JPH02240810A - Multigap magnetic head - Google Patents

Multigap magnetic head

Info

Publication number
JPH02240810A
JPH02240810A JP6090589A JP6090589A JPH02240810A JP H02240810 A JPH02240810 A JP H02240810A JP 6090589 A JP6090589 A JP 6090589A JP 6090589 A JP6090589 A JP 6090589A JP H02240810 A JPH02240810 A JP H02240810A
Authority
JP
Japan
Prior art keywords
tape
gap
sliding
sliding surface
gaps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6090589A
Other languages
Japanese (ja)
Inventor
Mitsuo Abe
阿部 光雄
Toshiyuki Miura
三浦 敏之
Nobuo Arai
信夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6090589A priority Critical patent/JPH02240810A/en
Publication of JPH02240810A publication Critical patent/JPH02240810A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize a output loss by forming the shape of the sliding surface of the multigap magnetic heads disposed with plural gaps on the sliding surface to the assemblage of projecting curved surfaces, the vertexes of which are respective gap positions and setting the ridge lines of the respective curved faces in the direction in contact with plural pieces of virtual ellipses. CONSTITUTION:The positions of the gaps 3a, 3b in the sliding surface of the head are the parts projecting most to a tape 20 side and, therefore, if the magnetic head is slid in the state of pushing the head to the magnetic tape 20, the contact pressure with the tape 20 is maximized and the spacing quantity is minimized to minimize the output loss. The positions of the ridge lines 12a, 12b in the sliding surface are next larger in the pressure and the tape 20 is extended along the ridge lines 12a, 12b and receive deformation. Since the ridge lines 12a, 12b are aligned to the tangent of the virtual ellipse 14, the deformation of the tape 20 builds up in the shape which is like a contour line 16. The ellipse 14 is formed symmetrical with respect to the sliding axis 10 by selecting the aspect ratio thereof so as to minimize the area thereof and, therefore, the area of the deformed part is minimized and the tape 20 slides smoothly without having torsion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、摺動面に複数個のギャップを配ff1L。[Detailed description of the invention] [Industrial application field] In the present invention, a plurality of gaps are arranged on the sliding surface ff1L.

可撓性媒体に対し良好な接触を実現する構造のマルチギ
ャップ磁気ヘッドに関する。
The present invention relates to a multi-gap magnetic head having a structure that realizes good contact with a flexible medium.

〔従来の技術〕[Conventional technology]

周知のごとく短波長記録を行う上で磁気ヘッドと媒体の
スペーシング量を小さくシ、これに伴う損失を低減する
ことは重要課題である。特に記録又は再生用のギャップ
を複数個有し、これらを−体的に近接して配置したマル
チギャップ磁気ヘッドの場合、各々のギャップ位置での
スペーシング量を均一で極小に保つ必要がある。これに
関連した従来技術として9例えば特開昭62−5711
6号公報に記載された磁気ヘッドがある。第7図はその
一例で、トラック幅方向に2個のギャップ3α、3bを
有する場合で1両ギャップの中央及び外側に摺動方向に
平行な溝18を形成しである。
As is well known, in performing short wavelength recording, it is important to reduce the amount of spacing between the magnetic head and the medium and to reduce the loss associated with this. In particular, in the case of a multi-gap magnetic head having a plurality of gaps for recording or reproducing, which are arranged physically close to each other, it is necessary to keep the amount of spacing at each gap position uniform and extremely small. As related prior art, 9, for example, Japanese Patent Application Laid-Open No. 62-5711
There is a magnetic head described in Publication No. 6. FIG. 7 shows an example of this, in which there are two gaps 3α and 3b in the track width direction, and grooves 18 parallel to the sliding direction are formed in the center and outside of each gap.

磁気ヘッドと媒体の相対走行により、摺動面の溝部分の
空気圧が減じ可撓性媒体が磁気ヘッド側に吸引されスペ
ーシング量を減少させる効果がある。
Due to the relative movement of the magnetic head and the medium, the air pressure in the groove portion of the sliding surface is reduced, and the flexible medium is attracted toward the magnetic head, which has the effect of reducing the amount of spacing.

これとは別にVTR用等のヘリカルスキャン形磁気ヘッ
ドに於て、テープの入側及び出側位置でのエンベロープ
を改善するため、摺動面の稜線方向をテープ走行方向と
平行にしてスペーシングを減じる方法が提案されている
。(特開昭63−50912号) 【発明が解決しようとする課題〕 上記従来技術はギャップの配置が同一線上にあり、かつ
摺動方向と直角な場合を対象にしている。
Separately, in helical scan magnetic heads for VTRs, etc., in order to improve the envelope at the tape entry and exit positions, the spacing is made so that the ridgeline direction of the sliding surface is parallel to the tape running direction. A method of reducing this has been proposed. (Japanese Unexamined Patent Publication No. 63-50912) [Problems to be Solved by the Invention] The above-mentioned prior art is directed to the case where the gaps are arranged on the same line and perpendicular to the sliding direction.

しかしながらギャップの数と配置を任意とし、すなわち
ギャップが同一線上になく、またその方向が摺動方向と
任意の角度で斜交する場合には上記従来技術の溝形成だ
けでは不十分である。その理由は (1)溝形成のみでは各ギャップ位置と曲面の頂点と一
致していないのでスペーシング量が増加する。
However, if the number and arrangement of the gaps are arbitrary, that is, the gaps are not on the same line, and the direction thereof obliquely intersects the sliding direction at an arbitrary angle, the above-mentioned conventional groove formation alone is insufficient. The reason for this is (1) If only the grooves are formed, each gap position does not coincide with the apex of the curved surface, so the amount of spacing increases.

(2)活動曲面形状が摺動方向を中心軸として非対称形
状だと媒体のねじれ変形が生じ、これに伴う媒体の振動
のため、スペーシング量とトラッキングが不安定になる
(2) If the active surface shape is asymmetrical with respect to the sliding direction as the central axis, torsional deformation of the medium will occur, and the resulting vibration of the medium will make the spacing amount and tracking unstable.

等の欠点を持つ、従来技術ではこれらを同時に解決する
ことができなかった。
Conventional technology has been unable to solve these problems at the same time.

本発明の目的は、上記従来技術の欠点を補い。The object of the present invention is to compensate for the drawbacks of the above-mentioned prior art.

ギャップ配置を任意としたマルチギャップ磁気へラドの
スペーシング量を極小にし、かつ安定に保つ構造を提供
することである。
It is an object of the present invention to provide a structure in which the spacing amount of a multi-gap magnetic field is minimized and maintained stably with arbitrary gap arrangement.

(課題を解決するための手段) 上記目的は、マルチギャップ磁気ヘッドの摺動面形状を
各ギャップ位置を頂点とする凸形曲面の集合体とし、摺
動方向を軸として各ギャップ位置を通りその面積が最小
の1個又は同軸の複数個の仮想楕円を描いた時、各ギャ
ップ近傍の凸形曲面の稜線方向を上記仮想楕円の接線方
向に略等しくすることにより達成される。
(Means for Solving the Problems) The above object is to make the sliding surface of a multi-gap magnetic head a collection of convex curved surfaces with vertices at each gap position, and to pass through each gap position with the sliding direction as an axis. This is achieved by drawing one virtual ellipse with the smallest area or a plurality of coaxial virtual ellipses, and making the ridgeline direction of the convex curved surface near each gap approximately equal to the tangential direction of the virtual ellipse.

特に摺動面内で点対称位置にある一対のギャップに関し
、これらを結ぶ直線の方向が摺動方向より角度0だけ傾
斜する時、各ギャップの凸形曲面の稜線方向を、摺動方
向より逆側に角度θだけ傾斜させるようにした。
In particular, regarding a pair of gaps located at point-symmetrical positions within a sliding surface, when the direction of the straight line connecting them is inclined by an angle of 0 from the sliding direction, the ridgeline direction of the convex curved surface of each gap is set opposite to the sliding direction. It was made to tilt to the side by an angle θ.

尚ここでいう稜線とは、凸形曲面に対し摺動方向と直角
な切口の断面をとり、各断面の頂点を結んで得られる線
を意味する。
Note that the ridgeline herein means a line obtained by taking a cross section of the convex curved surface perpendicular to the sliding direction and connecting the vertices of each cross section.

〔作用〕[Effect]

磁気ヘッド摺動面の各ギャップ位置を凸形曲面の頂点に
したため、可撓性媒体は各ギャップに良好に接触しスペ
ーシングを極小にする。
Since the positions of each gap on the magnetic head sliding surface are at the vertices of the convex curved surface, the flexible medium makes good contact with each gap, minimizing the spacing.

また、各ギャップの凸形曲面の稜線を慴動方向を軸とし
た仮想楕円の接線方向としたので、媒体全体の変形はこ
の仮想楕円に従う、すなわちこの変形は摺動方向を軸と
して対称でありかつなめらかとなり、ねじれ変形は生じ
ない。
Furthermore, since the ridgeline of the convex curved surface of each gap is set as the tangential direction of the virtual ellipse with the sliding direction as the axis, the deformation of the entire medium follows this virtual ellipse, that is, this deformation is symmetrical with the sliding direction as the axis. It becomes smooth and no twisting deformation occurs.

従って媒体の振動が少なく、スペーシングとトラッキン
グを安定に保つことができる。
Therefore, the vibration of the medium is small, and spacing and tracking can be kept stable.

〔実施例〕〔Example〕

以下2本発明のマルチギャップ磁気ヘッドの実施例を図
面を用いて詳しく説明する。
Hereinafter, two embodiments of the multi-gap magnetic head of the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例で、2個のギャップを有
する場合で、(α)は平面図(摺動面から見た図)、(
b)は側面図、(C)は(α)図の部分拡大図、(d)
は(c)図の断面図である。
FIG. 1 shows the first embodiment of the present invention, in which there are two gaps, (α) is a plan view (view from the sliding surface), (
b) is a side view, (C) is a partially enlarged view of figure (α), (d)
is a sectional view of FIG.

構成を説明すると、1α、lbは一対のヘッド素子で、
フェライト等の磁気コア2a、2b、記録及び再生用の
ギャップ3α、3bからなる。4は充填ガラスで、5c
L、55は巻線コイルである。
To explain the configuration, 1α and lb are a pair of head elements,
It consists of magnetic cores 2a, 2b made of ferrite or the like, and gaps 3α, 3b for recording and reproduction. 4 is filled glass, 5c
L, 55 is a winding coil.

一対のヘッド素子ICL、lbはホルダー6で支持し、
ネジ7で外部(例えば回転シリンダ)に取付ける。磁気
テープ(図示せず)等の可撓性媒体に対してマルチギャ
ップ磁気ヘッドは直線10゜10′の方向に摺動する。
A pair of head elements ICL and lb are supported by a holder 6,
Attach to the outside (for example, a rotating cylinder) with screw 7. A multi-gap magnetic head slides in a straight line 10.degree. 10' relative to a flexible medium such as a magnetic tape (not shown).

一対のギャップ3α。A pair of gaps 3α.

3Cを結ぶ方向は直llAl1で示すように、摺動方向
10に対して角度θだけ傾斜している。−例としてギャ
ップ間隔は、摺動方向をAx、直角方向をLyとすると
、 IAx=1m、It y=0.5an。
The direction connecting 3C is inclined by an angle θ with respect to the sliding direction 10, as shown by straight line 11Al1. - As an example, the gap distance is IAx=1m, Ity=0.5an, where Ax is the sliding direction and Ly is the perpendicular direction.

角度θ=26°の場合を示す、各ヘッド素子の摺動面は
、ギャップ位置を頂点とする凸形曲面形状とし、その形
状を(c)図に等直線(点線)9で示す、摺動方向と直
角な切口AA’での断面形状を(d)図に示す、摺動面
は凸形曲線で、その頂点位置を13で示す、切口AA’
 を摺動方向10’に移動させて、各断面での頂点13
を結んだ線が点線12(太く示す)で、以下この線を稜
1IA12と呼ぶ、この図では稜線12がヘッド素子の
長手側面8と平行な場合である。各稜線12α。
The sliding surface of each head element, which shows the case where the angle θ = 26°, has a convex curved surface shape with the apex at the gap position, and the sliding surface is shown in FIG. The cross-sectional shape at the cut AA' perpendicular to the direction is shown in figure (d). The sliding surface is a convex curve, the apex position of which is indicated by 13, at the cut AA'.
is moved in the sliding direction 10', and the apex 13 at each cross section is
The line connecting them is a dotted line 12 (shown thickly), and this line will hereinafter be referred to as an edge 1IA12. In this figure, the edge line 12 is parallel to the longitudinal side surface 8 of the head element. Each ridgeline 12α.

12bの方向、すなわち摺動方向10 (10’ )と
なす角φα、φbは次のように定めた。一対のギャップ
3α、36を通り、その囲む面積が最小となる仮想楕円
(−点鎖線)14を摺動面に描き。
The angles φα and φb formed with the direction of 12b, that is, the sliding direction 10 (10'), were determined as follows. A virtual ellipse (-dotted chain line) 14 is drawn on the sliding surface, passing through the pair of gaps 3α and 36 and having the smallest enclosing area.

各ギャップ位置にてこの仮想楕円14にひいた接線(−
点鎖線)15へ、1513を想定し、上記稜線12α、
12Cをこの接線15α、156にほぼ一致させた。上
記内容を数式で説明する。摺動方向をX軸とするxy座
標を用い、ギャップ位置を(cLtb)+(−代、−b
)とすると、ギャップを結ぶ直線11と摺動方向10の
なす角θは。
A tangent line drawn to this virtual ellipse 14 at each gap position (-
Dotted chain line) 15, assuming 1513, the above ridge line 12α,
12C was made to almost coincide with the tangents 15α and 156. The above contents will be explained using mathematical formulas. Using xy coordinates with the sliding direction as the
), then the angle θ between the straight line 11 connecting the gaps and the sliding direction 10 is.

a=j a n−”  (b/c)である、また面積が
最小となる仮想楕円14の式は x”/ 2 a−”+ y”/ 2 b”= 1すなわ
ち頂点が(±V21.0)、(0,±V/2b)の楕円
である。ギャップ位置(α、b)、(−α。
a=j a n-" (b/c), and the formula for the virtual ellipse 14 with the minimum area is x"/2 a-"+y"/2 b"=1, that is, the apex is (±V21. 0), (0, ±V/2b). Gap position (α, b), (−α.

−b)での接線15の式は x/2α+y/2 b =±1 よってその勾配はd y / d x = −b / 
CL稜線12はこれら接線15に一致させたのでその角
度は φα=φb=t a n’  (−b/a)=−θとな
る。すなわち稜線12の方向は、一対のギャップを結ぶ
方向と摺動軸に対し逆側に等しい角度だけ傾斜させた。
The equation for the tangent 15 at -b) is x/2α+y/2 b = ±1, so its slope is d y / d x = -b /
Since the CL ridge line 12 is made to coincide with these tangent lines 15, its angle becomes φα=φb=tan′ (−b/a)=−θ. That is, the direction of the ridge line 12 is inclined by an equal angle to the direction connecting the pair of gaps and the opposite side to the sliding axis.

次に第2図は上記第11!lで述べたマルチギャップ磁
気ヘッドの動作を示す図で、  ((L)は平面図。
Next, Figure 2 is number 11 above! This is a diagram showing the operation of the multi-gap magnetic head described in Section 1. ((L) is a plan view.

(b)は((L)図のBB’ に沿った断面図である。(b) is a sectional view taken along line BB' in figure (L).

磁気ヘッドを磁気テープ20に押込んだ状態で摺動させ
ると、ヘッド摺動面の中でギャップ3α。
When the magnetic head is pushed into the magnetic tape 20 and slid, a gap 3α is formed in the head sliding surface.

3b位置は磁気テープ20側に最も突き出た部分なので
、磁気テープ20との接触圧力は極大となりスペーシン
グ量は極小となる。従ってこれによる出力損失は極小と
なる。これ以外の摺動面の中では、稜線12a、12b
の位置がこれに次いで圧力が大きく、磁気テープ20は
この稜線12α。
Since the position 3b is the part that most protrudes toward the magnetic tape 20, the contact pressure with the magnetic tape 20 is maximum and the spacing amount is minimum. Therefore, the output loss caused by this becomes extremely small. Among the other sliding surfaces, the ridgelines 12a and 12b
The position of the magnetic tape 20 has the second highest pressure, and the magnetic tape 20 is located along this ridgeline 12α.

12bに沿って張設され変形を受ける。本発明では稜線
12α、12bは1つの仮想楕円14の接線に一致させ
たので、磁気テープ20の変形はこの仮想楕円14に近
い形状に盛り上り、これを等直線16で示した。ここで
仮想楕円14の条件として、その面積が最小となる縦横
比(離心率)を選び、摺動軸10に関し対称とした。こ
のため変形部分の面積は最小であり、かつその変形形状
は(b)図のように幅方向に対称である。このような磁
気テープの変形は、テープ摺動時に最もなめらかでかつ
ねじれのない摺動形態を実現する。従ってテープ摺動時
に厚み方向あるいは幅方向の振動が発生しに<<、スペ
ーシングとトラッキングを安定に保つことができる。
12b and undergoes deformation. In the present invention, the ridgelines 12α and 12b are made to coincide with the tangents of one virtual ellipse 14, so that the magnetic tape 20 is deformed into a shape close to this virtual ellipse 14, which is shown by isolines 16. Here, as a condition for the virtual ellipse 14, an aspect ratio (eccentricity) that minimizes its area is selected, and the virtual ellipse 14 is made symmetrical about the sliding axis 10. Therefore, the area of the deformed portion is minimum, and the deformed shape is symmetrical in the width direction as shown in FIG. Such deformation of the magnetic tape realizes the smoothest and twist-free sliding form when the tape slides. Therefore, it is possible to maintain stable spacing and tracking without causing vibrations in the thickness direction or width direction when the tape slides.

第3図は9本発明によるマルチギャップ磁気ヘッドの第
2の実施例で、(α)は平面図、(b)は部分拡大図、
(C)は断面図である。この実施例では各ヘッド素子1
α、1bの外形側面8α。
FIG. 3 shows a second embodiment of the multi-gap magnetic head according to the present invention, (α) is a plan view, (b) is a partially enlarged view,
(C) is a sectional view. In this embodiment, each head element 1
α, external side surface 8α of 1b.

8bを摺動方向10と平行に配置した。一方稜線12c
、12bの方向は前記実施例と同様に決め。
8b is arranged parallel to the sliding direction 10. On the other hand, ridge line 12c
, 12b are determined in the same manner as in the previous embodiment.

φ1=φb=−〇とした。従って(b)図のように稜線
12は側面8と角度θで斜交し、その断面は(c)図の
ように切口CC′の位置を移動すると頂点13は中央か
らずれる非対称とした。しかしこの実施例に於ても磁気
テープの変形及び摺動性は前記第1の実施例と全く同様
であり、その稜1i12α、12bの方向のみが重要で
あることが判明した。
φ1=φb=-〇. Therefore, the ridge line 12 obliquely intersects the side surface 8 at an angle θ, as shown in FIG. 3B, and the cross section is asymmetrical, with the apex 13 shifting from the center as the position of the cut CC' is moved, as shown in FIG. However, in this embodiment as well, the deformation and sliding properties of the magnetic tape are exactly the same as in the first embodiment, and it has been found that only the directions of the edges 1i12α and 12b are important.

第4図は1本発明によるマルチギャップ磁気ヘッドの第
3の実施例で、4個のギャップを有する場合を示す、(
CL)は平面図、(b)は側面図で。
FIG. 4 shows a third embodiment of the multi-gap magnetic head according to the present invention, in which there are four gaps.
CL) is a plan view, and (b) is a side view.

ギャップ3α〜3dが一直1IA11上に等間隔に配列
し、摺動方向10と角度θで斜交している。各ギャップ
位置の稜線121〜12dと摺動方向10とのなす角φ
1〜φdは、φα=φb=φC=φd=−〇とした。こ
の場合の各ギャップを通る仮想楕円は、ギャップLLO
L、Lidを通る外側の楕円14と、ギャップllb、
llcを通る内側の楕円14′の2つ存在する。これら
の楕円は同軸で縦横比(離心率)が等しいので、各ギャ
ップ位置での接線方向も等しく、従ってその稜線12α
〜12dの方向も等しくした。この場合磁気テープ20
の変形はその幅方向に対称で、ねじれは発生せず摺動性
は安定する。さらに本実施例では各ギャップ位置での頂
点の高さ(突出量)を。
Gaps 3α to 3d are arranged in a straight line 1IA11 at equal intervals and obliquely intersect with the sliding direction 10 at an angle θ. Angle φ between the ridge lines 121 to 12d at each gap position and the sliding direction 10
1 to φd were set to φα=φb=φC=φd=−〇. The virtual ellipse passing through each gap in this case is the gap LLO
L, the outer ellipse 14 passing through Lid, and the gap llb,
There are two inner ellipses 14' passing through llc. Since these ellipses are coaxial and have the same aspect ratio (eccentricity), the tangential directions at each gap position are also the same, so their ridgeline 12α
The direction of ~12d was also made equal. In this case, the magnetic tape 20
The deformation of is symmetrical in the width direction, no twisting occurs and sliding properties are stable. Furthermore, in this example, the height (protrusion amount) of the apex at each gap position.

同−仮想楕円上にあるギャップは同一高さとし。Gaps on the same virtual ellipse have the same height.

内側の仮想楕円上にあるギャップは高さを大きくした。The height of the gap on the inner virtual ellipse was increased.

すなわち(b)図に於て、外側ギャップ3o、、3dに
対し内側ギャップ3b、3cの頂点高さをΔZ(数μm
〜数+μm)だけ大きくした。
In other words, in figure (b), the apex height of the inner gaps 3b and 3c with respect to the outer gaps 3o, 3d is set to ΔZ (several μm).
~ several + μm).

このようにして磁気テープ20の変形に対し各ギャップ
、特に内側のギャップのスペーシングを極小かつ均一に
し、記録再生特性のアンバランスをなくすことができる
In this way, the spacing of each gap, especially the inner gap, can be minimized and uniform against deformation of the magnetic tape 20, thereby eliminating unbalanced recording and reproducing characteristics.

次に第5図は2本発明によるマルチギャップ磁気ヘッド
の第4の実施例で、4個のギャップを有し、各ギャップ
が斜交する2直線上に配置した場合である。(、l)は
平面図で、ギャップ3(Lと3bは直線11上に配置し
、ギャップ3Cと3dは直線11′上に配置しである。
Next, FIG. 5 shows a fourth embodiment of a multi-gap magnetic head according to the present invention, which has four gaps and is arranged on two obliquely intersecting straight lines. (, l) is a plan view showing the gap 3 (L and 3b are arranged on the straight line 11, and the gaps 3C and 3d are arranged on the straight line 11').

これらの直線と摺動方向となす角度をそれぞれθ、θ′
とすると。
The angles formed between these straight lines and the sliding direction are θ and θ′, respectively.
If so.

各ギャップ位置での稜線12α〜12dの方向は。The directions of the ridge lines 12α to 12d at each gap position are as follows.

φ(L±φb=−θ、φC:+:φd=−〇′とした。φ(L±φb=−θ, φC:+:φd=−〇′.

また(b)は側面図で、各ギャップ位置での頂点高さ(
突出量)は、仮想楕円14.14’に従つてΔ2の差を
つけた。この場合の動作も前実施例と同様である。
(b) is a side view showing the apex height at each gap position (
The protrusion amount) was set to have a difference of Δ2 according to the virtual ellipse 14.14'. The operation in this case is also similar to the previous embodiment.

本発明は上記各実施例にとどまらず、これ以外の任意の
ギャップ数及びその配置に対して、複数個の仮想楕円を
描くことにより適用することができる。
The present invention is not limited to the above embodiments, but can be applied to any other number of gaps and arrangement thereof by drawing a plurality of virtual ellipses.

また本発明は、磁気ヘッド素子を構成するコア材も限定
しない、第6図はその一例として、磁気コア材として磁
性薄膜からなるマルチギャップ磁気ヘッドの場合を示す
、(収)は平面図(摺動面)。
Furthermore, the present invention does not limit the core material constituting the magnetic head element. As an example, FIG. 6 shows the case of a multi-gap magnetic head made of a magnetic thin film as the magnetic core material. (moving surface).

(b)は断面図である。ヘッド素子1α、1bは。(b) is a sectional view. The head elements 1α and 1b are.

センダスト、アモルファス等の磁性薄膜コア2(1゜2
bとギャップ3a、3bとFJ Diミコイル5゜5b
からなり、共通基板17上に形成した。磁性薄膜コア2
α、2bの稜線12α、12bの方向は、摺動方向10
に対して所定角度だけ斜交させた1本実施例では複数の
ヘッド素子をち密に高精度に集積配置させることができ
、その稜jIIA12α。
Magnetic thin film core 2 (1°2
b and gap 3a, 3b and FJ Di Micoil 5゜5b
formed on a common substrate 17. Magnetic thin film core 2
The direction of the ridgeline 12α, 12b of α, 2b is the sliding direction 10
In this embodiment, a plurality of head elements can be arranged closely and with high precision, with the edge jIIA12α obliquely intersecting by a predetermined angle.

12bの加工も薄膜エツチングプロセスにより容易に実
現できる。
The processing of 12b can also be easily realized by a thin film etching process.

上記実施例は媒体として磁気テープの場合を取り上げた
が9本発明のマルチギャップ磁気ヘッドは、可撓性磁気
ディスクにも適用できることは言うまでもない。
Although the above embodiment deals with a magnetic tape as the medium, it goes without saying that the multi-gap magnetic head of the present invention can also be applied to flexible magnetic disks.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、摺動面に複数個のギ
ャップを配置したマルチギャップ磁気ヘッドに於て、そ
の摺動面形状を各ギャップ位置を頂点とする凸形曲面の
集合体とし、その各曲面の稜線を1個又は複数個の仮想
楕円に接する方向に設定した。これより(1)各ギャッ
プ位置での可撓性媒体の接触圧力を高め、スペーシング
麓を極小にしてこれに伴う出力損失を極小にする。
As described above, according to the present invention, in a multi-gap magnetic head in which a plurality of gaps are arranged on the sliding surface, the shape of the sliding surface is an aggregate of convex curved surfaces with each gap position as a vertex. , the ridgeline of each curved surface was set in a direction tangent to one or more virtual ellipses. From this, (1) the contact pressure of the flexible medium at each gap position is increased, the spacing foot is minimized, and the resulting output loss is minimized;

(2)ヘッド摺動時の媒体の盛り上り変形は摺動軸に関
し対称となり、ねじれ変形に伴うスペーシング及びトラ
ッキング変動が低減する9等の効果がある。
(2) The heaving deformation of the medium when the head slides is symmetrical with respect to the sliding axis, and there is an effect such as 9 that spacing and tracking fluctuations accompanying torsional deformation are reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のマルチギャップ磁気ヘッドの一実施例
で(α)は平面図、(b)は側面図。 (c)は部分拡大図、(d)は断面図、第2図は第1図
の実施例の動作説明図、第3図〜第6図は。 本発明のマルチギャップ磁気ヘッドの他の実施例で、平
面図及び側面図、第7図は、従来のマルチギャップ磁気
ヘッドで、(α)は平面図、(b)は側面図である。 1・・・ヘッド素子。 2・・・磁気コア。 3・・・ギャップ。 10・・・摺動方向。 12・・・稜線。 14・・・仮想楕円。 閉 日 筋 筋 臼 第 目 筋4虐 tb) (α) (b)
FIG. 1 is an embodiment of the multi-gap magnetic head of the present invention, in which (α) is a plan view and (b) is a side view. (c) is a partially enlarged view, (d) is a sectional view, FIG. 2 is an explanatory diagram of the operation of the embodiment of FIG. 1, and FIGS. 3 to 6 are diagrams. Another embodiment of the multi-gap magnetic head according to the present invention; FIG. 7 shows a conventional multi-gap magnetic head, (α) is a plan view, and (b) is a side view. 1...Head element. 2...Magnetic core. 3... Gap. 10...Sliding direction. 12...Ridge line. 14...Virtual ellipse. Muscle occipitalis Muscle occipitalis 4th muscle tb) (α) (b)

Claims (1)

【特許請求の範囲】[Claims] 1、複数個のギャップを摺動面に配置したマルチギャッ
プ磁気ヘッドに於て、その摺動面形状を各ギャップ位置
を頂点とする複数個の凸形曲面の集合体とし、かつ摺動
面上に摺動方向を軸とし各ギャップ位置を通りその面積
が最小の1個又は同軸の複数個の仮想楕円を描いた時、
各ギャップ近傍の凸形曲面に対する摺動方向と直角な断
面の頂点を結んで得られる各稜線の方向が、上記仮想楕
円に対する接線方向に略等しいことを特徴とするマルチ
ギャップ磁気ヘッド。
1. In a multi-gap magnetic head in which a plurality of gaps are arranged on the sliding surface, the shape of the sliding surface is an aggregate of a plurality of convex curved surfaces with the apex at each gap position, and When one or multiple coaxial virtual ellipses with the smallest area are drawn passing through each gap position with the sliding direction as the axis,
A multi-gap magnetic head characterized in that the direction of each ridge line obtained by connecting the vertices of a cross section perpendicular to the sliding direction on the convex curved surface near each gap is substantially equal to the tangential direction to the virtual ellipse.
JP6090589A 1989-03-15 1989-03-15 Multigap magnetic head Pending JPH02240810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6090589A JPH02240810A (en) 1989-03-15 1989-03-15 Multigap magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6090589A JPH02240810A (en) 1989-03-15 1989-03-15 Multigap magnetic head

Publications (1)

Publication Number Publication Date
JPH02240810A true JPH02240810A (en) 1990-09-25

Family

ID=13155843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6090589A Pending JPH02240810A (en) 1989-03-15 1989-03-15 Multigap magnetic head

Country Status (1)

Country Link
JP (1) JPH02240810A (en)

Similar Documents

Publication Publication Date Title
US6999274B2 (en) Servo head for magnetic tape
US5301077A (en) Thin film magnetic head
JPH02240810A (en) Multigap magnetic head
JP5685045B2 (en) Servo write head, servo writer, and manufacturing method of magnetic tape on which servo signal is written
JPH0612645A (en) Thin-film magnetic head and its production
JPH01224922A (en) Magnetic recording medium
JPS62298908A (en) Magnetic head
US20040070868A1 (en) Rotary head apparatus with magnetic head having convex curve and magnetic playback apparatus using the same
JPH0830915A (en) Magnetic head
JP2859992B2 (en) Magnetic recording / reproducing device
JPS60202502A (en) Magnetic head
JPS618709A (en) Magnetic head
JPH0718008Y2 (en) Floating magnetic head
JPH06150236A (en) Magnetic head
JPH0196810A (en) Magnetic head
JPH1031808A (en) Magnetic head
JPS6180608A (en) Magnetic head
JPH0830909A (en) Magnetic head
JP2000057720A (en) Magnetic head
JPH02218007A (en) Magnetic head device for floppy disk device and manufacture of magnetic head
JPS6318512A (en) Magnetic head device
JPS58171713A (en) Production of magnetic head
JPH1114870A (en) Wire body with sz groove
JP2002208107A (en) Magnetic head and manufacturing method therefor
JPH03254409A (en) Formation of magnetic film of magnetic head