary axis that forms a predetermined angle with the electrode forming surface, leaving only a part of the electrode forming surface. Since the dimensions are defined and the electrode shape and the sliding surface with respect to the disk-shaped recording medium are determined,
The polishing process to obtain a predetermined electrode shape and sliding contact surface can be performed with high efficiency and precision without changing the setting position, and it is possible to mass-produce recycled needles with stable quality. The amount of polishing can be reduced, and the amount of polishing can be controlled mechanically, improving the possibility of automation of polishing. It has excellent features such as being able to more easily form electrodes in a predetermined shape by forming the electrodes on the electrode forming surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の再生針の1例を示す斜視図、第2図はこ
の再生針のデイスク摺接面形状を示す図、第3図A乃至
Cは夫々第1図に示す再生針を製造する研摩加工での制
御が不十分である場合に得られるデイスク摺接面の種々
の形状を示す図、第4図は第1図の再生針を製造する研
摩工程を示す図、第5図は従来の再生針の別の実施例の
斜視図、第6図は本発明になる再生針の製造方法により
製造される再生針の斜視図、第7図はこの再生針のデイ
スク摺接面形状を示す図、第8図A乃至Dは夫夫本発明
になる再生針の製造方法の一実施例を工程順に示す図、
第9図A及びBは夫々第8図Dに示す研摩加工時での研
摩量を変えた場合での半完成再生針の先端形状を拡大し
て示す図である。 50・・・・・・静電容量型円盤状記録媒体再生針、5
1・・・・・・電極形成面、53・・・・・・電極、5
4a,54b・・・・・・平面、55・・・・・・曲面
(円柱状側面)、56・・・・・・稜線、57a,57
b・・・・・・稜線(端縁)、58・・・・・・デイス
ク添接面、62a,62b・・・・・・直線状端縁、6
3・・・・・・曲線状端縁、70・・・・・・針素材、
71・・・・・・基準面、72・・・・・・電極形成面
(研摩面)、73・・・・・・電極形成面形成済針素材
、74・・・・・・電極形成済針素材、75・・・・・
・シヤンク、76・・・・・・軸線、T11・・・・・
・回転研摩媒体、79・・・・・・仮想切断端縁、80
,80a・・・・・・点、81・・・・・・半完成再生
針。
Fig. 1 is a perspective view showing an example of a conventional regenerated needle, Fig. 2 is a view showing the shape of the disk sliding surface of this regenerated needle, and Figs. 3 A to C show the manufacture of the regenerated needle shown in Fig. 1, respectively. Figure 4 is a diagram showing the polishing process for producing the recycled needle of Figure 1, and Figure 5 is a diagram showing various shapes of the disk sliding surface obtained when the control in the polishing process is insufficient. FIG. 6 is a perspective view of another embodiment of a conventional recycled needle, FIG. 6 is a perspective view of a recycled needle manufactured by the method of manufacturing a recycled needle of the present invention, and FIG. 7 shows the shape of the disk sliding surface of this recycled needle. Figures 8A to 8D are diagrams illustrating an embodiment of the method for manufacturing a regenerated needle according to the present invention in the order of steps,
FIGS. 9A and 9B are enlarged views showing the shape of the tip of the semi-finished recycled needle when the amount of polishing during the polishing process shown in FIG. 8D is changed. 50... Capacitive disk-shaped recording medium reproducing needle, 5
1... Electrode formation surface, 53... Electrode, 5
4a, 54b...Plane, 55...Curved surface (cylindrical side surface), 56...Ridge line, 57a, 57
b...Ridge line (edge), 58...Disc attachment surface, 62a, 62b...Straight edge, 6
3... Curved edge, 70... Needle material,
71... Reference surface, 72... Electrode forming surface (polished surface), 73... Electrode forming surface formed needle material, 74... Electrode formed Needle material, 75...
・Shank, 76... Axis line, T11...
- Rotating polishing medium, 79... virtual cutting edge, 80
, 80a... point, 81... semi-finished regenerated needle.

Claims (1)

【特許請求の範囲】 1 情報信号が幾何学的形状の変化として記録された円
盤状記録媒体のトラックを相対的に走査して上記情報信
号を静電容量の変化として再生する再生針を製造する方
法において、棒状針素材の長手方向軸に対して所定角度
をもつて研摩し電極が形成される電極形成面を得る工程
と、該棒状針素材を該電極形成面に対して所定角度をな
す仮想軸線を中心として該電極形成面が研摩媒体に対し
てある角度をなす位置を終端とする所定角度範囲内で交
互に回転させ該電極形成面の一部を残して研摩し該電極
形成面の幅寸法を規制する工程とよりなることを特徴と
する静電容量型円盤状記録媒体再生針の製造方法。 2 該電極形成面は、該電極形成面研摩の後、該電極形
成面の幅寸法を規制する工程の前に、電極を形成される
ことを特徴とする特許請求の範囲第1項記載の静電容量
型円盤状記録媒体再生針の製造方法。
[Scope of Claims] 1. Manufacture a reproduction needle that relatively scans tracks of a disc-shaped recording medium on which information signals are recorded as changes in geometric shape and reproduces the information signals as changes in capacitance. The method includes the step of polishing the rod-shaped needle material at a predetermined angle with respect to the longitudinal axis to obtain an electrode forming surface on which an electrode is formed, and the step of polishing the rod-shaped needle material at a predetermined angle with respect to the electrode forming surface. The width of the electrode forming surface is polished by rotating the electrode forming surface alternately within a predetermined angle range ending at a position where the electrode forming surface forms a certain angle with the polishing medium around the axis, leaving a part of the electrode forming surface. A method for manufacturing a capacitive disc-shaped recording medium reproducing needle, comprising the steps of regulating dimensions. 2. The static electrode according to claim 1, wherein the electrode is formed on the electrode forming surface after polishing the electrode forming surface and before the step of regulating the width dimension of the electrode forming surface. A method for manufacturing a capacitive disk-shaped recording medium playback needle.
JP4816879A 1979-04-19 1979-04-19 Method for manufacturing a capacitive disk-shaped recording medium playback needle Expired JPS59892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4816879A JPS59892B2 (en) 1979-04-19 1979-04-19 Method for manufacturing a capacitive disk-shaped recording medium playback needle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4816879A JPS59892B2 (en) 1979-04-19 1979-04-19 Method for manufacturing a capacitive disk-shaped recording medium playback needle

Publications (2)

Publication Number Publication Date
JPS55142427A JPS55142427A (en) 1980-11-07
JPS59892B2 true JPS59892B2 (en) 1984-01-09

Family

ID=12795856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4816879A Expired JPS59892B2 (en) 1979-04-19 1979-04-19 Method for manufacturing a capacitive disk-shaped recording medium playback needle

Country Status (1)

Country Link
JP (1) JPS59892B2 (en)

Also Published As

Publication number Publication date
JPS55142427A (en) 1980-11-07

Similar Documents

Publication Publication Date Title
JPH0766499B2 (en) Method of manufacturing thin film magnetic head
EP0558983B1 (en) Tripad air bearing magnetic head slider
JPS59892B2 (en) Method for manufacturing a capacitive disk-shaped recording medium playback needle
JPS59893B2 (en) Method for manufacturing capacitive disk-shaped recording medium playback needle
GB2104708A (en) Playback stylus and its manufacture
US4398282A (en) Capacitance detection type stylus for grooveless disc records and method for making same
JPS63257904A (en) Production of magnetic head
JP2002521784A (en) Method for integrating and mass-producing magnetic heads having curved contact surfaces
JP2769138B2 (en) Ferrite core and method of manufacturing the same
JPH01263907A (en) Thin film type multiple element magnetic head
JPS6254810A (en) Thin film magnetic head
US4596009A (en) Information signal regenerating stylus and manufacturing method thereof
JPH0639702A (en) Cutting method and grinding wheel assembly
JPH01302530A (en) Substrate for magnetic disk and its production
US4497052A (en) Stylus for reproducing information signals recorded on a recording medium
JPS5880123A (en) Formation of tape counter surface of magnetic head
JPH0666626B2 (en) Surface acoustic wave resonator
JPS6244371A (en) Structure of burnishing head
JP2599773B2 (en) Core block grinding method
JPS5845098B2 (en) Method for manufacturing a regeneration needle for a regeneration element that detects changes in capacitance value
JPS5927961B2 (en) How to make a diamond single crystal regenerated needle
JPH0592365A (en) Method of correcting ultra abrasive grain grinding wheel
GB2104706A (en) Electrostatic capacitance type pickup stylus
KR100227352B1 (en) Tripad air bearing magnetic head slider
JPS60229211A (en) Manufacture for magnetic head