JPH01261274A - Production of silicon nitride sintered form - Google Patents

Production of silicon nitride sintered form

Info

Publication number
JPH01261274A
JPH01261274A JP63086651A JP8665188A JPH01261274A JP H01261274 A JPH01261274 A JP H01261274A JP 63086651 A JP63086651 A JP 63086651A JP 8665188 A JP8665188 A JP 8665188A JP H01261274 A JPH01261274 A JP H01261274A
Authority
JP
Japan
Prior art keywords
powder
particle size
silicon nitride
particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63086651A
Other languages
Japanese (ja)
Inventor
Kouichi Sueyoshi
耕一 末芳
Sho Sano
佐野 省
Toshiji Ishii
敏次 石井
Yushi Horiuchi
雄史 堀内
Hisashi Terasaki
寺崎 尚志
Yoshiro Aiba
吉郎 相庭
Tomohito Kuroki
黒木 智史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP63086651A priority Critical patent/JPH01261274A/en
Publication of JPH01261274A publication Critical patent/JPH01261274A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title sintered form of high density and high mechanical strength with reduced variation in characteristics, by granulation of a mixture comprising Si3N4 powder, a sintering aid and a binder so as to result in a specific size distribution, followed by forming and calcination. CONSTITUTION:Firstly, 100pts.wt. of Si3N4 powder 0.3-1.5wt.% in carbon con tent and >=90% in alpha-conversion rate is incorporated with 0.3-30pts.wt. of a sintering aid comprising 0.1-10pts.wt. of yttria, 0.1-10pts.wt. of alumina and 0.1-10pts.wt. of AlN followed by wet mixing grinding so that the resultant particle size distribution is such as D10=0.4-0.45mum, D50=1.0-1.5mum and D90=2.5-4.0mum, to prepare mixed powder 50-100mum in mean particle size. Thence, this mixed powder is spiked with a binder (e.g., PVA) followed by granulation so as to be <=25wt.% of particles <31mum in size, >=70wt.% of particles 31-125mum in size and <=10wt.% of particles >=125mum in size. The resulting granulated powder is then formed into a form <=30mm in thickness, which is then calcined at 1,700-1,850 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高密度かつ高強度の窒化ケイ素質焼結体の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a high-density and high-strength silicon nitride sintered body.

〔従来の技術〕[Conventional technology]

窒化ケイ素質焼結体は、窒化ケイ素粉末と焼結助剤とを
混合粉砕し、この混合粉にバインダーを添加して造粒し
、常法に従って成形、焼成することにより製造されてい
る。
The silicon nitride sintered body is produced by mixing and pulverizing silicon nitride powder and a sintering aid, adding a binder to the mixed powder, granulating it, and molding and firing according to a conventional method.

ここで、窒化ケイ素粉末は、シリカ還元法、シリコン直
接窒化法、イミド分解法又は気相合成法により合成され
ている。このうちシリカ還元法は、5i02をCで還元
してSi化し、N2ガスと反応させてSi3N、を合成
する方法であり、α化率が高く、高純度で形状Φ大きさ
の均一性が高い粒子が得られるという長所がある。ただ
し、C含有量は他の合成法に比較して高くなる傾向があ
る。
Here, the silicon nitride powder is synthesized by a silica reduction method, a silicon direct nitriding method, an imide decomposition method, or a gas phase synthesis method. Among these, the silica reduction method is a method in which 5i02 is reduced with C to convert it to Si, and then reacted with N2 gas to synthesize Si3N, which has a high gelatinization rate, high purity, and high uniformity in shape and size. It has the advantage that particles can be obtained. However, the C content tends to be higher compared to other synthesis methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

セラミックスは通常、製品厚さが増すほど製造が困難と
なるため、厚さに応じて造粒粉の粒度分布を考慮する必
要がある。
Ceramics usually become more difficult to manufacture as the thickness of the product increases, so it is necessary to consider the particle size distribution of the granulated powder depending on the thickness.

ところが、従来は造粒粉の粒度分布はほとんど考慮され
ていなかったため、窒化ケイ素質焼結体の強度の低下や
強度バラツキを招いていた。
However, in the past, little consideration was given to the particle size distribution of the granulated powder, which led to a decrease in the strength of the silicon nitride sintered body and to variations in strength.

本発明は上記問題点を解決するためになされたものであ
り、高密度、高強度で特性バラツキの少ない窒化ケイ素
質焼結体を製造し得る方法を搗供することを目的とする
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a silicon nitride sintered body with high density, high strength, and little variation in properties.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明の窒化ケイ素質焼結体の製造方法は、窒化ケイ素
粉末100重量部及び焼結助剤0.3〜30重量部を混
合粉砕し、バインダーを添加した後1粒径31川m未満
の粒子が25重量%以下、粒径31μm以上 125ル
m未満の粒子が70重量%以上、粒径125μm以上の
粒子が10重量%以下となるように造粒し、この造粒粉
を30+mm以下の厚さに成形して焼成することを特徴
とするものである。
The method for producing a silicon nitride sintered body of the present invention includes mixing and pulverizing 100 parts by weight of silicon nitride powder and 0.3 to 30 parts by weight of a sintering aid, adding a binder, and then reducing the particle diameter to less than 31 mm. The granulated powder is granulated so that the particles are 25% by weight or less, the particles with a particle size of 31 μm or more and less than 125 μm are 70% by weight or more, and the particles with a particle size of 125 μm or more are 10% by weight or less. It is characterized by being molded to a certain thickness and fired.

本発明においては、造粒粉を30mm以下の厚さに成形
することを前提としている。成形体の厚さが30mm以
下の場合には、シリカ還元法により製造された窒化ケイ
素粉末を使用しても、窒化ケイ素粉末中に含まれる炭素
の影響が比較的小さい0本発明においては、このような
成形体を焼成したときに高密度、高強度の窒化ケイ素質
焼結体が得られるような適当な造粒粉の粒度分布を規定
している。
The present invention is based on the premise that the granulated powder is molded to a thickness of 30 mm or less. When the thickness of the molded body is 30 mm or less, even if silicon nitride powder manufactured by the silica reduction method is used, the influence of carbon contained in the silicon nitride powder is relatively small. An appropriate particle size distribution of the granulated powder is specified so that a high-density, high-strength silicon nitride sintered body can be obtained when such a compact is fired.

本発明において、原料となる窒化ケイ素粉末。In the present invention, silicon nitride powder is a raw material.

焼結助剤粉末及びこれらの混合粉末の物性は例えば以下
のようなものである。窒化ケイ素粉末としては、例えば
シリカ還元法により製造された、炭素含有量が0.3〜
1.5wt%で、α化率が80%以上のものが用いられ
る。また、焼結助剤としては、窒化ケイ素粉末100重
量部に対して0.3〜30重量部添加され、例えばイツ
トリア0.1−10重量部。
The physical properties of the sintering aid powder and mixed powder thereof are as follows, for example. As silicon nitride powder, for example, silicon nitride powder manufactured by a silica reduction method and having a carbon content of 0.3 to
1.5 wt% and a gelatinization rate of 80% or more is used. Further, as a sintering aid, 0.3 to 30 parts by weight are added to 100 parts by weight of silicon nitride powder, such as 0.1 to 10 parts by weight of ittria.

アルミナ0.1〜10重量部、窒化アルミニウム0.1
〜10重量部から選ばれる少なくとも1種が用いられる
Alumina 0.1-10 parts by weight, aluminum nitride 0.1
At least one selected from 10 parts by weight is used.

また、窒化ケイ素粉末及び焼結助剤は、粒度分布がD 
I(I Mo、4〜0.45μm 、 D 5O=1.
0−1.5 μm、D 9o=2.5〜4.0 p、t
aとなるように湿式で混合粉砕することが望ましい、こ
れは、以下のような理由による。すなわち、焼結を容易
にするためには原料混合粉の粒度は細かい方がよいが、
粒度を細がくしすぎると、窒化ケイ素粉末に含まれる炭
素のためにかえって緻密化が阻害されることがある。
In addition, the silicon nitride powder and sintering aid have a particle size distribution of D
I(IMo, 4-0.45 μm, D5O=1.
0-1.5 μm, D9o=2.5-4.0 p, t
It is desirable to wet mix and grind so that the result is a. This is for the following reasons. In other words, in order to facilitate sintering, the particle size of the raw material mixture powder should be finer;
If the particle size is made too fine, densification may be hindered due to the carbon contained in the silicon nitride powder.

ここで、Dl。が0.4 μm未満の場合、特に上述し
た傾向が強くなり高密度の焼結体を得ることが困難にな
る。一方、D、。が0.45p、mを超える場合又はD
 50が1.5 μmを超える場合にも焼結体の密度が
低下する。また、I)ioが4.0 p、rmを超える
場合には焼結体中で粗い粒子の形状がそのまま維持され
、焼結体の強度バラツキが大きくなる。
Here, Dl. If it is less than 0.4 μm, the above-mentioned tendency becomes particularly strong, making it difficult to obtain a high-density sintered body. On the other hand, D. exceeds 0.45p, m or D
When 50 exceeds 1.5 μm, the density of the sintered body also decreases. Moreover, when I)io exceeds 4.0 p, rm, the shape of coarse particles is maintained in the sintered body, and the strength variation of the sintered body becomes large.

本発明において、使用されるバインダーは特に限定され
るものではなく、例えばPVB(ポリビニルブチラール
) 、 PVA(ポリビニルアルコール)、アクリル樹
脂等が用いられる。なお、バインダーは溶媒に溶解して
添加することが望ましい、また。
In the present invention, the binder used is not particularly limited, and for example, PVB (polyvinyl butyral), PVA (polyvinyl alcohol), acrylic resin, etc. are used. In addition, it is desirable that the binder is added dissolved in a solvent.

造粒法も特に限定されるわけではなく1例えばスプレー
ドライ等が用いられる。
The granulation method is not particularly limited either, and for example, spray drying or the like may be used.

本発明において、造粒粉の粒度分布を上記のように規定
したのは以下のような理由による。すなわち、粒径31
ル履未満の粒子が25%を超えると造粒粉の流動性が悪
くなり、成形不良を招く、また、粒径31μm以上 1
25 p、 m未満の粒子が70%未満であると他の構
成成分が増加し、成形不良及び成形体中の欠陥の増大を
招く、また、粒径125JLI11以上の粒子が10%
を超えると造粒粉の充填性が悪く去り晟形体中の欠陥の
増大を招く。なお、造粒粉の平均粒径が50〜100J
、Lllであることが望ましい、また、造粒粉の粒度分
布の測定は、時間短縮の観点から、造粒粉をバインダー
の溶媒に分散させた状態でレーザー光散乱法を用いるこ
とが望ましい。
In the present invention, the particle size distribution of the granulated powder is defined as described above for the following reasons. That is, the particle size is 31
If the proportion of particles with a diameter of 31 μm or more exceeds 25%, the fluidity of the granulated powder will deteriorate, leading to poor molding.
If particles with a particle size of less than 25 p or m account for less than 70%, other constituent components will increase, leading to poor molding and an increase in defects in the molded product.
If it exceeds this value, the filling properties of the granulated powder will be poor, leading to an increase in defects in the rod-shaped bodies. In addition, the average particle size of the granulated powder is 50 to 100J.
, Lll. Furthermore, from the viewpoint of time reduction, it is desirable to measure the particle size distribution of the granulated powder using a laser light scattering method with the granulated powder dispersed in a binder solvent.

本発明において、造粒粉を成形する際、成形法は特に限
定されないが、コスト的な観点から金型成形や静水圧成
形が望ましい、なお、上述したように成形体の厚さは3
0mm以下に設定される。成形体の厚さを30+IIm
以下としたのは、成形体の厚さが30mmを超えると、
上述した造粒粉の粒度分布では圧力伝播が不充分となり
、成形性に問題が生じるためである。
In the present invention, when molding the granulated powder, the molding method is not particularly limited, but mold molding or isostatic pressing is preferable from a cost perspective.As mentioned above, the thickness of the molded product is 3.
It is set to 0 mm or less. The thickness of the molded body is 30+IIm
The following conditions apply when the thickness of the molded body exceeds 30 mm:
This is because the particle size distribution of the granulated powder described above results in insufficient pressure propagation, causing problems in moldability.

本発明において、成形体を脱バインダー処理した後、焼
成する際、焼結法は特に限定されないが、コスト的な観
点から常圧焼結やガス圧焼結が望ましい、焼成温度は1
700〜l 850 ”Cであることが望ましい。
In the present invention, when firing the molded body after removing the binder, the sintering method is not particularly limited, but from a cost perspective, normal pressure sintering or gas pressure sintering is preferable, and the firing temperature is 1.
700-1850''C is desirable.

このような本発明方法によれば、3oIII11以下と
いう製品厚さに応じて適当な造粒粉の粒度分布が規定さ
れているので、高密度、高強度で特性バラツキの少ない
窒化ケイ素質焼結体を製造することができる。
According to the method of the present invention, an appropriate particle size distribution of the granulated powder is defined according to the product thickness of 3oIII11 or less, so that a silicon nitride sintered body with high density, high strength, and little variation in properties can be produced. can be manufactured.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1〜4及び比較例1〜5 シリカ還元法により製造された含有炭素量0.67wt
%、平均粒径2.70 g raの窒化ケイ素粉末と、
焼結助剤として平均粒径1.04■のイツトリア、平均
粒径0.54 rsのアルミナ及び平均粒径8.Oμm
の窒化アルミニウムとをそれぞれ第1表に示す配合比で
ボールミル中に入れ、メタノール中で混合粉砕した。得
られた各混合粉について、レーザー光散乱法により測定
した粒度分布を同表に示す。
Examples 1 to 4 and Comparative Examples 1 to 5 Carbon content manufactured by silica reduction method: 0.67wt
%, silicon nitride powder with an average particle size of 2.70 g ra,
As sintering aids, itria with an average particle size of 1.04 cm, alumina with an average particle size of 0.54 rs, and an average particle size of 8. Oμm
and aluminum nitride were placed in a ball mill at the compounding ratios shown in Table 1, and mixed and ground in methanol. The particle size distribution of each of the obtained mixed powders measured by a laser light scattering method is shown in the same table.

次に、各混合粉にバインダーとしてpva(ポリビニル
ブチラール)を溶解したメタノール溶液50重量部を添
加した後、スプレードライヤーにより造粒した。得られ
た各造粒粉について、レーザー光散乱法により測定した
粒度分布を同表に示す、また、実施dJ、及び比較例1
については、造粒粉の粒度分布を第1図に示す、また、
各造粒粉を500回タップして充填したときの充填密度
を同表に示す。
Next, 50 parts by weight of a methanol solution in which PVA (polyvinyl butyral) was dissolved as a binder was added to each mixed powder, and then granulated using a spray dryer. The particle size distribution measured by the laser light scattering method for each of the obtained granulated powders is shown in the same table, and also for Example dJ and Comparative Example 1.
The particle size distribution of the granulated powder is shown in Figure 1, and
The packing density when each granulated powder was tapped and filled 500 times is shown in the same table.

次いで、各造粒粉を用い、750 kg/ cm 2の
圧力で同表に示す厚さの成形体を各20個ずつ成形した
。得られた成形体のかさ密度(平均値)を同表に示す。
Next, each granulated powder was used to mold 20 molded bodies each having the thickness shown in the table at a pressure of 750 kg/cm 2 . The bulk density (average value) of the obtained molded product is shown in the same table.

更に、これらの成形体を600℃で脱バインダーした後
、窒素雰囲気中、1780℃で45分間焼成した。得ら
れた各焼結体のかさ密度と曲げ強さを同表に示す。
Furthermore, after removing the binder from these molded bodies at 600°C, they were fired at 1780°C for 45 minutes in a nitrogen atmosphere. The bulk density and bending strength of each of the obtained sintered bodies are shown in the same table.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明方法によれば、高密度、高強
度で特性バラツキの少ない窒化ケイ素質焼結体を製造で
きるものである。
As detailed above, according to the method of the present invention, it is possible to produce a silicon nitride sintered body with high density, high strength, and little variation in properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1及び比較例1における造粒粉
の粒度分布を示す図である。 出願人代理人 弁理士 鈴江武彦 n 往 (μm) $1図
FIG. 1 is a diagram showing the particle size distribution of granulated powder in Example 1 and Comparative Example 1 of the present invention. Applicant's agent Patent attorney Takehiko Suzue (μm) $1 Figure

Claims (1)

【特許請求の範囲】[Claims] 窒化ケイ素粉末100重量部及び焼結助剤0.3〜30
重量部を混合粉砕し、バインダーを添加した後、粒径3
1μm未満の粒子が25重量%以下、粒径31μm以上
125μm未満の粒子が70重量%以上、粒径125μ
m以上の粒子が10重量%以下となるように造粒し、こ
の造粒粉を30mm以下の厚さに成形して焼成すること
を特徴とする窒化ケイ素質焼結体の製造方法。
100 parts by weight of silicon nitride powder and 0.3 to 30 parts by weight of sintering aid
After mixing and pulverizing parts by weight and adding a binder, the particle size is 3.
25% by weight or less of particles less than 1 μm, 70% by weight or more of particles with a particle size of 31 μm or more and less than 125 μm, and a particle size of 125 μm
A method for producing a silicon nitride sintered body, which comprises granulating the powder so that particles having a size of m or more are 10% by weight or less, molding the granulated powder to a thickness of 30 mm or less, and firing it.
JP63086651A 1988-04-08 1988-04-08 Production of silicon nitride sintered form Pending JPH01261274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086651A JPH01261274A (en) 1988-04-08 1988-04-08 Production of silicon nitride sintered form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086651A JPH01261274A (en) 1988-04-08 1988-04-08 Production of silicon nitride sintered form

Publications (1)

Publication Number Publication Date
JPH01261274A true JPH01261274A (en) 1989-10-18

Family

ID=13892935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086651A Pending JPH01261274A (en) 1988-04-08 1988-04-08 Production of silicon nitride sintered form

Country Status (1)

Country Link
JP (1) JPH01261274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093789A (en) * 2009-09-30 2011-05-12 Hitachi Metals Ltd Ceramic ball stock sphere, mold for forming ceramic ball stock sphere and method for manufacturing ceramic ball stock sphere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093789A (en) * 2009-09-30 2011-05-12 Hitachi Metals Ltd Ceramic ball stock sphere, mold for forming ceramic ball stock sphere and method for manufacturing ceramic ball stock sphere

Similar Documents

Publication Publication Date Title
US7022305B2 (en) Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same
US3875277A (en) Method for making polycrystalline alumina arc tubes
EP0332393B1 (en) Method of producing a light-transmitting spinel sintered body
JPH01261274A (en) Production of silicon nitride sintered form
JPH02111658A (en) Ceramic insulating material and production thereof
JP3839537B2 (en) Production method of opaque quartz glass containing fine bubbles
JPH10194743A (en) Zirconia-alumina granule and its production
JPH01261275A (en) Production of silicon nitride sintered form
JP2558849B2 (en) Method for producing transparent aluminum oxynitride composite sintered body
JPS6360106A (en) Spinel powder and its production
JP2001122653A (en) Production process of carbonate hardened body
JP2000159570A (en) Production of compact cordierite sintered product
CN114031390B (en) Microwave dielectric material and preparation method thereof
JP2000007425A (en) High strength alumina substrate and its production
JPH06305809A (en) High-strength ceramic whiteware and its production
JPH0283265A (en) Production of silicon nitride
JP2005239446A (en) Porcelain composition and its manufacturing method
JP2510705B2 (en) Method for producing transparent aluminum oxynitride composite sintered body
JP2004262735A (en) Ceramic and method of manufacturing ceramic
JPH0483759A (en) Production of sintered composite boron nitride
JPH0597523A (en) Production of sintered aluminum nitride
JPH0664982A (en) Production of ceramic form
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body
JPH01261273A (en) Production of sintered silicon nitride
JPS6183005A (en) Method of mixing ceramic raw material for injection molding