JPH01261275A - Production of silicon nitride sintered form - Google Patents

Production of silicon nitride sintered form

Info

Publication number
JPH01261275A
JPH01261275A JP63086652A JP8665288A JPH01261275A JP H01261275 A JPH01261275 A JP H01261275A JP 63086652 A JP63086652 A JP 63086652A JP 8665288 A JP8665288 A JP 8665288A JP H01261275 A JPH01261275 A JP H01261275A
Authority
JP
Japan
Prior art keywords
powder
particle size
silicon nitride
binder
10pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63086652A
Other languages
Japanese (ja)
Inventor
Kouichi Sueyoshi
耕一 末芳
Sho Sano
佐野 省
Toshiji Ishii
敏次 石井
Yushi Horiuchi
雄史 堀内
Hisashi Terasaki
寺崎 尚志
Yoshiro Aiba
吉郎 相庭
Tomohito Kuroki
黒木 智史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP63086652A priority Critical patent/JPH01261275A/en
Publication of JPH01261275A publication Critical patent/JPH01261275A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title sintered form of high density and high mechanical strength with reduced variation in characteristics, by granulation of a mixture comprising Si3N4 powder, a sintering aid and a binder so as to result in a specific granular size, followed by forming and calcination. CONSTITUTION:Firstly, 100pts.wt. of Si3N4 powder 0.3-1.5wt.% in carbon content and >=90% in alpha-conversion rate is incorporated with 0.3-30pts.wt. of a sintering aid comprising 0.1-10pts.wt. of yttria, 0.1-10pts.wt. of alumina and 0.1-10pts.wt. of AlN followed by wet mixing grinding so that the resultant particle size distribution is such as D10=0.5-0.6mum, D50=1.5-2.0mum and D90=3.5-5.0mum. Thence, this mixed powder is spiked with a binder (e.g., PVA) followed by granulation so as to be 100-150mum in mean size and <=250mum in maximum size. The resulting granulated powder is then formed into a form >=30mm in thickness, which is then calcined at 1,700-1,850 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高密度かつ高強度の窒化ケイ素質焼結体の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a high-density and high-strength silicon nitride sintered body.

〔従来の技術〕[Conventional technology]

窒化ケイ素質焼結体は、窒化ケイ素粉末と焼結助剤とを
混合粉砕し、この混合粉にバインダーを添加して造粒し
、常法に従って成形、焼成することにより製造されてい
る。
The silicon nitride sintered body is produced by mixing and pulverizing silicon nitride powder and a sintering aid, adding a binder to the mixed powder, granulating it, and molding and firing according to a conventional method.

ここで、窒化ケイ素粉末は、シリカ還元法、シリコン直
接窒化法、イミド分解法又は気相合成法により合成され
ている。このうちシリカ還元法は、5fO2をCで還元
してSi化し、N2ガスと反応させて5L3N4を合成
する方法であり、α化率が高く、高純度で形状・大きさ
の均一性が高い粒子が得られるという長所がある。ただ
し。
Here, the silicon nitride powder is synthesized by a silica reduction method, a silicon direct nitriding method, an imide decomposition method, or a gas phase synthesis method. Among these, the silica reduction method is a method in which 5fO2 is reduced with C to form Si, and then reacted with N2 gas to synthesize 5L3N4, which produces particles with a high gelatinization rate, high purity, and high uniformity in shape and size. It has the advantage of being able to obtain however.

C含有量は他の合成法に比較して高くなる傾向がある。The C content tends to be high compared to other synthesis methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

セラミックスは通常、製品厚さが増すほど製造が困難と
なるため、厚さに応じて造粒粉の粒度分布を考慮する必
要がある。
Ceramics usually become more difficult to manufacture as the thickness of the product increases, so it is necessary to consider the particle size distribution of the granulated powder depending on the thickness.

ところが、従来は造粒粉の粒度分布はほとんど考慮され
ていなかったため、窒化ケイ素質焼結体の強度の低下や
強度バラツキを招いていた。
However, in the past, little consideration was given to the particle size distribution of the granulated powder, which led to a decrease in the strength of the silicon nitride sintered body and to variations in strength.

本発明は上記問題点を解決するためになされたものであ
り、高密度、高強度で特性バラツキの少ない窒化ケイ素
質焼結体を製造し得る方法を提供することを目的とする
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a silicon nitride sintered body with high density, high strength, and little variation in properties.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明の窒化ケイ素質焼結体の製造方法は、窒化ケイ素
粉末100重量部及び焼結助剤0.3〜30重量部を混
合粉砕し、バインダーを添加した後、平均粒径 100
− 150pm 、最大粒径250 g m以下となる
ように造粒し、この造粒粉を30mm以上の厚さに成形
して焼成することを特徴とするものである。
The method for producing a silicon nitride sintered body of the present invention includes mixing and pulverizing 100 parts by weight of silicon nitride powder and 0.3 to 30 parts by weight of a sintering aid, adding a binder, and then reducing the average particle size to 100 parts by weight.
- 150 pm and a maximum particle size of 250 g m or less, and the granulated powder is shaped into a thickness of 30 mm or more and fired.

本発明においては、造粒粉を30m1以上の厚さに成形
することを前提としている。成形体の厚さが30mm以
上と肉厚の場合には、窒化ケイ素粉末に含まれる炭素の
影響が比較的大きくなり、緻密化が阻害されやすい0本
発明においては、このような成形体を焼成したときに高
密度、高強度の窒化ケイ素質焼結体が得られるような適
当な造粒粉の粒度分布を規定している。
The present invention is based on the premise that the granulated powder is molded to a thickness of 30 ml or more. When the thickness of the molded body is 30 mm or more, the influence of carbon contained in the silicon nitride powder becomes relatively large, and densification is likely to be inhibited. An appropriate particle size distribution of the granulated powder is specified so that a high-density, high-strength silicon nitride sintered body can be obtained.

本発明において、原料となる窒化ケイ素粉末、焼結助剤
粉末及びこれらの混合粉末の物性は例えば以下のような
ものである。窒化ケイ素粉末としては1例えばシリカ還
元法により製造された、炭素含有量が0.3〜1.5 
wt%でα化率が905以上のものが用いられる。また
、焼結助剤は、窒化ケイ素粉末 100重量部に対して
0.3〜30重量部添加され、例えばイツトリア0.1
〜10重量部、アルミナ0゜1〜10重量部、窒化アル
ミニウム0.1〜lO重量部から選ばれる少なくとも1
種が用いられる。
In the present invention, the physical properties of the silicon nitride powder, the sintering aid powder, and the mixed powder thereof, which are the raw materials, are as follows, for example. The silicon nitride powder is manufactured by, for example, a silica reduction method and has a carbon content of 0.3 to 1.5.
A material having a gelatinization rate of 905 or more in wt% is used. Further, the sintering aid is added in an amount of 0.3 to 30 parts by weight per 100 parts by weight of silicon nitride powder, for example, 0.1 parts by weight of itria.
~10 parts by weight, at least 1 part by weight of alumina, 0.1 to 10 parts by weight of aluminum nitride, and 0.1 to 10 parts by weight of aluminum nitride.
Seeds are used.

また、窒化ケイ素粉末及び焼結助剤は1粒度分布がDI
(1=0.5〜OJ grs 、 D5゜*1.5〜2
.0 gm、D9o=3.5〜5.Op−cmとなるよ
うに湿式で混合粉砕することが望ましい、これは、以下
のような理由による。すなわち、焼結を容易にするため
には原料粉末の粒度は細かい方がよいが、粒度を細かく
しすぎると、窒化ケイ素粉末に含まれる炭素のためにか
えって緻密化が阻害されることがあり、成形体の厚さが
厚いほどm密化が阻害されやすい。
In addition, the silicon nitride powder and sintering aid have a particle size distribution of DI
(1=0.5~OJ grs, D5゜*1.5~2
.. 0 gm, D9o=3.5-5. It is desirable to wet mix and grind to obtain Op-cm for the following reasons. In other words, in order to facilitate sintering, the particle size of the raw material powder should be finer, but if the particle size is made too fine, densification may be hindered due to the carbon contained in the silicon nitride powder. The thicker the molded body, the more likely it is that m-densification will be inhibited.

ここで、Dl。が0.54 ra未満の場合、特に上述
した傾向が強くなり高密度の焼結体を得ることが困難に
なる。一方、DiOが0.8gmを超える場合又はD5
゜が2.04 rmを超える場合にも焼結体の密度が低
下する。また、D90が5.0gm t−超える場合1
こは焼結体中で粗い粒子の形状がそのまま維持され、焼
結体の強度バラツキが大きくなる。
Here, Dl. When is less than 0.54 ra, the above-mentioned tendency becomes particularly strong, making it difficult to obtain a high-density sintered body. On the other hand, if DiO exceeds 0.8gm or D5
The density of the sintered body also decreases when the angle exceeds 2.04 rm. Also, if D90 exceeds 5.0 gm t-1
In this case, the shape of the coarse particles is maintained as it is in the sintered body, and the strength variation of the sintered body becomes large.

本発明において、使用されるバインダーは特に限定され
るものではなく、例えばPVB(ポリビニルブチラール
) 、 PVA(ポリビニルアルコール)、アクリル樹
脂等が用いられる。なお、バインダーは溶媒に溶解して
添加することが望ましい、また、造粒法も特に限定され
るわけではなく、例えばスプレードライ等が用いられる
In the present invention, the binder used is not particularly limited, and for example, PVB (polyvinyl butyral), PVA (polyvinyl alcohol), acrylic resin, etc. are used. Note that the binder is desirably dissolved in a solvent and added, and the granulation method is not particularly limited, and for example, spray drying or the like may be used.

本発明において、造粒粉の粒度分布を上記のように規定
したのは以下のような理由による。すなわち、平均粒径
を 100〜150 JLmとしたのは、平均粒径が1
00ルm未満では造粒粉の流動性が悪くなって成形不良
を招き、一方平均粒径が150 JLmを超えると造粒
粉の充填性が悪くなり成形体中の欠陥の増大を招く、ま
た、最大粒径が250 p、 taを超えた場合も同様
に造粒粉の充填性が悪くなり成形体中の欠陥の増大を招
く、なお、造粒粉の粒度分布の測定は、時間短縮の観点
から、造粒粉をバインダーの溶媒に分散させた状態でレ
ーザー光散乱法を用いることが望ましい。
In the present invention, the particle size distribution of the granulated powder is defined as described above for the following reasons. In other words, the reason why the average particle size is 100 to 150 JLm is that the average particle size is 1
If the average particle size is less than 150 JLm, the fluidity of the granulated powder will be poor, leading to poor molding, while if the average particle size exceeds 150 JLm, the filling properties of the granulated powder will be poor, leading to an increase in defects in the molded product. , If the maximum particle size exceeds 250 p, ta, the filling properties of the granulated powder will similarly deteriorate, leading to an increase in defects in the compact. Note that measuring the particle size distribution of the granulated powder is a time-saving method. From this point of view, it is desirable to use the laser light scattering method with the granulated powder dispersed in the binder solvent.

本発明において、造粒粉を成形する際、成形法は特に限
定されないが、コスト的な観点から金型成形や静水圧成
形が望ましい、なお、上述したように成形体の厚さは3
0m+w以上に設定される。
In the present invention, when molding the granulated powder, the molding method is not particularly limited, but mold molding or isostatic pressing is preferable from a cost perspective.As mentioned above, the thickness of the molded product is 3.
It is set to 0m+w or more.

本発明において、成形体を脱バインダー処理した後、焼
成する際、焼結法は特に限定されないが、コスト的な観
点から常圧焼結やガス圧焼結が望ましい、焼成温度は1
700〜1850℃であることが望ましい。
In the present invention, when firing the molded body after removing the binder, the sintering method is not particularly limited, but from a cost perspective, normal pressure sintering or gas pressure sintering is preferable, and the firing temperature is 1.
The temperature is preferably 700 to 1850°C.

このような本発明方法によれば、3oIIII11以上
という製品厚さに応じて適当な造粒粉の粒度分布が規定
されているので、高密度、高強度で強度バラツキの少な
い窒化ケイ素質焼結体を製造することができる。
According to the method of the present invention, an appropriate particle size distribution of the granulated powder is defined according to the product thickness of 3oIII11 or more, so that a silicon nitride sintered body with high density, high strength, and little strength variation can be produced. can be manufactured.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1〜4及び比較例1〜4 シリカ還元法により製造された含有炭素量o、67wt
%、平均粒径2.70JLmの窒化ケイ素粉末と、焼結
助剤として平均粒径1.Og、mのイツトリア、平均粒
径0.57zmのアルミナ及び平均粒径8.Ogmの窒
化アルミニウムとをそれぞれ第1表に示す配合比でボー
ルミル中に入れ、メタノール中で混合粉砕した。得られ
た各混合粉について、レーザー光散乱法により測定した
粒度分布を同表に示す。
Examples 1 to 4 and Comparative Examples 1 to 4 Carbon content o produced by silica reduction method: 67wt
%, with an average particle size of 2.70 JLm, and as a sintering aid, an average particle size of 1.70 JLm. Ittria of Og, m, alumina of average particle size 0.57zm and average particle size 8. Ogm and aluminum nitride were placed in a ball mill at the compounding ratio shown in Table 1, and mixed and ground in methanol. The particle size distribution of each of the obtained mixed powders measured by a laser light scattering method is shown in the same table.

次に、各混合粉にバインダーとしてPVB(ポリビニル
ブチラール)を溶解したメタノール溶液50重量部を添
加した後、スプレードライヤーにより造粒した。得られ
た造粒粉について、レーザー光散乱法により測定した平
均粒径及び最大粒径を同表に示す、また、実施例1につ
いては、造粒粉の粒度分布を第1図に示す。
Next, 50 parts by weight of a methanol solution in which PVB (polyvinyl butyral) was dissolved as a binder was added to each mixed powder, and then granulated using a spray dryer. The average particle diameter and maximum particle diameter of the obtained granulated powder measured by a laser light scattering method are shown in the same table, and for Example 1, the particle size distribution of the granulated powder is shown in FIG.

次いで、各造粒粉を用い、 750 kg/cm2の圧
力で同表に示す厚さの成形体を各20個ずつ成形した。
Next, each granulated powder was used to mold 20 molded bodies each having the thickness shown in the table at a pressure of 750 kg/cm2.

更に、これらの成形体を800℃で脱バインダーした後
、窒素雰囲気中、 1780℃で45分間焼成した。得
られた各焼結体のかさ密度と曲げ強さを同表に示す。
Furthermore, after removing the binder from these molded bodies at 800°C, they were fired at 1780°C for 45 minutes in a nitrogen atmosphere. The bulk density and bending strength of each of the obtained sintered bodies are shown in the same table.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明方法によれば、高密度、高強
度で特性バラツキの少ない窒化ケイ素質焼結体を製造で
きるものである。
As detailed above, according to the method of the present invention, it is possible to produce a silicon nitride sintered body with high density, high strength, and little variation in properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における造粒粉の粒度分布を
示す図である。 出願人代理人 弁理士 鈴江武彦 0   50    too    150  200
   250付 達 (μm) 第1図
FIG. 1 is a diagram showing the particle size distribution of granulated powder in Example 1 of the present invention. Applicant's agent Patent attorney Takehiko Suzue 0 50 too 150 200
250 (μm) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 窒化ケイ素粉末100重量部及び焼結助剤0.3〜30
重量部を混合粉砕し、バインダーを添加した後、平均粒
径100〜150μm、最大粒径250μm以下となる
ように造粒し、この造粒粉を30mm以上の厚さに成形
して焼成することを特徴とする窒化ケイ素質焼結体の製
造方法。
100 parts by weight of silicon nitride powder and 0.3 to 30 parts by weight of sintering aid
After mixing and pulverizing parts by weight, adding a binder, granulating to have an average particle size of 100 to 150 μm and a maximum particle size of 250 μm or less, shaping this granulated powder to a thickness of 30 mm or more and firing. A method for producing a silicon nitride sintered body, characterized by:
JP63086652A 1988-04-08 1988-04-08 Production of silicon nitride sintered form Pending JPH01261275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086652A JPH01261275A (en) 1988-04-08 1988-04-08 Production of silicon nitride sintered form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086652A JPH01261275A (en) 1988-04-08 1988-04-08 Production of silicon nitride sintered form

Publications (1)

Publication Number Publication Date
JPH01261275A true JPH01261275A (en) 1989-10-18

Family

ID=13892963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086652A Pending JPH01261275A (en) 1988-04-08 1988-04-08 Production of silicon nitride sintered form

Country Status (1)

Country Link
JP (1) JPH01261275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040679A (en) * 2001-07-31 2003-02-13 Kyocera Corp Method of manufacturing silicon nitride sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040679A (en) * 2001-07-31 2003-02-13 Kyocera Corp Method of manufacturing silicon nitride sintered compact

Similar Documents

Publication Publication Date Title
US3875277A (en) Method for making polycrystalline alumina arc tubes
JPS6054976A (en) Silicon nitride sintered body and manufacture
JP3129870B2 (en) Manufacturing method of ceramic sintered body
JPH03208805A (en) Production of superfine powder of aluminum nitride
JPH01261275A (en) Production of silicon nitride sintered form
JPH01261274A (en) Production of silicon nitride sintered form
JPH0569765B2 (en)
JP2558849B2 (en) Method for producing transparent aluminum oxynitride composite sintered body
JPS638069B2 (en)
CN114031390B (en) Microwave dielectric material and preparation method thereof
JPH01131069A (en) Complex compact calcined under ordinary pressure
JPH01261277A (en) Granulated powder for production of silicon nitride sintered form
JPH0283265A (en) Production of silicon nitride
JP2510705B2 (en) Method for producing transparent aluminum oxynitride composite sintered body
JP2004262735A (en) Ceramic and method of manufacturing ceramic
JP3390059B2 (en) Method for producing silicon nitride
JPH06116017A (en) High toughness alumina-zirconia sintered compact
JPH10182115A (en) Silicon nitride-based powder and its production
JPH02116613A (en) Production of cordierite powder having high purity
JPH04238866A (en) Production of tube of sintered material of silicon carbide
JPH09241010A (en) Production of silicon nitride
JPH1053453A (en) Production of high density ceramics
JPH05124856A (en) Production of alumina-based combined sintered compact and alumina-based combined sintered compact
JPS6246955A (en) Manufacture of mullite sintered body
JPH0437653A (en) Production of ceramics sintered body