JPH026305A - Production of ultrafine particle of aluminum nitride - Google Patents

Production of ultrafine particle of aluminum nitride

Info

Publication number
JPH026305A
JPH026305A JP15754488A JP15754488A JPH026305A JP H026305 A JPH026305 A JP H026305A JP 15754488 A JP15754488 A JP 15754488A JP 15754488 A JP15754488 A JP 15754488A JP H026305 A JPH026305 A JP H026305A
Authority
JP
Japan
Prior art keywords
furanphenol
water
alumina
resin
delta alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15754488A
Other languages
Japanese (ja)
Other versions
JP2567041B2 (en
Inventor
Mikio Sakaguchi
美喜夫 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP63157544A priority Critical patent/JP2567041B2/en
Publication of JPH026305A publication Critical patent/JPH026305A/en
Application granted granted Critical
Publication of JP2567041B2 publication Critical patent/JP2567041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain AlN ultrafine particles having <=1mum particle diameters excellent moldability and sintering properties free from aggregation by heat- treating a mixture of delta alumina fine particles obtained in a gas phase and a furanphenol resin capable of containing a given ratio of water in state of precondensate in N2 and/or Nh3 atmosphere. CONSTITUTION:An Al salt such as AlCl3 or an aluminum alkoxide is thermally decomposed in a gas phase to prepare delta alumina fine particles which contains especially >=50% crystal composition of delta alumina, has <=1wt.% inorganic impurities and 0.005-0.1mum average particle diameter. On the other hand, a furanphenol resin capable of containing 20-80wt.% water in a state of precondensate is prepared. Then the delta alumina fine particles are uniformly blended with the furanphenol resin in the ratio of (65:35)-(75:25) (calculated as Al2O3:C) by a ball mill, etc., and dried. Then the dried powder is optionally granulated and then heat-treated in N2 and/or NH3 atmosphere at 1,400-1,800 deg.C to give AlN ultrafine particles almost consisting of 100% AlN single phase.

Description

【発明の詳細な説明】 [産業上の利用分!I!P] 本発明は、凝集の少ない易焼結性窒化アルミニウム超微
粒粉末の工業的製造方法に関するものである。
[Detailed description of the invention] [Industrial use! I! P] The present invention relates to an industrial method for producing easily sinterable aluminum nitride ultrafine powder with little agglomeration.

[従来の技術とその課題] 窒化アルミニウムは熱伝導率が、他のセラミックスに較
へて高く放熱性に優れているため、+Cの高集積化、高
速化に伴い、パッケージ+オ料、基板材料として適用さ
れつつある。
[Conventional technology and its issues] Aluminum nitride has a higher thermal conductivity than other ceramics and has excellent heat dissipation.As +C becomes more highly integrated and operates at higher speeds, it is becoming more and more popular for packaging, metals, and substrate materials. It is being applied as a

窒化アルミニウム粉末の製造方法としては、従来から知
られている工業的方法(+)アルミナと炭素粉末の混合
物を還元窒化ずろ方法。(2)金属アルミニウムを窒素
あるいはアンモニアで窒化する方法がある。しかしなが
ら、(1)の方法ではアルミナと炭素の混合が十分でな
く、未反応のアルミナが残留したり、多量の炭素分を必
要とするため、合成後の脱炭が容易ではなく、また1μ
m以下の超微粉末を得難い。(2)の方法では、合成中
、金属アルミニウムの上行が起こり、未反応の金属アル
ミニウムか残留したり、合成窒化アルミニウム粉末粒子
が粗大化するので、(1)の場合と同様に1μm以下の
超微粉末は得難い。また、超微粉粒子を得ろ方法として
特開昭61−171902号公報、同G2−17190
3号公報「窒化アルミニウム微粉末の合成法」に金属ア
ルミニウムをプラズマ広巾で窒化ずろ方法か開示されて
いるが、製造コストか高く、工業的に多量の粉末を得る
ことは困難であった。
The method for producing aluminum nitride powder is the conventionally known industrial method (+), which involves reducing and nitriding a mixture of alumina and carbon powder. (2) There is a method of nitriding metal aluminum with nitrogen or ammonia. However, in method (1), alumina and carbon are not mixed sufficiently, unreacted alumina remains, and a large amount of carbon is required, making decarburization after synthesis difficult, and
It is difficult to obtain ultrafine powder of less than m. In method (2), metal aluminum rises during the synthesis, unreacted metal aluminum remains, and synthesized aluminum nitride powder particles become coarse. Fine powder is difficult to obtain. In addition, as a method for obtaining ultrafine powder particles, Japanese Patent Application Laid-Open No. 61-171902 and G2-17190
Publication No. 3 ``Method of Synthesizing Fine Aluminum Nitride Powder'' discloses a method of nitriding metal aluminum using a wide plasma, but the manufacturing cost is high and it is difficult to obtain a large amount of powder industrially.

」二連のような従来技術の状況に鑑み、本発明は平均粒
径171m以下の窒化アルミニウド超微粒子を工業的生
産に適する方法で容易に製造し得ろ技。
In view of the conventional state of the art, the present invention provides a technique to easily produce ultrafine aluminum nitride particles with an average particle diameter of 171 m or less using a method suitable for industrial production.

術を確立しようとするものである。This is an attempt to establish a technique.

[課題を解決するための手段] 本発明者らは、上記の課題を解決すべく鋭意検討した結
果、気相法で得られた平均粒径0.005〜0.1μm
のδアルミナと初期縮合物で20wt%以上の水を含み
得るフランフェノール樹脂との混合物を窒素またはアン
モニア雰囲気中で熱処理ずろ事により1μm以下の窒化
アルミニウム超微粒子が工業的に容易な方法で得られる
ことを見出し、本発明を完成ずろに至った。以下本発明
を詳述する。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors found that the average particle size obtained by the gas phase method was 0.005 to 0.1 μm.
Ultrafine aluminum nitride particles of 1 μm or less can be obtained by an industrially easy method by heat-treating a mixture of δ alumina and furanphenol resin, which is an initial condensate and can contain 20 wt% or more of water, in a nitrogen or ammonia atmosphere. This discovery led to the completion of the present invention. The present invention will be explained in detail below.

本発明におけろ平均粒径とは透過型電子顕微鏡による1
00IIJの粒子の面積等価円の直径の面積平均をとっ
たものである。
In the present invention, the average particle size is 1 as measured by a transmission electron microscope.
This is the area average of the diameters of the area-equivalent circles of the particles of 00IIJ.

本発明で使用するδアルミナは、塩化アルミニウム、硫
酸アルミニウム等のアルミニウム塩類、アルミニウムイ
ソプロキシド等のアルミニウムアルコキシドを気相熱分
解したものが好ましく、特にδアルミナを50%以ヒ結
晶組成として含み、無機不純物が1wt%以下のものか
好ましい。また、結晶水、構造水を含めて含水4が10
wt%以下である乙のが好ましい。更に、その平均粒径
が0゜005〜0.1μm以下であることが必要である
The δ alumina used in the present invention is preferably one obtained by gas-phase thermal decomposition of aluminum salts such as aluminum chloride and aluminum sulfate, and aluminum alkoxides such as aluminum isoproxide, and particularly contains 50% or more of δ alumina as a crystal composition and is an inorganic Preferably, the impurity content is 1 wt% or less. In addition, the water content including crystal water and structured water is 10
It is preferable that it is less than wt%. Furthermore, it is necessary that the average particle diameter is 0.005 to 0.1 μm or less.

含水量が10wt%以」こては、フランフェノール樹脂
とのなじみがなくなり混合に不均一部分か生じ易いため
、1μmを越える窒化アルミニウム微粒子か生じ易くな
る。また、0.1μmを越える毛均粒径のδアルミナを
用いると、還元窒化の内部への進行が遅く熱処理1時間
が長くなるノーめ、未反応のアルミナ、合成した窒化ア
ルミニウム同士の焼結か起こり、凝集の少ない1μm以
下の超微粒子を得ろことは困難である。0005μmよ
り小さい平均粒径のδアルミナを用いて本発明の目的を
達成することは原理的に可能たが、このような粒径のδ
アルミナを得ること自体が実際上困難である。
If the water content is 10 wt % or more, the trowel will not be compatible with the furanphenol resin and will likely cause uneven mixing, and will likely produce aluminum nitride fine particles exceeding 1 μm. In addition, if δ alumina with an average grain size of more than 0.1 μm is used, the progress of reductive nitriding to the inside will be slow and the heat treatment will take longer. It is difficult to obtain ultrafine particles of 1 μm or less with little agglomeration. Although it was theoretically possible to achieve the object of the present invention using δ alumina with an average particle size smaller than 0.0005 μm,
Obtaining alumina itself is difficult in practice.

本発明で使用する初期縮合物の状態で20wL%以上の
水を含み得るフランフェノール樹脂とは、特開昭60−
171208号公報、特開昭60171209号公報、
特開昭60−171210号公報及び特開昭60−17
121.1号公報に開示されたしのか該当する。具体的
には、後述の実施例で示す手法で得られるが、初期縮合
物の状態で20wt%以下の水しか含み得ないフランフ
ェノール樹脂、あるいは他の樹脂、例えばフェノール樹
脂等では0.l71m以下のδアルミナとのなじみが把
く均一に混合する事は難しく、δアルミナが凝集し、合
成後しその形態が残り、本発明の特徴である凝集の少な
い窒化アルミニウム超微粒子を得ろことは困難である。
The furanphenol resin that can contain 20wL% or more of water in the initial condensate state used in the present invention is
No. 171208, Japanese Patent Application Laid-open No. 60171209,
JP-A-60-171210 and JP-A-60-17
This applies to the information disclosed in Publication No. 121.1. Specifically, it can be obtained by a method shown in Examples below, but furanphenol resin, which can contain only 20 wt% or less of water in the initial condensate state, or other resins, such as phenol resin, has a 0.0% water content. It is difficult to mix homogeneously with δ alumina of 171m or less, and δ alumina aggregates and its shape remains after synthesis, making it difficult to obtain ultrafine aluminum nitride particles with less agglomeration, which is a feature of the present invention. Have difficulty.

一方、フランフェノール樹脂に80%以」二の水分を含
ませることは困難であるため実際的でない。
On the other hand, it is difficult and impractical to make the furanphenol resin contain more than 80% water.

δアルミナとフランフェノール樹脂の混合比は特に限定
セろらのではないが、合成後の脱炭処理を容易にするた
めに、δアルミナ・フランフェノール樹脂=65:35
〜75 :25(AI、O,:C換算)が望ましい。こ
の範囲以外では、合成後の脱炭が困難となったり、未反
応のアルミナが残留したりする。
The mixing ratio of δ alumina and furanphenol resin is not particularly limited, but in order to facilitate the decarburization treatment after synthesis, δ alumina/furanphenol resin = 65:35.
~75:25 (AI, O, :C conversion) is desirable. Outside this range, decarburization after synthesis becomes difficult or unreacted alumina remains.

所定のδアルミナとフランフェノール樹脂はボールミル
、ザンドミル等で均一に混合乾燥し、場合によっては造
粒した後、窒素あるいはアンモニアガス雰囲気中で、1
400〜1800℃の温度範囲で熱処理される。熱処理
温度は上記範囲内であれば、殆ど100%の窒化アルミ
ニウム単相の粉末が得られる。
Predetermined δ alumina and furanphenol resin are uniformly mixed and dried in a ball mill, sand mill, etc., and in some cases, after granulation, they are pulverized for 1 hour in a nitrogen or ammonia gas atmosphere.
Heat treated at a temperature range of 400-1800°C. If the heat treatment temperature is within the above range, almost 100% aluminum nitride single phase powder can be obtained.

[実施例] 以下本発明を実施例に基づいて説明する。本発明はこれ
ら実施例に限定されない。
[Examples] The present invention will be described below based on Examples. The invention is not limited to these examples.

実施例I〜10および比較例1〜5 δアルミナは、実施例1〜5は、市販のアエロノル社製
Oxide −C”r (平均粒径=O,OLμm、δ
アルミナ相=100%)、実施例6〜10はアルミニウ
ムイソプロキシド溶液を気相熱分解して得られた乙の(
平均粒径−〇、03〜0.08μm、δアルミナ相−5
3〜93%)を使用した。比較例は第1表に示されたα
アルミナ、γアルミナおよびδアルミナを用いた。
Examples I to 10 and Comparative Examples 1 to 5 In Examples 1 to 5, the δ alumina was commercially available Oxide-C”r manufactured by Aeronol (average particle size = O, OL μm, δ
Alumina phase = 100%), Examples 6 to 10 were obtained by vapor phase pyrolysis of aluminum isoproxide solution (
Average particle size -〇, 03~0.08μm, δ alumina phase -5
3-93%) was used. The comparative example is α shown in Table 1.
Alumina, γ alumina and δ alumina were used.

初期縮合物で20wt%以上の水を含み得るフランフェ
ノール樹脂は以下のようにして調製した。
A furanphenol resin that can contain 20 wt% or more of water in the initial condensate was prepared as follows.

フルフリルアルコール500重量部と92%パラポルム
アルデヒド480重重部とを80℃で撹拌して溶解させ
、撹拌下でフェノール520重量部、水酸化ナトリウム
8.8重量部及び水45重量部の混合液を滴下した。滴
下終了後、80°Cで3時間反応させた。この後、フェ
ノール80重重部、水酸化ナトリウム8.8重量部及び
水45重1部の混合液を更に添加し、80℃で45時間
反応させた。30°Cまで冷却した後に、70%パラト
ルエンスルポン酸で中和した。この中和物を減圧下で脱
水して、150部の水を除去し、500重量部のフルフ
リルアルコールを添加した。この樹脂が含むことのでき
る水分量を測定したところ36%であった。これを実施
例Iおよび2に用いた。その他の実施例には第1表に示
すように他の含水可能量をバラホルムアルデヒド単を変
化させて調製したちのを用いた。比較例1〜4で用いた
樹脂は上述の方法でバラホルムアルデヒド量を変化させ
て含水可能(I【の調製したフランフェノール樹脂を用
いた(第1表)。比較例5では市販のレゾール!(°L
フェノール樹脂を使用した。
500 parts by weight of furfuryl alcohol and 480 parts by weight of 92% parapolmaldehyde are stirred and dissolved at 80°C, and a mixed solution of 520 parts by weight of phenol, 8.8 parts by weight of sodium hydroxide and 45 parts by weight of water is prepared while stirring. was dripped. After the dropwise addition was completed, the reaction was carried out at 80°C for 3 hours. Thereafter, a mixture of 80 parts by weight of phenol, 8.8 parts by weight of sodium hydroxide, and 1 part by weight of water was further added, and the mixture was reacted at 80° C. for 45 hours. After cooling to 30°C, it was neutralized with 70% para-toluene sulfonic acid. The neutralized product was dehydrated under reduced pressure to remove 150 parts of water and 500 parts by weight of furfuryl alcohol was added. The amount of water that this resin can contain was measured and found to be 36%. This was used in Examples I and 2. In other Examples, as shown in Table 1, samples prepared by varying the water content of rose formaldehyde were used. The resins used in Comparative Examples 1 to 4 can contain water by changing the amount of formaldehyde in the above-mentioned method (furanphenol resin prepared by I [was used (Table 1)). In Comparative Example 5, commercially available resol! ( °L
Phenol resin was used.

その結果を第1表に合成条件と共に示す。The results are shown in Table 1 together with the synthesis conditions.

よた実施例Iの窒化アルミニウム粒子の走査型電子顕微
鏡写t′↓を第1図に示す。この写真から明らかなよう
に0 、3 /1m程度の粒径の揃った凝集体の少ない
超微粒子で酸素含fi’ ratら少なく優れていた。
A scanning electron micrograph t'↓ of the aluminum nitride particles of Example I is shown in FIG. As is clear from this photograph, the ultrafine particles had a uniform particle size of about 0.3/1 m, had few aggregates, and had excellent oxygen content.

し発明の効果] 本発明方法により得られた窒化アルミニウム超微粒子は
、アルミナと樹脂を厳密に制御選択しであるため、1μ
m以下の粒径を6つだ、凝集の少ない乙ので成形性、焼
結性に優れろ。それ故、従来粉末に較へ焼結l:+A度
、助剤添加t4の低下、渋び、緻密化を促進する。また
、従来から知られているアルミナの還元窒化法で製J告
されるため、生産性、製造=1ストの而からtJ愛(−
γである。
[Effects of the Invention] The aluminum nitride ultrafine particles obtained by the method of the present invention have a particle size of 1 μm because alumina and resin are strictly controlled and selected.
The particle size is 6 m or less, which means less agglomeration, so it has excellent moldability and sinterability. Therefore, compared to conventional powders, it promotes sintering l:+A degree, decreases auxiliary additive addition t4, and promotes astringency and densification. In addition, since it is manufactured using the conventionally known alumina reduction nitriding method, productivity and manufacturing = 1 stroke, so tJ love (-
γ.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で得られた窒化アルミニウム粉末の
粒子構造を示4−走査電子顕微鏡写真である。
FIG. 1 is a 4-scanning electron micrograph showing the particle structure of the aluminum nitride powder obtained in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1、気相法で得られた平均粒径が0.005〜0.1μ
mのδアルミナと、初期縮合物の状態で20〜80wt
%の水を含み得るフランフェノール樹脂の混合物を窒素
及び/またはアンモニア雰囲気下で熱処理することを特
徴とする窒化アルミニウム微粒子の製造方法。
1. Average particle size obtained by vapor phase method is 0.005 to 0.1μ
m δ alumina and 20 to 80 wt in the initial condensate state
1. A method for producing aluminum nitride fine particles, which comprises heat-treating a mixture of furanphenol resins which may contain % of water in an atmosphere of nitrogen and/or ammonia.
JP63157544A 1988-06-23 1988-06-23 Method for producing ultrafine aluminum nitride particles Expired - Fee Related JP2567041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63157544A JP2567041B2 (en) 1988-06-23 1988-06-23 Method for producing ultrafine aluminum nitride particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63157544A JP2567041B2 (en) 1988-06-23 1988-06-23 Method for producing ultrafine aluminum nitride particles

Publications (2)

Publication Number Publication Date
JPH026305A true JPH026305A (en) 1990-01-10
JP2567041B2 JP2567041B2 (en) 1996-12-25

Family

ID=15652000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63157544A Expired - Fee Related JP2567041B2 (en) 1988-06-23 1988-06-23 Method for producing ultrafine aluminum nitride particles

Country Status (1)

Country Link
JP (1) JP2567041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442646B1 (en) 2013-02-28 2014-09-24 한국세라믹기술원 Manufacturing method of aluminium nitride powder

Also Published As

Publication number Publication date
JP2567041B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
TWI724259B (en) Hexagonal boron nitride powder and its manufacturing method
JP4122746B2 (en) Method for producing fine α-alumina powder
US4780299A (en) Method for producing aluminum nitride powder
US5246683A (en) Process for producing small particles of aluminum nitride and particles so-produced
US4851205A (en) Alpha-sialon powder and process for its production
JP2017014064A (en) Hexagonal boron nitride particle and method for producing the same
JPH0952704A (en) Aluminum nitride granule and its production
JPH0647447B2 (en) Method for producing aluminum nitride powder
JPH026305A (en) Production of ultrafine particle of aluminum nitride
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPS60260410A (en) Manufacture of beta-sialon powder
JPH0421605B2 (en)
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
AU648108B2 (en) A proces for the preparation of alpha-silicon nitride powder
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS6317210A (en) Production of aluminum nitride powder
JP3496795B2 (en) Method for producing silicon nitride powder
JP2660199B2 (en) Method for producing β-sialon powder
JPS6259574A (en) Production of boron nitride sintered body
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JPH0218285B2 (en)
JPS63139008A (en) Production of powdery aluminum nitride
JPH066513B2 (en) Method for manufacturing nitride-based ceramics
JPS6330307A (en) Production of aluminum nitride
JPS6395113A (en) Production of fine powder comprising metallic boride as main component

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees