JP2017014064A - Hexagonal boron nitride particle and method for producing the same - Google Patents

Hexagonal boron nitride particle and method for producing the same Download PDF

Info

Publication number
JP2017014064A
JP2017014064A JP2015132411A JP2015132411A JP2017014064A JP 2017014064 A JP2017014064 A JP 2017014064A JP 2015132411 A JP2015132411 A JP 2015132411A JP 2015132411 A JP2015132411 A JP 2015132411A JP 2017014064 A JP2017014064 A JP 2017014064A
Authority
JP
Japan
Prior art keywords
boron nitride
particles
composite oxide
nitride powder
hexagonal boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015132411A
Other languages
Japanese (ja)
Other versions
JP6516594B2 (en
Inventor
祥太 台木
Shota Daiki
祥太 台木
竜二 石本
Ryuji Ishimoto
竜二 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2015132411A priority Critical patent/JP6516594B2/en
Publication of JP2017014064A publication Critical patent/JP2017014064A/en
Application granted granted Critical
Publication of JP6516594B2 publication Critical patent/JP6516594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide hexagonal boron nitride particles which reduce anisotropy of thermal conduction, and can impart high thermal conductivity and insulating resistance to a resin composition structured so as to fill a resin, and to provide hexagonal boron nitride powder containing the same.SOLUTION: There are provided hexagonal boron nitride particles having such a polyhedral structure that crystals having a crystal form of hexagonal crystal continue in two or more bending portions, and boron nitride powder containing the particles, where the boron nitride powder can be obtained by mixing a composite oxide which contains 33 mol% or more boron in terms of oxides (BO) and is formed of boron and alkaline earth metal, and a carbon source so that the composite oxide and the carbon source is 0.7-1.0 in terms of B/C (element ratio), heating the mixed substance to a temperature of 1,700-2,200°C under nitrogen atmosphere, reduction nitriding a boron oxide in the composite oxide, and then removing the composite oxide existing in a reaction product.SELECTED DRAWING: Figure 1

Description

本発明は、新規な六方晶窒化硼素粒子、該粒子を含む六方晶窒化硼素粉末及びその製造方法に関する。詳しくは、2以上の屈曲部において六方晶の結晶形態を有する結晶が連続した多面構造を有する六方晶窒化硼素粒子を含み、樹脂に充填して得られる樹脂組成物に高い熱伝導率を付与することが可能な六方晶窒化硼素粉末及びその製造方法を提供するものである。   The present invention relates to novel hexagonal boron nitride particles, hexagonal boron nitride powder containing the particles, and a method for producing the same. Specifically, it includes hexagonal boron nitride particles having a polyhedral structure in which crystals having a hexagonal crystal form are continuous at two or more bent portions, and imparts high thermal conductivity to a resin composition obtained by filling a resin. The present invention provides a hexagonal boron nitride powder and a method for producing the same.

六方晶窒化硼素粉末は、一般に黒鉛と同様の六方晶系の層状構造を有する白色粉末であり、高熱伝導性、高電気絶縁性、高潤滑性、耐腐食性、離型性、高温安定性、化学的安定性等の多くの特性を有する。そのため、六方晶窒化硼素粉末を充填した樹脂組成物は、成形加工することで熱伝導性絶縁シートとして好適に使用されている。   Hexagonal boron nitride powder is generally a white powder having a hexagonal layered structure similar to that of graphite, and has high thermal conductivity, high electrical insulation, high lubricity, corrosion resistance, release properties, high temperature stability, It has many properties such as chemical stability. Therefore, the resin composition filled with hexagonal boron nitride powder is suitably used as a heat conductive insulating sheet by molding.

上記六方晶窒化硼素の製造方法としては、(i)硼素を窒素、アンモニア等を用いて直接窒化する方法、(ii)ハロゲン化硼素をアンモニアやアンモニウム塩と反応させる方法、(iii)硼酸、酸化硼素等の硼素化合物とメラミン等の含窒素化合物とを800℃程度の温度で反応させて硼素化合物を還元窒化するメラミン法、(iv)窒素雰囲気下、硼素化合物とカーボン源を1600℃以上の高温に加熱して、硼素化合物を還元窒化する還元窒化法がある。   The hexagonal boron nitride can be produced by (i) a method of directly nitriding boron using nitrogen, ammonia, or the like, (ii) a method of reacting boron halide with ammonia or an ammonium salt, (iii) boric acid, oxidation. A melamine method in which a boron compound such as boron and a nitrogen-containing compound such as melamine are reacted at a temperature of about 800 ° C. to reduce and nitride the boron compound; (iv) a boron compound and a carbon source at a high temperature of 1600 ° C. or higher in a nitrogen atmosphere There is a reductive nitriding method in which a boron compound is reductively nitrided by heating.

そして、このようにして得られる六方晶窒化硼素粉末は、結晶構造に由来する鱗片状粒子よりなる一次粒子を含み、該鱗片状粒子は熱的異方性を有している。即ち、前記鱗片状粒子は面方向よりも厚み方向の熱伝導率の方が格段に優れている。通常、上記鱗片状粒子を含む窒化硼素粉末を充填剤として用いた熱伝導性絶縁シートの場合、該熱伝導性絶縁シートの面方向に鱗片状粒子が配向するため、鱗片状粒子同士の接触の機会が少なく、該熱伝導性絶縁シートの厚さ方向の熱伝導率は低い。   The hexagonal boron nitride powder thus obtained contains primary particles made of scale-like particles derived from the crystal structure, and the scale-like particles have thermal anisotropy. That is, the scale-like particles have a much better thermal conductivity in the thickness direction than in the plane direction. Usually, in the case of a thermally conductive insulating sheet using boron nitride powder containing the above flaky particles as a filler, since the flaky particles are oriented in the surface direction of the thermally conductive insulating sheet, the contact between the flaky particles There are few opportunities, and the thermal conductivity in the thickness direction of the thermally conductive insulating sheet is low.

このような鱗片状の構造を有する六方晶窒化硼素粒子の熱的異方性を改善するために、上記鱗片状の粒子が多方向を向いて凝集した窒化硼素凝集粒子が提案されている(特許文献1参照)。窒化硼素凝集粒子の利点としては熱的異方性の改善と、大粒径化の2点が挙げられる。   In order to improve the thermal anisotropy of hexagonal boron nitride particles having such a flaky structure, boron nitride agglomerated particles in which the flaky particles are agglomerated in multiple directions have been proposed (patents). Reference 1). The advantages of boron nitride aggregated particles include two points: improvement of thermal anisotropy and increase in particle size.

しかしながら、上記窒化硼素凝集粒子は、取扱時、或いは、樹脂との混練時に凝集粒子が崩壊し、凝集粒子を構成する一次粒子が遊離し、熱抵抗が増大するが故に、熱伝導性絶縁シートとした際の、熱伝導率が低下するといった問題があった。   However, since the boron nitride aggregated particles are disintegrated when handled or kneaded with the resin, the primary particles constituting the aggregated particles are liberated, and the thermal resistance is increased. There was a problem that the thermal conductivity was reduced.

更に、小粒径の窒化硼素粒子を凝集させてなる窒化硼素凝集粒子は、粒子間に微細な空隙を多数有するため、樹脂に充填した際、樹脂組成物中に気泡が残存し易く、該樹脂組成物を成形して得られる成形体の絶縁耐性の低下を招くという問題も有する。   Furthermore, since boron nitride aggregated particles obtained by agglomerating small-sized boron nitride particles have many fine voids between the particles, bubbles are likely to remain in the resin composition when the resin is filled. There is also a problem that the insulation resistance of a molded product obtained by molding the composition is lowered.

特開2011−98882号公報JP 2011-98882 A

従って、本発明の目的は、樹脂に充填した際、高い熱伝導率を発現し、且つ、気泡が残存し難く、絶縁耐性の高い樹脂組成物、更に、それを成形して得られる成形体を得ることができる六方晶窒化硼素粉末を提供することにある。   Accordingly, an object of the present invention is to provide a resin composition that exhibits high thermal conductivity when filled in a resin, and in which bubbles do not easily remain and has high insulation resistance, and a molded body obtained by molding the resin composition. The object is to provide a hexagonal boron nitride powder which can be obtained.

本発明者等は、上記課題を解決するため鋭意検討を行った。その結果、硼素源として、硼素とアルカリ土類金属との複合酸化物を使用して還元窒化反応を行う、特定の製造方法を採用することによって、2以上の屈曲部において六方晶の結晶形態を有する結晶が連続した多面構造を有する新規な六方晶窒化硼素粒子を得ることに成功した。そして、このようにして得られた六方晶窒化硼素粒子を含む六方晶窒化硼素粉末を使用して熱伝導性絶縁シートを構成することにより、該粒子は六方晶窒化硼素結晶が多方向を向いて連続しているため、六方晶窒化硼素結晶が元来有する面方向の熱的異方性が低減され、しかも、従来の凝集粒子に比して、粒子間に存在する微細な間隙の生成を回避でき、該間隙に残存する空気による樹脂の絶縁耐性の低下を大幅に低減し得ることを見出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above problems. As a result, by adopting a specific manufacturing method in which a reductive nitriding reaction is performed using a complex oxide of boron and an alkaline earth metal as a boron source, a hexagonal crystal form is obtained at two or more bent portions. We have succeeded in obtaining novel hexagonal boron nitride particles having a continuous polyhedral structure. Then, by using the hexagonal boron nitride powder containing the hexagonal boron nitride particles obtained in this way to form a thermally conductive insulating sheet, the hexagonal boron nitride crystals are oriented in multiple directions. Because it is continuous, the thermal anisotropy in the face direction inherent to hexagonal boron nitride crystals is reduced, and the generation of fine gaps existing between particles is avoided compared to conventional aggregated particles. It has been found that the decrease in the insulation resistance of the resin due to the air remaining in the gap can be greatly reduced, and the present invention has been completed.

即ち、本発明によれば、2以上の屈曲部において六方晶の結晶形態を有する結晶が連続した多面構造を有することを特徴とする六方晶窒化硼素粒子が提供される。   That is, according to the present invention, there is provided hexagonal boron nitride particles characterized by having a polyhedral structure in which crystals having a hexagonal crystal form are continuous at two or more bent portions.

以下、上記多面構造を有する六方晶窒化硼素粒子を「多結晶六方晶窒化硼素粒子」「多結晶h−BN粒子」ともいう。   Hereinafter, the hexagonal boron nitride particles having the polyhedral structure are also referred to as “polycrystalline hexagonal boron nitride particles” or “polycrystalline h-BN particles”.

上記六方晶窒化硼素粒子は、屈曲部の角度が139±3度を成しているものが好ましい。   The hexagonal boron nitride particles preferably have a bent portion angle of 139 ± 3 degrees.

また、本発明は、上記多結晶h−BN粒子を含む窒化硼素粉末をも提供する。   The present invention also provides a boron nitride powder containing the polycrystalline h-BN particles.

更に、本発明は、上記窒化硼素粉末よりなる樹脂用フィラー、該樹脂用フィラーを充填した樹脂組成物、上記樹脂組成物よりなる電子部品の放熱材をも提供する。   Furthermore, the present invention also provides a resin filler made of the boron nitride powder, a resin composition filled with the resin filler, and a heat dissipation material for an electronic component made of the resin composition.

上記本発明の多結晶h−BN粒子を含む六方晶窒化硼素粉末の製造方法として、硼素を酸化物(B)換算で33モル%以上含有する、硼素とアルカリ土類金属との複合酸化物およびカーボン源を、B/C(元素比)換算で0.7〜1.0となるように混合し、窒素雰囲気下にて1700〜2200℃の温度に加熱して、上記複合酸化物中の硼素酸化物を還元窒化した後、反応生成物中に存在する複合酸化物を除去することを特徴とする六方晶窒化硼素粉末の製造方法を提供する。 As a method for producing hexagonal boron nitride powder containing polycrystalline h-BN particles of the present invention, a composite of boron and an alkaline earth metal containing boron in an amount of 33 mol% or more in terms of oxide (B 2 O 3 ). An oxide and a carbon source are mixed so as to be 0.7 to 1.0 in terms of B / C (element ratio), and heated to a temperature of 1700 to 2200 ° C. in a nitrogen atmosphere. Provided is a method for producing hexagonal boron nitride powder, characterized by removing complex oxide present in a reaction product after reducing and nitriding the boron oxide therein.

上記製造方法の還元窒化において、過剰の窒素存在下、カーボン源の使用量を、還元窒化反応により得られる反応生成物中に存在する複合酸化物の割合が45〜60質量%、該複合酸化物中のBの割合が25〜50モル%、となるように調整し、前記カーボン源の消費が完了した時点で反応を終了することが、効率良く目的とする六方晶窒化硼素粉末を製造するために好ましい。 In the reduction nitridation of the above production method, the amount of the carbon source used in the presence of excess nitrogen is such that the proportion of the composite oxide present in the reaction product obtained by the reduction nitridation reaction is 45 to 60% by mass. The target hexagonal boron nitride powder is efficiently adjusted by adjusting the ratio of B 2 O 3 to 25 to 50 mol% and terminating the reaction when consumption of the carbon source is completed. Preferred for manufacturing.

本発明の多結晶h−BN粒子は、前記したように、2以上の屈曲部において六方晶の結晶形態を有する結晶が連続した多面構造を有することにより、六方晶窒化硼素の結晶が多方向を向いて固定されているため、熱伝導率について異方性が低減され、樹脂に充填して、例えば、熱伝導性絶縁シートを成形した時に、高い熱伝導率を発現する。   As described above, the polycrystalline h-BN particles of the present invention have a polyhedral structure in which crystals having a hexagonal crystal form are continuous in two or more bent portions, so that the hexagonal boron nitride crystal has multiple directions. Since it is fixed facing, the anisotropy of the thermal conductivity is reduced, and when the resin is filled and, for example, a thermally conductive insulating sheet is formed, a high thermal conductivity is exhibited.

また、本発明の多結晶h−BN粒子は、六方晶窒化硼素の結晶が傾角粒界を介して連続して構成されているため、六方晶窒化硼素の結晶を凝集させた従来の窒化凝集粒子のように一次粒子の遊離が起き難く、また、凝集粒子の宿命とも言える凝集粒子間の間隙への気泡の取込が回避され、樹脂に充填した際の、樹脂の絶縁耐圧の低下を効果的に減少することができる。   In addition, since the polycrystalline h-BN particles of the present invention are composed of hexagonal boron nitride crystals continuously through tilt grain boundaries, conventional nitrided aggregated particles obtained by agglomerating hexagonal boron nitride crystals. The primary particles are unlikely to be liberated, and the introduction of bubbles into the gaps between the agglomerated particles, which can be said to be the fate of the agglomerated particles, is avoided, which effectively reduces the insulation withstand voltage of the resin. Can be reduced.

また、前記本発明の多結晶h−BN粒子の製造方法によれば、硼素を特定の割合で含有する、硼素とアルカリ土類金属との複合酸化物を原料として使用することにより、目的とする本発明の多結晶h−BN粒子を含む六方晶窒化硼素粉末を再現性良く製造することができる。   In addition, according to the method for producing polycrystalline h-BN particles of the present invention, a composite oxide of boron and an alkaline earth metal containing boron in a specific ratio is used as a raw material. The hexagonal boron nitride powder containing the polycrystalline h-BN particles of the present invention can be produced with good reproducibility.

尚、前記製造方法において、本発明の多結晶h−BN粒子が得られる理由は明らかではないが、本発明者らは、硼素とアルカリ土類金属との複合酸化物の粒子が、還元窒化反応温度に到達時から均一な液相を形成し、該液相表面に沿って六方晶窒化硼素粒子が粒成長することによるものと推定している。   Although the reason why the polycrystalline h-BN particles of the present invention are obtained in the above production method is not clear, the present inventors have shown that the composite oxide particles of boron and alkaline earth metal are subjected to a reduction nitridation reaction. It is presumed that a uniform liquid phase is formed from the time when the temperature is reached, and hexagonal boron nitride particles grow along the surface of the liquid phase.

実施例1に具体的に示す本発明の製造方法により得られた多結晶h−BN粒子の代表的な粒子構造を示すSEM(Scanning Electron Microscope:走査型電子顕微鏡)写真である。2 is a SEM (Scanning Electron Microscope) photograph showing a typical particle structure of polycrystalline h-BN particles obtained by the production method of the present invention specifically shown in Example 1.

(多結晶h−BN粒子)
本発明の多結晶h−BN粒子の六方晶窒化硼素の結晶形態は、後述する実施例に示すように、Rigaku社製全自動水平型多目的X線回折装置 SmartLabを用いるX線回折測定によって確認することができる。かかる六方晶窒化硼素の結晶は一般的に板状結晶であり、本発明の多結晶h−BN粒子は、後述の実施例1で得られる多結晶h−BN粒子を示す図1に見られるように、上記六方晶窒化硼素の結晶が、2以上、好ましくは、4以上、更に好ましくは、8以上の屈曲部において連続した多面構造を有する。また上記板状結晶の厚みは特に制限されないが、0.5〜10μm程度が好ましい。
(Polycrystalline h-BN particles)
The crystal form of the hexagonal boron nitride of the polycrystalline h-BN particles of the present invention is confirmed by X-ray diffraction measurement using a fully automatic horizontal multipurpose X-ray diffractometer SmartLab manufactured by Rigaku as shown in the examples described later. be able to. Such hexagonal boron nitride crystals are generally plate crystals, and the polycrystalline h-BN particles of the present invention can be seen in FIG. 1 showing the polycrystalline h-BN particles obtained in Example 1 described later. The hexagonal boron nitride crystal has a continuous polyhedral structure at two or more, preferably four or more, more preferably eight or more bent portions. The thickness of the plate crystal is not particularly limited, but is preferably about 0.5 to 10 μm.

このように、本発明の多結晶h−BN粒子は、2以上の屈曲部において六方晶の結晶形態を有する結晶が連続した多面構造を有する点において、従来の六方晶窒化硼素粒子に無い新規な形態を有する。   As described above, the polycrystalline h-BN particles of the present invention are novel in comparison with conventional hexagonal boron nitride particles in that they have a polyhedral structure in which crystals having a hexagonal crystal form are continuous at two or more bent portions. It has a form.

本発明の多結晶h−BN粒子において、前記屈曲部の角度(θ)は、殆どが139±3度を示し、このことから、該屈曲部は、<10−10>面の対象傾角粒界により形成されているものと推定される。   In the polycrystalline h-BN particles of the present invention, the angle (θ) of the bent portion is almost 139 ± 3 degrees, and from this, the bent portion is the target tilt grain boundary of the <10-10> plane. Is presumed to be formed.

また、本発明の多結晶h−BN粒子は、一般に、2以上の屈曲部によって形成される多面構造により、球状に近い形状、所謂、擬球状となり、内部に空洞を形成する形態で得られる場合が多いが、該空洞部は、一般に、前記擬球状粒子の一部に比較的大きい、具体的には、相当径で2μm以上の開口が複数箇所に存在するため、樹脂に充填時、樹脂は該間隙より容易に粒子内部に浸透し得る。   In addition, the polycrystalline h-BN particles of the present invention are generally formed into a nearly spherical shape, so-called quasi-spherical shape, and are formed in a form in which a cavity is formed inside, due to a polyhedral structure formed by two or more bent portions. However, the cavity is generally relatively large in a part of the pseudospherical particle, specifically, there are multiple openings having an equivalent diameter of 2 μm or more. It can penetrate into the particles more easily than the gap.

尚、本発明の多結晶h−BN粒子は、上記擬球状の形状に限定されるものではなく、2以上の屈曲部によって形成される多面構造を有するものを含むものである。   The polycrystalline h-BN particles of the present invention are not limited to the pseudospherical shape described above, but include those having a polyhedral structure formed by two or more bent portions.

本発明の多結晶窒化硼素粒子の平均粒径は、10〜150μm、特に、20〜125μm、更に、30〜100μmが好ましい。   The average particle size of the polycrystalline boron nitride particles of the present invention is preferably 10 to 150 μm, particularly preferably 20 to 125 μm, and more preferably 30 to 100 μm.

尚、本発明において、多結晶h−BN粒子の屈曲部の角度(θ)、平均粒径などは、実施例に示す方法により測定した値である。   In the present invention, the angle (θ) of the bent portion of the polycrystalline h-BN particles, the average particle diameter, and the like are values measured by the method shown in the examples.

(六方晶窒化硼素粉末)
本発明の多結晶h−BN粒子は、後述の製造方法によって得ることができるが、多結晶h−BN粒子以外の六方晶窒化硼素粒子、例えば、平板状の構造を有する粒子なども一部生成するため、一般には、該多結晶h−BN粒子を含む六方晶窒化硼素粉末として得られる。
(Hexagonal boron nitride powder)
Although the polycrystalline h-BN particles of the present invention can be obtained by the production method described later, some hexagonal boron nitride particles other than the polycrystalline h-BN particles, for example, particles having a tabular structure are also produced. Therefore, it is generally obtained as hexagonal boron nitride powder containing the polycrystalline h-BN particles.

上記六方晶窒化硼素粉末において、多結晶h−BN粒子の含有率は、該粒子による効果を十分発揮するためには多いほど好ましく、30容量%以上、特に、60容量%以上が好ましい。   In the above hexagonal boron nitride powder, the content of polycrystalline h-BN particles is preferably as large as possible in order to sufficiently exhibit the effect of the particles, and is preferably 30% by volume or more, particularly preferably 60% by volume or more.

勿論、篩工程での粗粒業凝集粒子の除去、乾式分級による微粉除去などにより、得られる六方晶窒化硼素粉末から、多結晶h−BN粒子以外の粒子を除去して分離して含有率を上げることも可能である。   Of course, by removing coarse particles in the sieving process, fine powder removal by dry classification, etc., the particles other than polycrystalline h-BN particles are removed and separated from the obtained hexagonal boron nitride powder, and the content rate is increased. It is also possible to raise.

(窒化硼素粉末の製造方法)
本発明の六方晶窒化硼素粉末の製造方法は、特に制限されるものではないが、代表的な製造方法を例示すれば、硼素を酸化物(B)換算で33モル%以上含有する、硼素とアルカリ土類金属との複合酸化物およびカーボン源を、B/C(元素比)換算で0.7〜1.0となるように混合し、窒素雰囲気下にて1700〜2200℃の温度に加熱して、上記複合酸化物中の硼素酸化物を還元窒化した後、反応生成物中に存在する複合酸化物を除去することを特徴とする六方晶窒化硼素粉末の製造方法が挙げられる。
(Method for producing boron nitride powder)
The method for producing the hexagonal boron nitride powder of the present invention is not particularly limited. However, if a typical production method is exemplified, boron is contained in an amount of 33 mol% or more in terms of oxide (B 2 O 3 ). Boron and alkaline earth metal composite oxide and carbon source are mixed so as to be 0.7 to 1.0 in terms of B / C (element ratio), and are 1700 to 2200 ° C. in a nitrogen atmosphere. A method of producing hexagonal boron nitride powder, characterized in that the boron oxide in the composite oxide is reduced and nitrided by heating to a temperature, and then the composite oxide present in the reaction product is removed. .

(原料)
上記本発明の製造方法の最大の特徴は、原料として硼素源とアルカリ土類金属とを別々に使用するのではなく、複合酸化物の形態で使用する点にある。即ち、これらを複合酸化物の形態で使用することにより、後述する還元窒化温度において、各原料の融解時期の時差を小さくすることができ、還元窒化反応及び生成した六方晶窒化硼素の粒成長を、溶融した液相中で均一に行うことができ、後述の製造条件と協働してその液相の表面において、連続した結晶よりなる多面構造を形成することが可能となる。
(material)
The greatest feature of the production method of the present invention lies in that a boron source and an alkaline earth metal are not used separately as raw materials but are used in the form of a composite oxide. That is, by using these in the form of complex oxides, the time difference of the melting time of each raw material can be reduced at the reduction nitriding temperature described later, and the reduction nitriding reaction and the grain growth of the generated hexagonal boron nitride can be reduced. It can be performed uniformly in the melted liquid phase, and a polyhedral structure composed of continuous crystals can be formed on the surface of the liquid phase in cooperation with the manufacturing conditions described later.

本発明に使用する硼素とアルカリ土類金属との複合酸化物(以下、単に複合酸化物ということもある。)としては、硼素とアルカリ土類金属とが含有される酸化物、加熱によりかかる複合酸化物と成り得る化合物が制限なく使用される。例えば、硼素酸化物とカルシウム酸化物が主成分である天然鉱物のコレマナイト、ウレキサイトなどが好適に使用できる。また、硼素を含む化合物とアルカリ土類金属を含む化合物から合成された複合酸化物も使用することができる。合成方法としては、硼素を含む化合物とアルカリ土類金属を含む化合物を乾式混合して、加熱溶融、冷却、粉砕する方法、水溶性の硼素を含む化合物とアルカリ土類金属を含む化合物の水溶液、もしくは懸濁液を加熱還流した後に脱水乾固する方法などが特に制限なく使用出来る。   The complex oxide of boron and alkaline earth metal (hereinafter sometimes simply referred to as complex oxide) used in the present invention is an oxide containing boron and alkaline earth metal, or a complex that is heated. Compounds that can be oxides are used without limitation. For example, natural minerals such as colemanite and urexite, which are mainly composed of boron oxide and calcium oxide, can be preferably used. A composite oxide synthesized from a compound containing boron and a compound containing an alkaline earth metal can also be used. As a synthesis method, a compound containing boron and a compound containing alkaline earth metal are dry-mixed and heated, melted, cooled, pulverized, an aqueous solution of a compound containing water-soluble boron and a compound containing alkaline earth metal, Alternatively, a method of dehydrating and drying the suspension after heating to reflux can be used without any particular limitation.

上記複合酸化物を調製するために使用する硼素を含む化合物としては、硼酸、無水硼酸、メタ硼酸、過硼酸、次硼酸、四硼酸ナトリウム、過硼酸ナトリウム等が特に制限なく使用できる。アルカリ土類金属を含む化合物としては、炭酸カルシウム、炭酸水素カルシウム、水酸化カルシウム、酸化カルシウム、硝酸カルシウム、硫酸カルシウム、リン酸カルシウム、シュウ酸カルシウム、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム等を使用することが出来る。   As the compound containing boron used for preparing the composite oxide, boric acid, boric anhydride, metaboric acid, perboric acid, hypoboric acid, sodium tetraborate, sodium perborate and the like can be used without particular limitation. Use calcium carbonate, calcium bicarbonate, calcium hydroxide, calcium oxide, calcium nitrate, calcium sulfate, calcium phosphate, calcium oxalate, magnesium oxide, magnesium carbonate, magnesium hydroxide, etc. as compounds containing alkaline earth metals I can do it.

このようにして準備される該複合酸化物の純度は、高いほど好ましいが、前述したような天然鉱物を使用することも可能であり、これに含まれる若干量、一般には、5質量%以下程度の割合で含有される不純物は許容することができる。   The purity of the composite oxide prepared in this way is preferably as high as possible, but it is also possible to use a natural mineral as described above, and the amount contained therein is generally about 5% by mass or less. Impurities contained in a proportion of can be tolerated.

本発明の六方晶窒化硼素粉末の製造に使用される複合酸化物は、硼素を酸化物(B)換算で33モル%以上、好ましくは、40モル%以上含有するものを使用することが必要である。即ち、かかる硼素の含有量が上記範囲より少ない複合酸化物を使用した場合、還元窒化温度に達した際に、十分な液相を形成することが困難となり、本発明の多結晶h−BN粒子の生成が困難となる。一方、硼素の割合が過度に多くても多結晶h−BN粒子の生成には問題無いが、昇温時に過剰の硼素が揮散するため、経済的に不利であると共に、装置の汚染が懸念される。従って、複合酸化物中の硼素は、酸化物(B)換算で70モル%以下、特に、60モル%以下とすることが好ましい。 The composite oxide used for the production of the hexagonal boron nitride powder of the present invention should contain boron containing 33 mol% or more, preferably 40 mol% or more in terms of oxide (B 2 O 3 ). is necessary. That is, when a complex oxide having a boron content lower than the above range is used, it becomes difficult to form a sufficient liquid phase when the reduction nitriding temperature is reached, and the polycrystalline h-BN particles of the present invention Is difficult to generate. On the other hand, even if the proportion of boron is excessively large, there is no problem in the formation of polycrystalline h-BN particles. However, since excessive boron is volatilized at the time of temperature rise, it is economically disadvantageous and there is a concern about contamination of the apparatus. The Accordingly, boron in the composite oxide is preferably 70 mol% or less, particularly 60 mol% or less in terms of oxide (B 2 O 3 ).

本発明の六方晶窒化硼素粉末の製造方法において、還元窒化反応に供する複合酸化物の平均粒子径は、得られる多結晶h−BN粒子の粒子径及び反応性の観点から、30〜300μmが好ましく、50〜200μmがより好ましく、70〜150μmが更に好ましい。すなわち、30μm以下では得られるh−BN粒子が多結晶になり難く、300μm以下では、複合酸化物内部の窒化不良が懸念されるため、好ましくない。   In the method for producing hexagonal boron nitride powder of the present invention, the average particle size of the composite oxide subjected to the reduction nitriding reaction is preferably 30 to 300 μm from the viewpoint of the particle size and reactivity of the obtained polycrystalline h-BN particles. 50 to 200 μm is more preferable, and 70 to 150 μm is still more preferable. That is, if it is 30 μm or less, the obtained h-BN particles are difficult to be polycrystalline, and if it is 300 μm or less, there is a concern about poor nitriding inside the composite oxide, which is not preferable.

本発明の製造方法において、カーボン源としては公知の炭素材料が特に制限無く使用される。例えば、カーボンブラック、活性炭、カーボンファイバー等の非晶質炭素の他、ダイヤモンド、グラファイト、ナノカーボン等の結晶性炭素、モノマーやポリマーを熱分解して得られる熱分解炭素等が挙げられる。そのうち、反応性の高い非晶質炭素が好ましく、更に、工業的に品質制御されている点で、カーボンブラックが特に好適に使用される。また、上記カーボンブラックとしては、アセチレンブラック、ファーネスブラック、サーマルブラック等を使用することができる。また、上記カーボン源の平均粒子径は、0.01〜5μmが好ましく、0.02〜4μmがより好ましく、0.05〜3μmが特に好ましい。即ち、該カーボン源の平均粒子径を5μm以下とすることにより、カーボン源の反応性が高くなり、また、0.01μm以上とすることにより、取り扱いが容易となる。   In the production method of the present invention, a known carbon material is used as the carbon source without any particular limitation. Examples thereof include amorphous carbon such as carbon black, activated carbon, and carbon fiber, crystalline carbon such as diamond, graphite, and nanocarbon, and pyrolytic carbon obtained by pyrolyzing a monomer or a polymer. Of these, highly reactive amorphous carbon is preferable, and carbon black is particularly preferably used in terms of industrial quality control. Moreover, as said carbon black, acetylene black, furnace black, thermal black, etc. can be used. Moreover, 0.01-5 micrometers is preferable, as for the average particle diameter of the said carbon source, 0.02-4 micrometers is more preferable, and 0.05-3 micrometers is especially preferable. That is, when the average particle diameter of the carbon source is 5 μm or less, the reactivity of the carbon source is increased, and when it is 0.01 μm or more, handling is facilitated.

本発明の製造方法において、上記の各原料を含む混合物の反応への供給形態は特に制限されず、粉末状のままでもよいが、造粒体を形成して行ってもよい。   In the production method of the present invention, the supply form to the reaction of the mixture containing each of the above raw materials is not particularly limited, and may remain in a powder form, but may be performed by forming a granulated body.

本発明の製造方法において、前記複合酸化物とカーボン源との混合方法は特に制限されず、振動ミル、ビーズミル、ボールミル、ヘンシェルミキサー、ドラムミキサー、振動攪拌機、V字混合機等の一般的な混合機が使用可能である。   In the production method of the present invention, the mixing method of the composite oxide and the carbon source is not particularly limited, and general mixing such as a vibration mill, a bead mill, a ball mill, a Henschel mixer, a drum mixer, a vibration stirrer, a V-shaped mixer, etc. The machine is ready for use.

また、造粒を行う場合の造粒方法も、必要に応じてバインダーを使用し、押出造粒、転動造粒、コンパクターによる造粒など、公知の方法により実施することができる。この場合、造粒体の大きさは、5〜10mm程度が好適である。   Moreover, the granulation method in the case of granulating can also be implemented by well-known methods, such as extrusion granulation, rolling granulation, granulation by a compactor, using a binder as needed. In this case, the size of the granulated body is preferably about 5 to 10 mm.

(原料の調製)
本発明において、還元窒化反応は、カーボン源と窒素の供給により実施されるが、目的とする多結晶h−BN粒子を効果的に得るためには、複合酸化物とカーボン源との割合は、B/C(元素比)換算で0.7〜1.0、好ましくは0.75〜0.95とすることが必要である。即ち、該モル比が1.0を超えると、還元されずに揮散する硼素化合物の割合が増加し、収率が低下するばかりでなく、上記揮散成分により、製造ラインに悪影響を及ぼす。また、該モル比が0.7未満では、未反応の酸化硼素量が少なく、還元窒化温度に達した際に、十分な液相を形成出来ないため、目的とする多結晶h−BN粒子が生成し難くなる。
(Preparation of raw materials)
In the present invention, the reductive nitriding reaction is carried out by supplying a carbon source and nitrogen. In order to effectively obtain the target polycrystalline h-BN particles, the ratio of the composite oxide and the carbon source is as follows: It is necessary to set it as 0.7-1.0, preferably 0.75-0.95 in terms of B / C (element ratio). That is, when the molar ratio exceeds 1.0, the ratio of the boron compound that volatilizes without being reduced increases and the yield decreases, and the above-mentioned volatilizing component adversely affects the production line. Further, if the molar ratio is less than 0.7, the amount of unreacted boron oxide is small, and a sufficient liquid phase cannot be formed when the reduction nitriding temperature is reached. It becomes difficult to generate.

目的とする多結晶h−BN粒子を更に効果的に得るためには、上記条件下、過剰の窒素の存在下で、カーボン源の使用量を、還元窒化反応により得られる反応生成物中に存在する複合酸化物の割合が45〜60質量%、特に、50〜55質量%、該複合酸化物中のBの割合が25〜50モル%、特に、30〜40モル%となるように、通常の条件より少なめに調整し、前記カーボン源の消費が完了した時点で反応を終了することが好ましい。 In order to obtain the desired polycrystalline h-BN particles more effectively, the use amount of the carbon source is present in the reaction product obtained by the reductive nitridation reaction in the presence of excess nitrogen under the above conditions. The ratio of the composite oxide to be 45 to 60% by mass, particularly 50 to 55% by mass, and the ratio of B 2 O 3 in the composite oxide is 25 to 50% by mol, particularly 30 to 40% by mol. Further, it is preferable to adjust the reaction amount to be less than normal conditions and to terminate the reaction when the consumption of the carbon source is completed.

ここで、かかるカーボン源の消費の完了は、反応系からの一酸化炭素の発生が無くなったことにより確認することができる。   Here, the completion of the consumption of the carbon source can be confirmed by the elimination of the generation of carbon monoxide from the reaction system.

前記カーボンの使用量の決定において、反応生成物中に存在する複合酸化物の割合が、45質量%未満である場合、液相量が少なく多結晶h−BN粒子形成への粒成長が十分に行われない傾向があり、また、60質量%を超える場合、液相が窒化硼素粒子に対して過剰に存在するため、生成した六方晶窒化硼素結晶が多面構造を形成し難くなる傾向があり、多結晶h−BN粒子の収率が低下することがある。また、上記複合酸化物中のBの割合が50モル%を超える場合、収率の低下を招き、25%に満たない場合、還元窒化の終了まで液相を維持することが困難となり、多結晶h−BN粒子を形成するための粒成長が十分に行われない虞がある。
(還元窒化)
本発明の製造方法において、結晶性の高い六方晶窒化硼素粉末を得るために、通常1700℃以上、好ましくは、1700〜2200℃、更に好ましくは1800〜2000℃で熱処理を行い、六方晶窒化硼素を得る。即ち、かかる熱処理温度が1700℃未満では結晶性の高い六方晶窒化硼素は得られず、2200℃以上では、効果が頭打ちとなり、経済的に不利である。
In the determination of the amount of carbon used, when the ratio of the composite oxide present in the reaction product is less than 45% by mass, the amount of liquid phase is small and the grain growth to form polycrystalline h-BN particles is sufficient. When the amount exceeds 60% by mass, the liquid phase exists excessively with respect to the boron nitride particles, so that the generated hexagonal boron nitride crystal tends to hardly form a polyhedral structure. The yield of polycrystalline h-BN particles may decrease. In addition, when the proportion of B 2 O 3 in the composite oxide exceeds 50 mol%, the yield decreases, and when it is less than 25%, it is difficult to maintain the liquid phase until the end of the reduction nitriding. There is a possibility that grain growth for forming polycrystalline h-BN particles is not sufficiently performed.
(Reduction nitriding)
In the production method of the present invention, in order to obtain hexagonal boron nitride powder having high crystallinity, heat treatment is usually performed at 1700 ° C. or higher, preferably 1700-2200 ° C., more preferably 1800-2000 ° C. to obtain hexagonal boron nitride. Get. That is, if the heat treatment temperature is lower than 1700 ° C., highly crystalline hexagonal boron nitride cannot be obtained, and if it is 2200 ° C. or higher, the effect reaches its peak, which is economically disadvantageous.

本発明の窒化硼素製造方法において、反応系への窒素源の供給は、公知の手段によって形成することが出来る。例えば、後に例示した反応装置の反応系内に窒素ガスを流通させる方法が最も一般的である。また、使用する窒素源としては、上記窒素ガスに限らず、還元窒化反応において窒化が可能なガスであれば特に制限されない。具体的には、前記窒素ガスの他、アンモニアガスを使用することも可能である。また、窒素ガス、アンモニアガスに、水素、アルゴン、ヘリウム等の非酸化性ガスを混合したガスも使用可能である。   In the boron nitride production method of the present invention, the supply of the nitrogen source to the reaction system can be formed by a known means. For example, the most common method is to circulate nitrogen gas in the reaction system of the reaction apparatus exemplified later. Further, the nitrogen source to be used is not limited to the above nitrogen gas, and is not particularly limited as long as it is a gas capable of nitriding in the reductive nitriding reaction. Specifically, ammonia gas can be used in addition to the nitrogen gas. A gas obtained by mixing a non-oxidizing gas such as hydrogen, argon or helium with nitrogen gas or ammonia gas can also be used.

本発明の六方晶窒化硼素粉末の製造方法は、反応雰囲気制御の可能な公知の反応装置を使用して行うことができる。例えば、高周波誘導加熱やヒーター加熱により加熱処理を行う雰囲気制御型高温炉が挙げられ、バッチ炉の他、プッシャー式トンネル炉、竪型反応炉等の連続炉も使用可能である。   The method for producing hexagonal boron nitride powder of the present invention can be carried out using a known reaction apparatus capable of controlling the reaction atmosphere. For example, an atmosphere-controlled high-temperature furnace that performs heat treatment by high-frequency induction heating or heater heating can be used. In addition to a batch furnace, a continuous furnace such as a pusher-type tunnel furnace or a vertical reactor can be used.

(酸洗浄)
本発明の製造方法において、上述の還元窒化によって得られる反応生成物は、多結晶h−BN粒子を含む六方晶窒化硼素粉末の他に、原料の複合酸化物が反応により組成を変化させた複合酸化物等の不純物が存在するため、酸を用いて洗浄することが好ましい。かかる酸洗浄の方法は特に制限されず、公知の方法が制限無く採用される。例えば、窒化処理後に得られた副生成物含有窒化硼素を解砕して容器に投入し、該不純物を含有する六方晶窒化硼素粉末の5〜10倍量の希塩酸(10〜20重量%HCl)を加え、4〜8時間接触せしめる方法などが挙げられる。
(Acid cleaning)
In the production method of the present invention, the reaction product obtained by the above-described reduction nitridation is a composite in which the composition of raw material composite oxide is changed by the reaction in addition to hexagonal boron nitride powder containing polycrystalline h-BN particles. Since impurities such as oxides are present, it is preferable to wash with an acid. The acid washing method is not particularly limited, and a known method is employed without limitation. For example, by-product-containing boron nitride obtained after nitriding treatment is crushed and put into a container, and 5-10 times the amount of dilute hydrochloric acid (10-20 wt% HCl) of hexagonal boron nitride powder containing the impurities And a method of contacting for 4 to 8 hours.

上記酸洗浄時に用いる酸としては、塩酸以外にも、硝酸、硫酸、酢酸等を用いることも可能である。   In addition to hydrochloric acid, nitric acid, sulfuric acid, acetic acid and the like can be used as the acid used for the acid cleaning.

上記酸洗浄の後、残存する酸を洗浄する目的で、純水を用いて洗浄する。上記洗浄の方法としては、上記酸洗浄時の酸をろ過した後、使用した酸と同量の純水に酸洗浄した窒化硼素を分散させ、再度ろ過する。この操作を数回実施することで、本発明の窒化硼素粉末の純度を達成可能となる。   After the acid cleaning, cleaning is performed using pure water for the purpose of cleaning the remaining acid. As the washing method, after filtering the acid at the time of the acid washing, boron nitride washed with acid is dispersed in the same amount of pure water as the acid used, and filtered again. By performing this operation several times, the purity of the boron nitride powder of the present invention can be achieved.

(窒化硼素粉末の用途)
本発明の窒化硼素粉末の用途は、特に限定されず、公知の用途に特に制限無く適用可能である。好適に使用される用途を例示するならば、電気絶縁性向上や熱伝導性付与等の目的で樹脂に充填剤として使用する用途が挙げられる。上記窒化硼素粉末の用途において、得られる樹脂組成物は、高い電気絶縁性や熱伝導性を有する。
(Use of boron nitride powder)
The use of the boron nitride powder of the present invention is not particularly limited, and can be applied to known uses without particular limitation. If the use used suitably is illustrated, the use used as a filler for resin for the purpose of electrical insulation improvement, thermal conductivity provision, etc. is mentioned. In the use of the boron nitride powder, the obtained resin composition has high electrical insulation and thermal conductivity.

従って、本発明の窒化硼素粉末は、電子部品の放熱シートや放熱ゲルに代表される固体状または液体状のサーマルインターフェイスマテリアル用の充填剤として好適に使用することができる。   Therefore, the boron nitride powder of the present invention can be suitably used as a filler for a solid or liquid thermal interface material typified by a heat dissipation sheet or a heat dissipation gel of an electronic component.

前記樹脂としては、ポリオレフィン、塩化ビニル樹脂、メタクリル酸メチル樹脂、ナイロン、フッ素樹脂等の熱可塑性樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ケイ素樹脂等の熱硬化性樹脂、合成ゴムなどが挙げられる。   Examples of the resin include thermoplastic resins such as polyolefin, vinyl chloride resin, methyl methacrylate resin, nylon, and fluorine resin, and thermosetting resins such as epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, and silicon resin. Examples thereof include resins and synthetic rubbers.

また、本発明の窒化硼素粉末は、立方晶窒化硼素や窒化硼素成型品等の窒化硼素加工品製品の原料、エンジニアリングプラスチックへの核剤、フェーズチェンジマテリアル、固体状または液体状のサーマルインターフェイスマテリアル、溶融金属や溶融ガラス成形型の離型剤、化粧品、複合セラミックス原料等の用途にも使用することができる。   Further, the boron nitride powder of the present invention is a raw material for processed boron nitride products such as cubic boron nitride and boron nitride molded products, a nucleating agent for engineering plastics, a phase change material, a solid or liquid thermal interface material, It can also be used for applications such as mold release agents for molten metal and molten glass molds, cosmetics, and composite ceramic raw materials.

以下、本発明を実施例により更に詳細に説明するが、本発明は、これらの実施例になんら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

尚、実施例において、各測定は、以下の方法により測定した値である。   In the examples, each measurement is a value measured by the following method.

[六方晶窒化硼素の同定]
X線回折測定を用いて六方晶窒化硼素の同定を行った。X線回折測定は、Rigaku社製全自動水平型多目的X線回折装置 SmartLabを用いて測定した。測定条件はスキャンスピード20度/分、ステップ幅0.02度、スキャン範囲10〜90度とした。
[Identification of hexagonal boron nitride]
Hexagonal boron nitride was identified using X-ray diffraction measurements. X-ray diffraction measurement was performed using a fully automatic horizontal multipurpose X-ray diffractometer SmartLab manufactured by Rigaku. The measurement conditions were a scan speed of 20 degrees / minute, a step width of 0.02 degrees, and a scan range of 10 to 90 degrees.

[六方晶窒化硼素粒子の平均粒径]
倍率500倍のSEM観察像から異なる多結晶h−BN粒子100個を無作為に選び、多結晶h−BN粒子の長軸の長さ(L:平均粒子径)を測定し、値の平均値を算出して求めた。
[Average particle size of hexagonal boron nitride particles]
100 different polycrystalline h-BN particles were randomly selected from an SEM observation image at a magnification of 500 times, the length of the long axis (L: average particle diameter) of the polycrystalline h-BN particles was measured, and the average value Was calculated.

[多結晶h−BN粒子の屈曲部の数]
倍率500倍のSEM観察像から異なる多結晶h−BN粒子100個を無作為に選び、それぞれの多結晶h−BN粒子について、視野で確認される屈曲部をカウントし、それを2倍した数を屈曲部の数とし、100個の粒子の平均値を算出して求めた。
[Number of bent portions of polycrystalline h-BN particles]
100 different polycrystalline h-BN particles were randomly selected from an SEM observation image at a magnification of 500 times, and for each polycrystalline h-BN particle, the number of bends confirmed in the field of view was counted, and this number was doubled. Was the number of bent parts, and the average value of 100 particles was calculated.

[多結晶h−BN粒子含有割合(容量%)]
倍率500倍のSEM観察像10水準から多結晶h−BN粒子と非多結晶h−BN粒子を選別して多結晶h−BN粒子含有容量%を求めた。
[Polycrystalline h-BN particle content ratio (volume%)]
Polycrystalline h-BN particles and non-polycrystalline h-BN particles were selected from 10 levels of SEM observation image at a magnification of 500 times to determine the polycrystalline h-BN particle content volume%.

[反応生成物中に存在する複合酸化物の割合と該複合酸化物中のBの割合]
反応生成物中に存在する複合酸化物の割合(質量%)と、該複合酸化物中のBの割合(モル%)は、次の方法により求めた。
[Proportion of composite oxide present in reaction product and ratio of B 2 O 3 in composite oxide]
The ratio (mass%) of the complex oxide present in the reaction product and the ratio (mol%) of B 2 O 3 in the complex oxide were determined by the following method.

反応生成物のX線回折測定及び、反応生成物中のX線回折測定結果リートベルト解析を用いて、該複合酸化物中のBの割合(モル%)、反応生成物中に存在する複合酸化物の割合(質量%)を求めた。X線回折測定は、Rigaku社製全自動水平型多目的X線回折装置 SmartLabを用いて測定した。測定条件はスキャンスピード20度/分、ステップ幅0.02度、スキャン範囲10〜90度とした。リートベルト解析は反応生成物のX線回折測定結果を用いて求めた。 X-ray diffraction measurement of reaction product and X-ray diffraction measurement result in reaction product Using Rietveld analysis, the ratio (mol%) of B 2 O 3 in the composite oxide, present in the reaction product The ratio (% by mass) of the composite oxide was determined. X-ray diffraction measurement was performed using a fully automatic horizontal multipurpose X-ray diffractometer SmartLab manufactured by Rigaku. The measurement conditions were a scan speed of 20 degrees / minute, a step width of 0.02 degrees, and a scan range of 10 to 90 degrees. Rietveld analysis was determined using the X-ray diffraction measurement result of the reaction product.

実施例1
複合酸化物として、酸化硼素、酸化カルシウムからなる天然鉱物であるコレマナイト(平均粒径100μm)0.72CaO−B100gとカーボンブラック20.5gを含む混合物120.5gを、ボールミルを使用して混合した。該混合物の(B/C)元素比換算は0.84である。該混合物100gを、黒鉛製タンマン炉を用い、窒素ガス雰囲気下、1950℃で2時間保持することで窒化処理した。還元窒化反応終了後に存在する複合酸化物の質量%、複合酸化物中のBのモル%を表1に示した。
Example 1
Using a ball mill, 120.5 g of a mixture containing 100 g of colemanite (average particle size 100 μm) 0.72CaO—B 2 O 3 and 20.5 g of carbon black, which is a natural mineral composed of boron oxide and calcium oxide, is used as a composite oxide. And mixed. The (B / C) element ratio conversion of the mixture is 0.84. 100 g of the mixture was subjected to nitriding treatment by holding it at 1950 ° C. for 2 hours in a nitrogen gas atmosphere using a graphite Tamman furnace. Table 1 shows the mass% of the composite oxide present after the completion of the reductive nitriding reaction and the mol% of B 2 O 3 in the composite oxide.

次いで、副生成物含有窒化硼素を解砕して容器に投入し、該副生成物含有窒化硼素の5倍量の塩酸(7重量%HCl)を加え、回転数800rpmで24時間撹拌した。該酸洗浄の後、酸をろ過し、使用した酸と同量の純水に、ろ過して得られた窒化硼素を分散させ、再度ろ過した。この操作を5回繰り返した後、150℃で6時間乾燥させた。   Next, the by-product-containing boron nitride was crushed and charged into a container, and 5 times the amount of hydrochloric acid (7 wt% HCl) of the by-product-containing boron nitride was added, followed by stirring at a rotational speed of 800 rpm for 24 hours. After the acid washing, the acid was filtered, and boron nitride obtained by filtration was dispersed in pure water in the same amount as the acid used, and filtered again. This operation was repeated 5 times and then dried at 150 ° C. for 6 hours.

乾燥後に得られた粉末を目開き125μmの篩にかけて、白色の六方晶窒化硼素粉末を得た。得られた六方晶窒化硼素粉末中の多結晶窒化硼素粒子の含有有無、割合をSEM観察にて確認、屈曲部の数、角度、平均粒径(L)、六方晶窒化硼素粉末の平均粒径(l)を測定して表1に示した。   The powder obtained after drying was passed through a sieve having an opening of 125 μm to obtain white hexagonal boron nitride powder. The presence or absence and ratio of polycrystalline boron nitride particles in the obtained hexagonal boron nitride powder were confirmed by SEM observation, the number of bent portions, angle, average particle size (L), average particle size of hexagonal boron nitride powder (L) was measured and shown in Table 1.

実施例2
ホウ酸及び水酸化カルシウム水溶液から合成した複合酸化物を0.62CaO−Bとし、(B/C)元素比換算を0.79とした以外は実施例1と同様にした。各条件、測定値を表1に示した。
Example 2
A composite oxide synthesized from boric acid and an aqueous calcium hydroxide solution was set to 0.62CaO—B 2 O 3, and the same procedure as in Example 1 was performed except that the (B / C) element ratio was changed to 0.79. The conditions and measured values are shown in Table 1.

実施例3
酸化硼素、酸化カルシウムからなる複合酸化物を0.43CaO−Bとし、(B/C)元素比換算を0.92とした以外は実施例1と同様にした。各条件、測定値を表1に示した。
Example 3
The composite oxide consisting of boron oxide and calcium oxide was changed to 0.43CaO—B 2 O 3 and (B / C) element ratio was converted to 0.92, and the same procedure as in Example 1 was performed. The conditions and measured values are shown in Table 1.

比較例1
酸化硼素、酸化カルシウム、カーボンブラックをCaO/Bモル比で0.72、(B/C)元素比換算を0.84となるように混合した以外は実施例1と同様にした。各条件、測定値を表1に示した。
Comparative Example 1
Boron oxide, calcium oxide, and carbon black were mixed in the same manner as in Example 1 except that the CaO / B 2 O 3 molar ratio was 0.72 and the (B / C) element ratio was 0.84. The conditions and measured values are shown in Table 1.

実施例4〜6
実施例1〜3で得られた窒化硼素粉末をシリコーン樹脂及びエポキシ樹脂に充填し樹脂組成物を作製し、熱伝導率の評価を行った。エポキシ樹脂は、(三菱化学株式会社製JER806)100重量部と硬化剤(脂環式ポリアミン系硬化剤、三菱化学株式会社製JERキュア113)28重量部との混合物を準備した。シリコーン樹脂は(信越化学工業社製KE−109)100重量部と硬化剤(信越化学工業社製CAT−RG)10重量部との混合物を準備した。次に、各基材樹脂35体積%と、前記特定窒化硼素粉末65体積%とを自転・公転ミキサー(倉敷紡績株式会社製MAZERUSTAR)にて混合して樹脂組成物を得た。
Examples 4-6
The boron nitride powder obtained in Examples 1 to 3 was filled in a silicone resin and an epoxy resin to prepare a resin composition, and the thermal conductivity was evaluated. The epoxy resin prepared the mixture of 100 weight part (JER806 by Mitsubishi Chemical Corporation) and 28 weight part of hardening | curing agent (alicyclic polyamine type hardening | curing agent, JER cure 113 by Mitsubishi Chemical Corporation). The silicone resin prepared a mixture of 100 parts by weight (KE-109 manufactured by Shin-Etsu Chemical Co., Ltd.) and 10 parts by weight of a curing agent (CAT-RG manufactured by Shin-Etsu Chemical Co., Ltd.). Next, 35% by volume of each base resin and 65% by volume of the specific boron nitride powder were mixed by a rotation / revolution mixer (MAZURUSTAR, Kurashiki Boseki Co., Ltd.) to obtain a resin composition.

これを金型体に注型し、熱プレスを使用し、温度:150℃、圧力:5MPa、保持時間:30分の条件で硬化させ、直径10mm、厚さ0.25mmのシートを作製した。該シートを温度波熱分析装置にて熱伝導率を測定した結果を表2に示した。実施例1〜3で作製した窒化硼素粉末を充填したシートはいずれも10.0W/m・K以上であり、高熱伝導率を示した。また、耐電圧試験機(多摩電測株式会社製)にて絶縁耐力を測定した結果、45kV/mm以上と高絶縁耐力であった。   This was cast into a mold body and cured using a hot press under the conditions of temperature: 150 ° C., pressure: 5 MPa, holding time: 30 minutes, and a sheet having a diameter of 10 mm and a thickness of 0.25 mm was produced. The results of measuring the thermal conductivity of the sheet with a temperature wave thermal analyzer are shown in Table 2. All the sheets filled with boron nitride powder prepared in Examples 1 to 3 were 10.0 W / m · K or more, and exhibited high thermal conductivity. Moreover, as a result of measuring the dielectric strength with a withstand voltage tester (manufactured by Tama Denso Co., Ltd.), it was a high dielectric strength of 45 kV / mm or more.

比較例2
比較例1で得られた窒化硼素粉末を用いた以外は実施例4と同様にした。温度波熱分析装置にて熱伝導率、耐電圧試験機(多摩電測株式会社製)にて絶縁耐力を測定した結果を表2に示した。比較例1で作製した窒化硼素粉末を充填したシートはいずれも10.0W/m・K、25kV/mm以下であり、低熱伝導率、低絶縁耐力を示した。
Comparative Example 2
Example 4 was repeated except that the boron nitride powder obtained in Comparative Example 1 was used. Table 2 shows the results of measuring the thermal conductivity with a temperature wave thermal analyzer and the dielectric strength with a withstand voltage tester (manufactured by Tama Denso Co., Ltd.). The sheets filled with boron nitride powder prepared in Comparative Example 1 all had 10.0 W / m · K and 25 kV / mm or less, and exhibited low thermal conductivity and low dielectric strength.

Figure 2017014064
Figure 2017014064

Figure 2017014064
Figure 2017014064

Claims (10)

2以上の屈曲部において六方晶の結晶形態を有する結晶が連続した多面構造を有することを特徴とする六方晶窒化硼素粒子。   A hexagonal boron nitride particle having a polyhedral structure in which crystals having a hexagonal crystal form are continuous at two or more bent portions. 屈曲部の角度が139±3度である請求項1記載の多結晶窒化硼素粒子。   The polycrystalline boron nitride particles according to claim 1, wherein the angle of the bent portion is 139 ± 3 degrees. 請求項1記載の六方晶窒化硼素粒子を含む窒化硼素粉末。   A boron nitride powder comprising the hexagonal boron nitride particles according to claim 1. 請求項3に記載の窒化硼素粉末よりなる樹脂用フィラー。   A filler for resin comprising the boron nitride powder according to claim 3. 請求項4に記載の樹脂用フィラーを充填した樹脂組成物。   A resin composition filled with the filler for resin according to claim 4. 請求項5記載の樹脂組成物よりなる電子部品の放熱材。   A heat dissipating material for an electronic component comprising the resin composition according to claim 5. 硼素を酸化物(B)換算で33モル%以上含有する、硼素とアルカリ土類金属との複合酸化物およびカーボン源を、B/C(元素比)換算で0.7〜1.0となるように混合し、窒素雰囲気下にて1700〜2200℃の温度に加熱して、上記複合酸化物中の硼素酸化物を還元窒化した後、反応生成物中に存在する複合酸化物を除去することを特徴とする六方晶窒化硼素粉末の製造方法。 A composite oxide of boron and an alkaline earth metal containing 33 mol% or more of boron in terms of oxide (B 2 O 3 ) and a carbon source are 0.7 to 1 in terms of B / C (element ratio). The mixture is mixed so as to be 0 and heated to a temperature of 1700 to 2200 ° C. in a nitrogen atmosphere to reduce and nitride the boron oxide in the composite oxide, and then the composite oxide present in the reaction product is reduced. A method for producing hexagonal boron nitride powder, comprising removing the hexagonal boron nitride powder. 前記還元窒化において、過剰の窒素存在下、カーボン源の使用量を、還元窒化反応により得られる反応生成物中に存在する複合酸化物の割合が45〜60質量%、該複合酸化物中のBの割合が25〜50モル%、となるように調整し、前記カーボン源の消費が完了した時点で反応を終了する請求項7に記載の六方晶窒化硼素粉末の製造方法。 In the reductive nitridation, the amount of carbon source used in the presence of excess nitrogen is such that the proportion of the composite oxide present in the reaction product obtained by the reductive nitridation reaction is 45-60 mass%, and B in the composite oxide The method for producing hexagonal boron nitride powder according to claim 7, wherein the ratio of 2 O 3 is adjusted to 25 to 50 mol%, and the reaction is terminated when the consumption of the carbon source is completed. 前記複合酸化物を構成するアルカリ土類金属がカルシウムである請求項7又は8に記載の六方晶窒化硼素粉末の製造方法。   The method for producing hexagonal boron nitride powder according to claim 7 or 8, wherein the alkaline earth metal constituting the composite oxide is calcium. 前記複合酸化物が、コレマナイトである請求項9に記載の六方晶窒化硼素粉末の製造方法。   The method for producing hexagonal boron nitride powder according to claim 9, wherein the complex oxide is colemanite.
JP2015132411A 2015-07-01 2015-07-01 Hexagonal boron nitride particles and method for producing the same Active JP6516594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015132411A JP6516594B2 (en) 2015-07-01 2015-07-01 Hexagonal boron nitride particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132411A JP6516594B2 (en) 2015-07-01 2015-07-01 Hexagonal boron nitride particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017014064A true JP2017014064A (en) 2017-01-19
JP6516594B2 JP6516594B2 (en) 2019-05-22

Family

ID=57827791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132411A Active JP6516594B2 (en) 2015-07-01 2015-07-01 Hexagonal boron nitride particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP6516594B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049817A1 (en) 2018-09-07 2020-03-12 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, and composition and heat dissipation material using same
JP2021038901A (en) * 2019-09-05 2021-03-11 株式会社トクヤマ Nitriding reaction furnace
JP2021038902A (en) * 2019-09-05 2021-03-11 株式会社トクヤマ Nitriding reaction furnace
KR20210028712A (en) * 2018-08-07 2021-03-12 미즈시마 페로알로이 가부시키가이샤 Hexagonal boron nitride powder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841706A (en) * 1981-09-07 1983-03-11 Toshiba Monofuratsukusu Kk Preparation of ceramic substance containing boron nitride
JPH05186205A (en) * 1992-01-08 1993-07-27 Kawasaki Steel Corp Hexagonal boron nitride powder and its production
JPH1059702A (en) * 1996-08-09 1998-03-03 Otsuka Chem Co Ltd Boron nitride and its production
JPH1129308A (en) * 1997-07-09 1999-02-02 Denki Kagaku Kogyo Kk Hexagonal boron nitride powder and its use
US20020076557A1 (en) * 1996-08-06 2002-06-20 Faustinus Fauzi Process for producing boron nitride
WO2002048026A2 (en) * 2000-12-11 2002-06-20 Saint-Gobain Centre De Recherches Et D'etudes Europeen Boron nitride powder and method for preparing same
US20020172635A1 (en) * 2001-05-17 2002-11-21 Jonathan Phillips Spherical boron nitride particles and method for preparing them
US20060140839A1 (en) * 2004-12-28 2006-06-29 General Electric Company Process for producing boron nitride

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841706A (en) * 1981-09-07 1983-03-11 Toshiba Monofuratsukusu Kk Preparation of ceramic substance containing boron nitride
JPH05186205A (en) * 1992-01-08 1993-07-27 Kawasaki Steel Corp Hexagonal boron nitride powder and its production
US20020076557A1 (en) * 1996-08-06 2002-06-20 Faustinus Fauzi Process for producing boron nitride
JPH1059702A (en) * 1996-08-09 1998-03-03 Otsuka Chem Co Ltd Boron nitride and its production
JPH1129308A (en) * 1997-07-09 1999-02-02 Denki Kagaku Kogyo Kk Hexagonal boron nitride powder and its use
WO2002048026A2 (en) * 2000-12-11 2002-06-20 Saint-Gobain Centre De Recherches Et D'etudes Europeen Boron nitride powder and method for preparing same
US20020172635A1 (en) * 2001-05-17 2002-11-21 Jonathan Phillips Spherical boron nitride particles and method for preparing them
US20060140839A1 (en) * 2004-12-28 2006-06-29 General Electric Company Process for producing boron nitride

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210028712A (en) * 2018-08-07 2021-03-12 미즈시마 페로알로이 가부시키가이샤 Hexagonal boron nitride powder
KR102541031B1 (en) * 2018-08-07 2023-06-08 미즈시마 페로알로이 가부시키가이샤 Hexagonal boron nitride powder
EP3835259A4 (en) * 2018-08-07 2021-10-27 Mizushima Ferroalloy Co., Ltd. Hexagonal boron nitride powder
CN112566868A (en) * 2018-08-07 2021-03-26 水岛合金铁株式会社 Hexagonal boron nitride powder
JP7096921B2 (en) 2018-09-07 2022-07-06 昭和電工株式会社 Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
JP2021091604A (en) * 2018-09-07 2021-06-17 昭和電工株式会社 Hexagonal boron nitride powder and its manufacturing method, as well as composition and heat dissipation material using the same
US11078080B2 (en) 2018-09-07 2021-08-03 Showa Denko K.K. Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
WO2020049817A1 (en) 2018-09-07 2020-03-12 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, and composition and heat dissipation material using same
KR20200032043A (en) 2018-09-07 2020-03-25 쇼와 덴코 가부시키가이샤 Hexagonal boron nitride powder and its manufacturing method, composition and heat dissipation material using the same
JP2021038902A (en) * 2019-09-05 2021-03-11 株式会社トクヤマ Nitriding reaction furnace
JP2021038901A (en) * 2019-09-05 2021-03-11 株式会社トクヤマ Nitriding reaction furnace
JP7356298B2 (en) 2019-09-05 2023-10-04 株式会社トクヤマ Nitriding reactor
JP7356297B2 (en) 2019-09-05 2023-10-04 株式会社トクヤマ Nitriding reactor

Also Published As

Publication number Publication date
JP6516594B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6516509B2 (en) Hexagonal boron nitride powder and method for producing the same
JP6483508B2 (en) Hexagonal boron nitride powder and method for producing the same
JP6356025B2 (en) Boron nitride powder and method for producing the same
JP6676479B2 (en) Hexagonal boron nitride powder and method for producing the same
JP5686748B2 (en) Method for producing spherical aluminum nitride powder and spherical aluminum nitride powder obtained by the method
JP7421605B2 (en) hexagonal boron nitride powder
JP5645559B2 (en) Spherical aluminum nitride powder
JP7165070B2 (en) Hexagonal boron nitride powder and method for producing the same
JP6516553B2 (en) Hexagonal boron nitride powder
JP6979034B2 (en) Hexagonal boron nitride powder and its manufacturing method
KR20000029823A (en) Boron nitride and process for preparing the same
JP6516594B2 (en) Hexagonal boron nitride particles and method for producing the same
JP2017036190A (en) Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
KR20180039516A (en) METHOD FOR PREPARING GLOBULAR α-ALUMINA POWDER
JPH0741311A (en) Production of hexagonal boron nitride powder
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
KR101084711B1 (en) A method for manufacturing SiC micro-powder with high purity at low temperature
JP6441027B2 (en) Method for producing boron nitride powder
WO2022186191A1 (en) Hexagonal boron nitride agglomerated particles, hexagonal boron nitride powder, resin composition, and resin sheet
CN117326579B (en) Method for preparing monodisperse hexagonal flaky alpha-alumina at ultralow temperature
JP2022133951A (en) hexagonal boron nitride powder
JP2022173894A (en) Hexagonal boron nitride agglomerated particles
JP2002316812A (en) Method for producing silicon carbide fine powder
JP2019131420A (en) Method for producing boron nitride powder
JPH026305A (en) Production of ultrafine particle of aluminum nitride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6516594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150