JP6483508B2 - Hexagonal boron nitride powder and method for producing the same - Google Patents

Hexagonal boron nitride powder and method for producing the same Download PDF

Info

Publication number
JP6483508B2
JP6483508B2 JP2015080562A JP2015080562A JP6483508B2 JP 6483508 B2 JP6483508 B2 JP 6483508B2 JP 2015080562 A JP2015080562 A JP 2015080562A JP 2015080562 A JP2015080562 A JP 2015080562A JP 6483508 B2 JP6483508 B2 JP 6483508B2
Authority
JP
Japan
Prior art keywords
boron nitride
hexagonal boron
nitride powder
mass
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015080562A
Other languages
Japanese (ja)
Other versions
JP2015212217A (en
Inventor
祥太 台木
祥太 台木
良太郎 和間
良太郎 和間
竜二 石本
竜二 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Tsusho Corp
Tokuyama Corp
Original Assignee
Toyota Tsusho Corp
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Tsusho Corp, Tokuyama Corp filed Critical Toyota Tsusho Corp
Priority to JP2015080562A priority Critical patent/JP6483508B2/en
Publication of JP2015212217A publication Critical patent/JP2015212217A/en
Application granted granted Critical
Publication of JP6483508B2 publication Critical patent/JP6483508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、絶縁放熱材料等、熱伝導性が要求される用途に好適である、新規な六方晶窒化ホウ素粉末及びその製造方法に関する。   The present invention relates to a novel hexagonal boron nitride powder and a method for producing the same, which are suitable for applications requiring thermal conductivity such as an insulating heat dissipation material.

窒化ホウ素は、一般に黒鉛と同様の六方晶系の層状構造を有する白色粉末であり、熱伝導性、電気絶縁性、潤滑性、耐食性、離型性、高温安定性、化学的安定性等の多くの優れた特性を有することから、熱伝導性絶縁シート、高柔軟性熱伝導性ゴム、放熱性グリース、放熱性シーラント、半導体封止樹脂、等の充填剤、溶融金属や溶融ガラス成形型の離型剤、固体潤滑剤、化粧品原料等の多くの用途に使用されている。   Boron nitride is a white powder that generally has a hexagonal layered structure similar to graphite, and has many features such as thermal conductivity, electrical insulation, lubricity, corrosion resistance, mold release, high temperature stability, and chemical stability. Because of its excellent characteristics, it can be used as a filler for heat conductive insulating sheets, highly flexible heat conductive rubber, heat dissipating grease, heat dissipating sealant, semiconductor sealing resin, molten metal and molten glass molds. It is used in many applications such as molds, solid lubricants and cosmetic raw materials.

窒化ホウ素の製造方法としては、(i)ホウ素を窒素、アンモニア等を用いて直接窒化する方法、(ii)ハロゲン化ホウ素をアンモニアやアンモニウム塩と反応させる方法、(iii)ホウ酸、酸化ホウ素等のホウ素化合物と、メラミン等の含窒素化合物とを800℃程度の温度で反応させてホウ素化合物を還元窒化する方法、(iv)窒素雰囲気下、ホウ素化合物とカーボン源を1600℃以上の高温に加熱して、ホウ素化合物を還元窒化する方法がある。そのうち、(iv)の方法は、低コストの原料を使用でき、窒化ホウ素の製造に最も好適な方法である。   As a method for producing boron nitride, (i) a method of directly nitriding boron using nitrogen, ammonia or the like, (ii) a method of reacting boron halide with ammonia or an ammonium salt, (iii) boric acid, boron oxide or the like (Iv) A method in which a boron compound is reacted with a nitrogen-containing compound such as melamine at a temperature of about 800 ° C. to reduce and nitride the boron compound, and (iv) the boron compound and the carbon source are heated to a high temperature of 1600 ° C. or higher in a nitrogen atmosphere. Thus, there is a method of reducing and nitriding a boron compound. Among them, the method (iv) can use a low-cost raw material and is the most suitable method for producing boron nitride.

上記(iv)の方法において、得られる窒化ホウ素の結晶性を向上させて、六方晶窒化ホウ素を得るためには、通常、原料に結晶化触媒を添加する技術が採用され、その際使用される結晶化触媒としては含酸素カルシウム化合物が多く用いられる。   In the method (iv), in order to improve the crystallinity of the obtained boron nitride and obtain hexagonal boron nitride, a technique of adding a crystallization catalyst to the raw material is usually employed and used at that time. As the crystallization catalyst, an oxygen-containing calcium compound is often used.

例えば、ホウ酸、アセチレンブラック、酸化カルシウムの混合物を大気中330℃で20時間加熱しバルク体を形成したのち、窒素気流中1900℃で6時間反応を行わせる方法が提案されている(特許文献1参照)。   For example, a method is proposed in which a mixture of boric acid, acetylene black, and calcium oxide is heated in the atmosphere at 330 ° C. for 20 hours to form a bulk body and then reacted in a nitrogen stream at 1900 ° C. for 6 hours (Patent Document). 1).

また、ホウ酸、カーボン、炭酸カルシウムの混合物に種結晶として六方晶窒化ホウ素粉末を混合し、窒素ガス雰囲気中15℃/分で昇温し、1980℃で反応を行わせる方法が提案されている(特許文献2参照)。   Further, a method is proposed in which hexagonal boron nitride powder is mixed as a seed crystal with a mixture of boric acid, carbon, and calcium carbonate, the temperature is raised at 15 ° C./min in a nitrogen gas atmosphere, and the reaction is performed at 1980 ° C. (See Patent Document 2).

本発明者等の確認によれば、ホウ酸、カーボン、含酸素カルシウム化合物の混合物を原料として用いて、これまでに報告されている一般的な熱処理条件、例えば、窒素雰囲気下、昇温速度15℃/分で1900℃まで昇温し、その温度で6時間熱処理を施して六方晶窒化ホウ素粉末を製造したところ、得られる六方晶窒化ホウ素粉末中に多量の六ホウ化カルシウム(CaB)が副生することが明らかとなった。かかるCaBは黒色である上、後工程である酸洗浄などの操作での除去が困難であり、白色粉末である六方晶窒化ホウ素粉末の外観を損ねる。そのため、上記CaBの含量を抑制した六方晶窒化ホウ素粉末が要求される。 According to the confirmation of the present inventors, a mixture of boric acid, carbon, and oxygen-containing calcium compound is used as a raw material, and the conventional heat treatment conditions reported so far, for example, under a nitrogen atmosphere, a temperature rising rate of 15 When the temperature was raised to 1900 ° C. at a temperature of 1 ° C./minute and heat treatment was performed at that temperature for 6 hours to produce hexagonal boron nitride powder, a large amount of calcium hexaboride (CaB 6 ) was found in the obtained hexagonal boron nitride powder. It became clear that it was a by-product. Such CaB 6 is black, and is difficult to remove by an operation such as acid cleaning which is a subsequent process, and the appearance of hexagonal boron nitride powder which is a white powder is impaired. Therefore, a hexagonal boron nitride powder that suppresses the CaB 6 content is required.

一方、六方晶窒化ホウ素粉末の一次粒子は、結晶形に由来する鱗片状を成しており、その粒子は熱的異方性を有し、面方向よりも厚み方向の熱伝導率の方が格段に優れているという特性を有する。そのため、上記鱗片状粒子を含む六方晶窒化ホウ素粉末を充填剤として用いた熱伝導性絶縁シートの場合、該熱伝導性絶縁シートの面方向に鱗片状粒子が配向するため、鱗片状粒子同士の接触の機会が少なく、該熱伝導率絶縁シートの厚さ方向の熱伝導率は低いという問題を有する。   On the other hand, the primary particles of the hexagonal boron nitride powder are in the form of scales derived from the crystalline form, and the particles have thermal anisotropy, and the thermal conductivity in the thickness direction is greater than the planar direction. It has the characteristic that it is remarkably superior. Therefore, in the case of a thermally conductive insulating sheet using the hexagonal boron nitride powder containing the above flaky particles as a filler, the flaky particles are oriented in the surface direction of the thermally conductive insulating sheet. There are few opportunities for contact, and there is a problem that the thermal conductivity in the thickness direction of the thermal conductivity insulating sheet is low.

このような熱的異方性を改善するために、上記鱗片状粒子が多方向を向いて凝集した六方晶窒化ホウ素凝集粒子が提案されている(特許文献3参照)。   In order to improve such thermal anisotropy, hexagonal boron nitride aggregated particles in which the scaly particles are aggregated in multiple directions have been proposed (see Patent Document 3).

しかしながら、上記六方晶窒化ホウ素凝集粒子を充填した樹脂組成物の成形体は、充填されている六方晶窒化ホウ素凝集粒子表面の凹凸が多いために気泡を含み易く、該気泡のため、絶縁耐力の低下が避けられない。近年、熱伝導性絶縁シートに対する絶縁要求は高まっている背景より、上記樹脂に充填した際の気泡の巻き込み量を抑えた、高水準の絶縁耐力を安定して発現する六方晶窒化ホウ素粉末が求められている。   However, the molded body of the resin composition filled with the hexagonal boron nitride aggregated particles is likely to contain air bubbles because of the irregularities on the surface of the filled hexagonal boron nitride aggregated particles. A decline is inevitable. In recent years, there has been an increasing demand for insulation for thermally conductive insulating sheets, and there has been a demand for hexagonal boron nitride powder that stably suppresses the amount of entrained bubbles when filled with the above resin and stably expresses a high level of dielectric strength. It has been.

特開平10−203806号公報JP-A-10-203806 特開2012−111657号公報JP 2012-111657 A 特開平11−26661号公報JP-A-11-26661

従って、本発明の目的は、結晶性が高く、CaBによる着色が抑制され、且つ、樹脂に充填した際に高い熱伝導性を示すと共に、気泡の巻き込み量が少なく、高水準の絶縁耐性を発揮することが可能な六方晶窒化ホウ素粉末を提供することにある。 Therefore, the object of the present invention is that the crystallinity is high, coloring by CaB 6 is suppressed, and high thermal conductivity is exhibited when filled in a resin, and the amount of entrainment of bubbles is small, and a high level of insulation resistance is achieved. An object of the present invention is to provide a hexagonal boron nitride powder that can be exerted.

本発明者等は、先ず、前記CaBの含量が抑制した六方晶窒化ホウ素粉末を製造する方法を検討した。その結果、1400℃以下の比較的低温領域で、ホウ素化合物の熱分解による酸化ホウ素の生成反応(1)、酸化ホウ素の含酸素カルシウム化合物との反応による低融点化合物であるホウ酸カルシウムの生成反応(2)が起こり、1400℃を超えるとホウ酸カルシウム、カーボン及び窒素により還元窒化反応(3)が起きると推定されるが、ある温度域を越えたときに、カーボンが過剰に存在すると酸化ホウ素から炭化ホウ素を生成する反応(4)、更には、炭化ホウ素とホウ酸カルシウムとの反応により、黒色を呈するCaBが生成する反応(5)が起こり易くなることを見出した。 The present inventors first studied a method for producing hexagonal boron nitride powder in which the CaB 6 content was suppressed. As a result, in a relatively low temperature region of 1400 ° C. or lower, boron oxide production reaction (1) by thermal decomposition of the boron compound, and formation reaction of calcium borate which is a low melting point compound by reaction of boron oxide with the oxygen-containing calcium compound When (2) occurs and the temperature exceeds 1400 ° C., it is estimated that the reductive nitridation reaction (3) occurs due to calcium borate, carbon and nitrogen. It was found that the reaction (4) for producing boron carbide from the carbon, and further the reaction (5) for producing black CaB 6 by the reaction between boron carbide and calcium borate are likely to occur.

2HBO→B+3HO (1)
CaO+B→CaB (2)
CaB+3C+N→2BN+3CO+CaO (3)
2B+7C→BC+6CO (4)
C+CaB+3C→CaB+4CO (5)
従来、含酸素カルシウム化合物を結晶化触媒として使用して還元窒化法により六方晶窒化ホウ素を製造する方法は、反応温度を、六方晶窒化ホウ素が生成する1900℃という高温度に設定して還元窒化反応(3)を行っていたため、炭素及びホウ酸カルシウムが、かかる還元窒化反応に十分使用されないまま、前記(4)、(5)に費やされ、CaBの生成を助長していたものと推定される。
2H 3 BO 3 → B 2 O 3 + 3H 2 O (1)
CaO + B 2 O 3 → CaB 2 O 4 (2)
CaB 2 O 4 + 3C + N 2 → 2BN + 3CO + CaO (3)
2B 2 O 3 + 7C → B 4 C + 6CO (4)
B 4 C + CaB 2 O 4 + 3C → CaB 6 + 4CO (5)
Conventionally, a method of producing hexagonal boron nitride by a reduction nitridation method using an oxygen-containing calcium compound as a crystallization catalyst is a reduction nitridation by setting the reaction temperature to a high temperature of 1900 ° C. at which hexagonal boron nitride is generated. Since the reaction (3) was performed, the carbon and calcium borate were spent in the above (4) and (5) without being sufficiently used in the reductive nitridation reaction, and promoted the formation of CaB 6. Presumed.

本発明者らは、前記知見に基づき、カーボン源の使用割合を最適化すると共に、特定の温度領域に至るまでに、還元窒化反応を十分に進行させて、原料として仕込んだカーボンを反応により減少せしめ、反応物中のカーボン濃度を特定の濃度以下とすることにより、その後、六方晶窒化ホウ素を得るために昇温しても、前記炭化ホウ素の生成が抑制され、延いては、CaBの生成を極めて効果的に抑制し得ることを見出した。 Based on the above findings, the present inventors have optimized the use ratio of the carbon source and sufficiently advanced the reductive nitriding reaction to reach a specific temperature range, thereby reducing the carbon charged as a raw material by the reaction. allowed by the carbon concentration in the reactants and the following specific concentration, then be heated in order to obtain the hexagonal boron nitride, the formation of boron carbide is suppressed, and by extension, the CaB 6 It has been found that the production can be suppressed very effectively.

また、前記条件で製造される六方晶窒化ホウ素粉末は、CaBの生成を抑制するのみでなく、上記のように、還元窒化反応条件を、少なくとも2つの異なる温度領域で行うという特殊な製造条件により、一次粒子が密に凝集した凝集粒子と、アスペクト比が小さい肉厚の単粒子との混合粉末として得られること、更に、かかる六方晶窒化ホウ素粉末は、粉体として新規で、且つ、その粒子構造の組合せは、前記課題の一つである、気泡の巻き込み量が少なく、高水準の絶縁耐性を発揮することができ、併せて、高い熱伝導性を示すことを見出し、本発明を完成するに至った。 Further, the hexagonal boron nitride powder produced under the above conditions not only suppresses the formation of CaB 6 but also special production conditions in which the reduction nitridation reaction conditions are performed in at least two different temperature regions as described above. Is obtained as a mixed powder of agglomerated particles in which primary particles are densely aggregated and single particles having a small aspect ratio and a thick aspect, and further, such a hexagonal boron nitride powder is novel as a powder, and The combination of particle structures is one of the above-mentioned problems. It has been found that the amount of entrained bubbles is small, can exhibit a high level of insulation resistance, and exhibits high thermal conductivity, and the present invention is completed. It came to do.

即ち、本発明によれば、六方晶窒化ホウ素凝集粒子と、平均アスペクト比が3〜25、特に、3〜5、平均粒径が4〜30μmの六方晶窒化ホウ素単粒子とを含み、上記六方晶窒化ホウ素単粒子の存在割合が10〜50質量%、BET比表面積が0.5〜6.0m/g、JIS K 5101−13−1に基づいて測定される吸油量が100g/100g以下であり、且つ、CaBの含有量が500ppm以下であることを特徴とする六方晶窒化ホウ素粉末が提供される。 That is, according to the present invention, hexagonal boron nitride aggregated particles and hexagonal boron nitride single particles having an average aspect ratio of 3 to 25, particularly 3 to 5, and an average particle size of 4 to 30 μm, The abundance of the crystalline boron nitride single particles is 10 to 50% by mass, the BET specific surface area is 0.5 to 6.0 m 2 / g, and the oil absorption measured based on JIS K 5101-13-1 is 100 g / 100 g or less. And a hexagonal boron nitride powder characterized by having a CaB 6 content of 500 ppm or less.

また、上記六方晶窒化ホウ素粉末は、ホウ素化合物、カーボン源および含酸素カルシウム化合物を原料とする還元窒化法により得られたものであることが、高い結晶性を発現するために好ましい。   The hexagonal boron nitride powder is preferably obtained by a reduction nitriding method using a boron compound, a carbon source and an oxygen-containing calcium compound as raw materials in order to exhibit high crystallinity.

また、本発明によれば、前記六方晶窒化ホウ素粉末を充填してなる、熱伝導性および絶縁耐性に優れた樹脂組成物、更には、該樹脂組成物よりなる電子部品の放熱材が提供される。   In addition, according to the present invention, there are provided a resin composition excellent in thermal conductivity and insulation resistance, which is filled with the hexagonal boron nitride powder, and further a heat dissipating material for an electronic component comprising the resin composition. The

前記本発明の六方晶窒化ホウ素粉末は、ホウ素化合物、カーボン源および含酸素カルシウム化合物を、ホウ素化合物とカーボン源との割合がB/C(元素比)換算で0.5〜1.0、ホウ素化合物とカーボン源との合計量(HBO、C換算値)100質量部に対して含酸素カルシウム化合物をCaO換算で3〜30質量部となる割合で含有する混合物を、窒素雰囲気下に加熱し、1550℃の温度に至るまでに、反応物中のカーボン濃度が5質量%以下となるように反応させた後、1700℃以上の温度に加熱して還元窒化反応を完結させることにより得ることが出来る。 The hexagonal boron nitride powder of the present invention comprises a boron compound, a carbon source and an oxygen-containing calcium compound, wherein the ratio of the boron compound to the carbon source is 0.5 to 1.0 in terms of B / C (element ratio), boron. In a nitrogen atmosphere, a mixture containing the oxygen-containing calcium compound in a proportion of 3 to 30 parts by mass in terms of CaO with respect to 100 parts by mass of the total amount of the compound and the carbon source (H 3 BO 3 , C equivalent) By heating and reaching a temperature of 1550 ° C., the reaction product is reacted so that the carbon concentration is 5% by mass or less, and then heated to a temperature of 1700 ° C. or higher to complete the reductive nitriding reaction. I can do it.

本発明の六方晶窒化ホウ素粉末は、前記した特殊な製造方法で得られることにより、着色の原因となるCaBの生成が極めて効果的に抑制されと共に、六方晶窒化ホウ素凝集粒子と、平均アスペクト比が3〜25と高い、肉厚の六方晶窒化ホウ素単粒子とが特定の割合で混在した状態を成した、新規な粉末が提供される。そして、本発明のかかる六方晶窒化ホウ素粉末は、凝集粒子により熱伝導性の異方性が改善されつつ、肉厚の六方晶窒化ホウ素単粒子の存在により、低比表面積、低吸油量であり、樹脂に充填する際に気泡を巻き込み難く、熱伝導性絶縁シートとした際に、高絶縁耐力を発現する。 Since the hexagonal boron nitride powder of the present invention is obtained by the above-described special manufacturing method, the production of CaB 6 that causes coloring is extremely effectively suppressed, and the hexagonal boron nitride aggregated particles and the average aspect ratio are reduced. A novel powder having a high ratio of 3 to 25 and a thick hexagonal boron nitride single particle mixed in a specific ratio is provided. The hexagonal boron nitride powder of the present invention has a low specific surface area and a low oil absorption due to the presence of the thick hexagonal boron nitride single particles while improving the thermal conductivity anisotropy by the aggregated particles. When the resin is filled, it is difficult for air bubbles to be involved, and when a thermally conductive insulating sheet is used, a high dielectric strength is exhibited.

また、本発明の製造方法において、かかる肉厚の六方晶窒化ホウ素粒子は、反応物中のカーボン濃度が5質量%以下となるように保持された、1200〜1550℃の温度域において、酸化ホウ素と酸化カルシウムが液相を形成し、該液相が関与した反応により粒成長することにより生成し、その後昇温して1700℃以上の温度領域においては、粒成長に関与していなかった原料が窒化されることにより、比較的小径の一次粒子が生成し、該一次粒子が凝集粒子を形成するものと推定される。   Further, in the production method of the present invention, the thick hexagonal boron nitride particles are retained in a temperature range of 1200 to 1550 ° C. so that the carbon concentration in the reaction product is 5% by mass or less. And calcium oxide form a liquid phase, and are produced by grain growth by a reaction involving the liquid phase. After that, in a temperature range of 1700 ° C. or higher after the temperature rises, By nitriding, primary particles having a relatively small diameter are generated, and the primary particles are estimated to form aggregated particles.

(六方晶窒化ホウ素粉末)
本発明の六方晶窒化ホウ素粉末は、六方晶窒化ホウ素凝集粒子と平均アスペクト比(A1)が3〜25、平均粒径(d)が4〜30μm、単粒子割合10〜50%の六方晶窒化ホウ素単粒子の混合粉末であり、BET比表面積が1〜6m/g、吸油量が100g/100g以下であり、且つ、CaBの含有量が500ppm以下であることを特徴とする。
(Hexagonal boron nitride powder)
The hexagonal boron nitride powder of the present invention is hexagonal boron nitride having an average aspect ratio (A1) of 3 to 25, an average particle diameter (d) of 4 to 30 μm, and a single particle ratio of 10 to 50%. It is a mixed powder of boron single particles, has a BET specific surface area of 1 to 6 m 2 / g, an oil absorption of 100 g / 100 g or less, and a CaB 6 content of 500 ppm or less.

即ち、本発明の窒化ホウ素粉末は、後で詳述する、含酸素カルシウム化合物を結晶化触媒として使用した還元窒化法による製造方法において、反応物中のカーボン濃度を制御された温度範囲において制御することにより、アスペクト比が大きい六方晶窒化ホウ素単粒子を特定の割合で含む六方晶窒化ホウ素粉末であり、かかる単粒子の存在によって、六方晶窒化ホウ素の凝集粒子を含みながら、BET比表面積が小さく、且つ、吸油量が小さいという新規な特性を有する。また、通常、含酸素カルシウム化合物を使用することによって生成し易い、CaBの含有量も、極めて低く抑えられており、黒色を呈する該CaBによる着色をも効果的に防止される。 That is, the boron nitride powder of the present invention controls the carbon concentration in the reactant in a controlled temperature range in a production method by a reduction nitriding method using an oxygen-containing calcium compound as a crystallization catalyst, which will be described in detail later. This is a hexagonal boron nitride powder containing a specific ratio of hexagonal boron nitride single particles having a large aspect ratio. Due to the presence of such single particles, the BET specific surface area is small while containing aggregated hexagonal boron nitride particles. And, it has a novel characteristic that the oil absorption is small. In addition, the CaB 6 content, which is usually generated by using an oxygen-containing calcium compound, is also suppressed to an extremely low level, and coloring due to the black CaB 6 can be effectively prevented.

前記本発明の六方晶窒化ホウ素粉末中の六方晶窒化ホウ素単粒子の平均アスペクト比(A1)は、3〜25であり、小さいほど、球状に近くなり、樹脂への充填性が向上するため、3〜20が好ましく、特に、3〜10が好ましく、最も好ましくは3〜5である。かかる平均アスペクト比が3未満の六方晶窒化ホウ素単粒子は製造が難しく、25を超える場合、六方晶窒化ホウ素凝集粒子との組成において、樹脂充填時の粘度が上がり好ましくない。   The average aspect ratio (A1) of the hexagonal boron nitride single particles in the hexagonal boron nitride powder of the present invention is 3 to 25, and the smaller the value, the closer to the spherical shape, so that the filling property to the resin is improved. 3-20 are preferable, 3-10 are especially preferable, Most preferably, it is 3-5. Such hexagonal boron nitride single particles having an average aspect ratio of less than 3 are difficult to produce, and when it exceeds 25, the composition with the hexagonal boron nitride aggregated particles increases the viscosity at the time of resin filling, which is not preferable.

上記六方晶窒化ホウ素粉末中の六方晶窒化ホウ素単粒子の平均粒径(d)が4〜30μmであり、6〜25μmが好ましく、8〜20μmが更に好ましく、10〜15μmが更に好ましい。上記平均粒径が4μm未満の場合、六方晶窒化ホウ素粉末のBET比表面積が上昇するため好ましくなく、30μmを超える単粒子を製造するためには長時間の焼成が必要なため工業的に不利となる。   The average particle diameter (d) of the hexagonal boron nitride single particles in the hexagonal boron nitride powder is 4 to 30 μm, preferably 6 to 25 μm, more preferably 8 to 20 μm, and still more preferably 10 to 15 μm. When the average particle size is less than 4 μm, the BET specific surface area of the hexagonal boron nitride powder increases, which is not preferable, and in order to produce single particles exceeding 30 μm, it is necessary to calcinate for a long time, which is industrially disadvantageous. Become.

また、前記六方晶窒化ホウ素粉末中の窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部は、10〜50質量部であり、10〜40部が好ましく、10〜30部が更に好ましい。かかる六方晶窒化ホウ素単粒子の割合が10部未満の場合、凝集粒子が殆どをしめるようになり、BET比表面積、吸油量が前記範囲を超えて増大する傾向があり、該凝集粒子による気泡の巻き込みが起こり易くなり、樹脂組成物の絶縁耐力が低下する虞がある、一方、50質量部を超える場合、樹脂組成物の熱伝導率が低下する虞があるため好ましくない。   Moreover, the mass part of the boron nitride single particle with respect to 100 mass parts of boron nitride aggregated particles in the hexagonal boron nitride powder is 10 to 50 parts by mass, preferably 10 to 40 parts, and more preferably 10 to 30 parts. When the ratio of the hexagonal boron nitride single particles is less than 10 parts, the aggregated particles almost occupy, and the BET specific surface area and the oil absorption amount tend to increase beyond the above ranges. Entrainment is likely to occur and the dielectric strength of the resin composition may be reduced. On the other hand, when it exceeds 50 parts by mass, the thermal conductivity of the resin composition may be reduced, which is not preferable.

本発明の六方晶窒化ホウ素粉末は、上記特性を有する六方晶窒化ホウ素単粒子を特定の割合で含有することにより、六方晶窒化ホウ素凝集粒子を含むにも拘わらず、BET比表面積が0.5〜6.0m/g、また、吸油量が100g/100g以下とそれぞれ小さい値を示すことを特徴とする。 The hexagonal boron nitride powder of the present invention contains hexagonal boron nitride single particles having the above-mentioned characteristics in a specific ratio, so that the BET specific surface area is 0.5 even though it contains hexagonal boron nitride aggregate particles. ˜6.0 m 2 / g, and the oil absorption is 100 g / 100 g or less, each showing a small value.

前記BET比表面積は0.7〜5.0m/gが好ましく、1.0〜3.0m/gが更に好ましい。BET比表面積が6.0m/gを超える場合、前記理由により樹脂への充填性が悪くなり好ましくない。 The BET specific surface area is preferably 0.7~5.0m 2 / g, more preferably 1.0~3.0m 2 / g. When the BET specific surface area exceeds 6.0 m 2 / g, the filling property into the resin is deteriorated for the above reasons, which is not preferable.

また、前記六方晶窒化ホウ素粉末中の六方晶窒化ホウ素粉末の吸油量が100g/100g以下であることを特徴とする。上記吸油量が90g/gが好ましく、80g/gが更に好ましい。   The hexagonal boron nitride powder in the hexagonal boron nitride powder has an oil absorption of 100 g / 100 g or less. The oil absorption is preferably 90 g / g, more preferably 80 g / g.

本発明の六方晶窒化ホウ素粉末は、上記の特性を有するものであれば、他の特性は特に制限されないが、より好ましいBET比表面積、吸油量などの特性を実現するためなは、六方晶窒化ホウ素粉末中に含まれる六方晶窒化ホウ素凝集粒子の平均粒径(D1)が、5〜150μm、好ましくは10〜100μm、更に好ましくは20〜60μmであり、六方晶窒化ホウ素凝集粒子を構成する一次粒子のアスペクト比(A2)が、3〜20、好ましくは10〜15、一次粒子径(D2)が3〜40、好ましくは5〜30μmであることが特に好ましい。   The hexagonal boron nitride powder of the present invention is not particularly limited as long as it has the above-mentioned characteristics, but in order to realize more preferable characteristics such as BET specific surface area and oil absorption, hexagonal nitriding The average particle diameter (D1) of the hexagonal boron nitride aggregated particles contained in the boron powder is 5 to 150 μm, preferably 10 to 100 μm, more preferably 20 to 60 μm, and constitutes the primary hexagonal boron nitride aggregated particles. It is particularly preferable that the aspect ratio (A2) of the particles is 3 to 20, preferably 10 to 15, and the primary particle diameter (D2) is 3 to 40, preferably 5 to 30 μm.

また、本発明の六方晶窒化ホウ素粉末は、含酸素カルシウム化合物の使用により、高い結晶性を以て得られ、結晶性を示す黒鉛化指数(GI値)が1.7以下という良好な値を示す。GI値は、六方晶窒化ホウ素粉末の結晶性の指標であり、結晶性が高いほどこの値が小さくなる。完全に結晶化(黒鉛化)した六方晶窒化ホウ素粉末ではGI値が1.6になるが、高結晶性でかつ粒子が充分に成長した六方晶窒化ホウ素粉末の場合、粉末の配向によりGI値はさらに小さくなる。   Further, the hexagonal boron nitride powder of the present invention is obtained with high crystallinity by using an oxygen-containing calcium compound, and has a good graphitization index (GI value) indicating a crystallinity of 1.7 or less. The GI value is an index of crystallinity of hexagonal boron nitride powder, and this value decreases as the crystallinity increases. The fully crystallized (graphitized) hexagonal boron nitride powder has a GI value of 1.6. However, in the case of hexagonal boron nitride powder with high crystallinity and sufficient grain growth, the GI value depends on the orientation of the powder. Becomes even smaller.

本発明の六方晶窒化ホウ素粉末の用途は、特に限定されず、六方晶窒化ホウ素粉末の用途として知られている種々の用途に使用可能である。そのうち、特に好適な用途を例示すれば、樹脂に充填して電気絶縁性向上や熱伝導性付与等を目的とする樹脂用充填材としての用途が挙げられる。かかる樹脂としては熱可塑性樹脂(ポリオレフィン、塩化ビニル樹脂、メタクリル酸メチル樹脂、ナイロン、フッ素樹脂)、熱硬化性樹脂(エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ケイ素樹脂)、合成ゴム、液状ゲルなどが使用可能である。   The application of the hexagonal boron nitride powder of the present invention is not particularly limited, and can be used for various applications known as applications of the hexagonal boron nitride powder. Among these, a particularly preferable application is exemplified by a use as a filler for a resin that is filled in a resin to improve electrical insulation or impart thermal conductivity. Such resins include thermoplastic resins (polyolefin, vinyl chloride resin, methyl methacrylate resin, nylon, fluororesin), thermosetting resins (epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicon resin). Synthetic rubber, liquid gel, etc. can be used.

本発明の六方晶窒化ホウ素粉末を充填して得られる樹脂組成物は、前記六方晶窒化ホウ素粉末の特徴により、熱伝導性において異方性が低く抑えられ、高い熱伝導率を有すると共に、気泡の巻き込みも少なく、高い絶縁耐性を示す。更には、樹脂に高充填しても混練時の粘度の上昇が抑えられ、優れた成形性を発現する。   According to the characteristics of the hexagonal boron nitride powder, the resin composition obtained by filling the hexagonal boron nitride powder of the present invention has low thermal anisotropy, high thermal conductivity, and air bubbles. Involves less and shows high insulation resistance. Furthermore, even if the resin is highly filled, an increase in viscosity at the time of kneading is suppressed, and excellent moldability is exhibited.

また、その他の用途として、立法晶六方晶窒化ホウ素や六方晶窒化ホウ素成型品等の六方晶窒化ホウ素加工品製品の原料、エンジニアリングプラスチックへの核剤、フェーズチェンジマテリアル、固体状または液体状のサーマルインターフェイスマテリアル、溶融金属や溶融ガラス成形型の離型剤、化粧品、複合セラミックス原料等が挙げられる。   Other applications include raw materials for processed hexagonal boron nitride products such as cubic hexagonal boron nitride and hexagonal boron nitride molded products, nucleating agents for engineering plastics, phase change materials, solid or liquid thermal products. Examples include interface materials, mold release agents for molten metals and molten glass molds, cosmetics, and composite ceramic materials.

(六方晶窒化ホウ素粉末の製造方法)
本発明の六方晶窒化ホウ素粉末は、ホウ素化合物、カーボン源および含酸素カルシウム化合物を、ホウ素化合物とカーボン源との割合がB/C(元素比)換算で0.5〜1.0、ホウ素化合物とカーボン源との合計量(HBO、C換算値)100質量部に対して含酸素カルシウム化合物をCaO換算で3〜30質量部となる割合で含有する混合物を、窒素雰囲気下に加熱し、1550℃の温度に至るまでに、反応物中のカーボン濃度が5質量%以下となるように反応させた後、1700℃以上の温度に加熱することにより製造することができる。
(Method for producing hexagonal boron nitride powder)
The hexagonal boron nitride powder of the present invention comprises a boron compound, a carbon source and an oxygen-containing calcium compound, wherein the ratio of the boron compound to the carbon source is 0.5 to 1.0 in terms of B / C (element ratio). A mixture containing an oxygen-containing calcium compound at a ratio of 3 to 30 parts by mass in terms of CaO with respect to 100 parts by mass of the total amount of carbon and a carbon source (H 3 BO 3 , C equivalent) However, the reaction can be carried out so that the carbon concentration in the reaction product becomes 5% by mass or less before reaching a temperature of 1550 ° C., and then heated to a temperature of 1700 ° C. or higher.

(原料の調製)
本発明の製造方法において、前記ホウ素化合物としては、ホウ素原子を含有する化合物であれば制限なく使用される。例えば、ホウ酸、無水ホウ酸、メタホウ酸、過ホウ酸、次ホウ酸、四ホウ酸ナトリウム、過ホウ酸ナトリウムなどが使用できるが、一般的には入手が容易なホウ酸が好適に用いられる。使用するホウ素化合物の平均粒子径は特に限定されないが、操作性及び還元反応制御の観点から、1〜1000μmが好ましく、10〜900μmがより好ましく、20〜800μmが更に好ましい。即ち、ホウ素化合物の平均粒子径が1μmより大きくなると取扱いが容易となり、1000μmより小さくなるとホウ素化合物の還元反応の制御が容易となる。
(Preparation of raw materials)
In the production method of the present invention, as the boron compound, any compound containing a boron atom can be used without limitation. For example, boric acid, anhydrous boric acid, metaboric acid, perboric acid, hypoboric acid, sodium tetraborate, sodium perborate and the like can be used, but generally boric acid which is easily available is preferably used. . Although the average particle diameter of the boron compound to be used is not particularly limited, it is preferably 1 to 1000 μm, more preferably 10 to 900 μm, and still more preferably 20 to 800 μm from the viewpoints of operability and reduction reaction control. That is, when the average particle diameter of the boron compound is larger than 1 μm, handling becomes easy, and when the average particle diameter is smaller than 1000 μm, the reduction reaction of the boron compound becomes easy to control.

また、本発明の製造方法において、カーボン源としては公知の炭素材料が特に制限無く使用される。例えば、カーボンブラック、活性炭、カーボンファイバー等の非晶質炭素の他、ダイヤモンド、グラファイト、ナノカーボン等の結晶性炭素、モノマーやポリマーを熱分解して得られる熱分解炭素等が特に制限無く使用される。そのうち、反応性の高い非晶質炭素が好ましく、更に、工業的に品質制御されている点で、カーボンブラックが特に好適に使用される。また、上記カーボンブラックとしては、アセチレンブラック、ファーネスブラック、サーマルブラック等を使用することができる。また、上記カーボン源の平均粒子径は、0.01〜5μmが好ましく、0.02〜4μmがより好ましく、0.05〜3μmが特に好ましい。即ち、該カーボン源の平均粒子径を5μm以下とすることにより、カーボン源の反応性が高くなり、また、0.01μm以上とすることにより、取り扱いが容易となる。   In the production method of the present invention, a known carbon material is used as the carbon source without any particular limitation. For example, in addition to amorphous carbon such as carbon black, activated carbon, and carbon fiber, crystalline carbon such as diamond, graphite, and nanocarbon, pyrolytic carbon obtained by pyrolyzing a monomer or polymer, etc. are used without particular limitation. The Of these, highly reactive amorphous carbon is preferable, and carbon black is particularly preferably used in terms of industrial quality control. Moreover, as said carbon black, acetylene black, furnace black, thermal black, etc. can be used. Moreover, 0.01-5 micrometers is preferable, as for the average particle diameter of the said carbon source, 0.02-4 micrometers is more preferable, and 0.05-3 micrometers is especially preferable. That is, when the average particle diameter of the carbon source is 5 μm or less, the reactivity of the carbon source is increased, and when it is 0.01 μm or more, handling is facilitated.

本発明の製造方法において、ホウ素化合物とカーボン源との割合は、B/C(元素比)換算で0.5〜1.0とすることが必要である。即ち、該モル比が1.0を超えると、還元されずに揮散するホウ素化合物の割合が増加し、収率が低下するばかりでなく、上記揮散成分により、製造ラインに悪影響を及ぼす。また、該モル比が0.5未満では、未反応のカーボン源の存在割合が増加し、窒化処理中、1550℃までに反応物中のカーボン濃度を5%以下とする本発明の実施が困難となり、黒色異物副生の原因になるだけでなく、多くの窒化ホウ素生成温度が1550℃以上となるため、窒化ホウ素種結晶の生成が加速度的に起こるため、粒子径の小さい窒化ホウ素粒子が生成し、BET比表面積が6.0m/g以上、JIS K 5101−13−1に基づいて測定される吸油量が100g/100g以上となるため、好ましくない。 In the production method of the present invention, the ratio between the boron compound and the carbon source needs to be 0.5 to 1.0 in terms of B / C (element ratio). That is, when the molar ratio exceeds 1.0, the ratio of the boron compound that volatilizes without being reduced increases and the yield decreases, and the above-mentioned volatilizing component adversely affects the production line. When the molar ratio is less than 0.5, the proportion of the unreacted carbon source increases, and it is difficult to implement the present invention in which the carbon concentration in the reactant is 5% or less by 1550 ° C. during nitriding. As a result, the boron nitride seed crystal is generated at an accelerated rate because many boron nitride formation temperatures are 1550 ° C. or more, and not only causes the generation of black foreign substances, but boron nitride particles with a small particle diameter are generated. In addition, the BET specific surface area is 6.0 m 2 / g or more, and the oil absorption measured based on JIS K 5101-13-1 is 100 g / 100 g or more, which is not preferable.

本発明の製造方法において、結晶化触媒として使用される含酸素カルシウム化合物としては、酸素とカルシウムが含まれる化合物を特に制限なく使用できる。例えば炭酸カルシウム、炭酸水素カルシウム、水酸化カルシウム、酸化カルシウム、硝酸カルシウム、硫酸カルシウム、リン酸カルシウム、シュウ酸カルシウム等を使用することが出来るし、これら2種類以上を混合して使用することも可能である。その中でも、後述する多孔質バルク体を形成するためには、酸化カルシウム、炭酸カルシウムを使用するのが好ましく、発泡性を有することから炭酸カルシウムが特に好ましい。また、上記炭酸カルシウムの平均粒子径は、二酸化炭素生成反応の制御容易性から、平均粒子径0.01〜500μmが好ましく、0.05〜400μmがより好ましく、0.1〜300μmが特に好ましい。上記含酸素カルシウム化合物の添加量としては、ホウ素化合物とカーボン源との合計量(HBO、C換算値)100質量部に対して、CaO換算で3〜30質量部とすることが好ましく、5〜25質量部とすることがより好ましく、10〜20質量部とすることが更に好ましい。前記含酸素カルシウム化合物の使用量が3質量部未満では結晶性の高い六方晶窒化ホウ素粉末が得られない。また、窒化ホウ素粒子を成長させる液相量が少なく、得られた六方晶窒化ホウ素粉末は、薄片が凝集した鱗片状凝集粒子の堆積割合50%より多く、BET比表面積が6.0m/g以上、JIS K 5101−13−1に基づいて測定される吸油量が100g/100g以上となるため、樹脂への充填率が低下し、好ましくない。30質量部を超える場合、得られる六方晶窒化ホウ素粉末の不純物濃度が高くなり、好ましくないだけでなく、酸化ホウ素と酸化カルシウムから形成される複合酸化物中の酸化カルシウムの割合が多く、液相形成温度が2000℃以上になり、得られる六方晶窒化ホウ素単粒子が充分に粒成長出来ず、平均アスペクト比が3〜25、平均粒径が4〜30μmの窒化ホウ素単粒子が得られず、好ましくない。 In the production method of the present invention, as the oxygen-containing calcium compound used as a crystallization catalyst, a compound containing oxygen and calcium can be used without particular limitation. For example, calcium carbonate, calcium hydrogen carbonate, calcium hydroxide, calcium oxide, calcium nitrate, calcium sulfate, calcium phosphate, calcium oxalate and the like can be used, or a mixture of two or more of these can be used. . Among them, in order to form a porous bulk body to be described later, it is preferable to use calcium oxide or calcium carbonate, and calcium carbonate is particularly preferable because it has foamability. The average particle size of the calcium carbonate is preferably 0.01 to 500 μm, more preferably 0.05 to 400 μm, and particularly preferably 0.1 to 300 μm, from the viewpoint of easy control of the carbon dioxide production reaction. The addition amount of the oxygen-containing calcium compound is preferably 3 to 30 parts by mass in terms of CaO with respect to 100 parts by mass of the total amount of boron compound and carbon source (H 3 BO 3 , C equivalent). 5 to 25 parts by mass, more preferably 10 to 20 parts by mass. If the amount of the oxygen-containing calcium compound used is less than 3 parts by mass, highly hexagonal boron nitride powder cannot be obtained. Further, the amount of liquid phase for growing boron nitride particles is small, and the obtained hexagonal boron nitride powder has a deposition ratio of more than 50% of the flocculent aggregated particles in which flakes are aggregated, and the BET specific surface area is 6.0 m 2 / g. As mentioned above, since the oil absorption measured based on JISK5101-13-1 becomes 100g / 100g or more, the filling rate to resin falls and it is not preferable. When it exceeds 30 parts by mass, the impurity concentration of the obtained hexagonal boron nitride powder becomes high, which is not preferable, and the ratio of calcium oxide in the composite oxide formed from boron oxide and calcium oxide is large, and the liquid phase The formation temperature becomes 2000 ° C. or more, and the obtained hexagonal boron nitride single particles cannot be sufficiently grown, and the boron nitride single particles having an average aspect ratio of 3 to 25 and an average particle size of 4 to 30 μm cannot be obtained. It is not preferable.

本発明の製造方法において、上記の各原料を含む混合物の形態は特に制限されず、粉末状のままでもよいが、多孔質バルク体を形成してもよい。尚、かかる多孔質バルク体は、例えば、前記ホウ素化合物、カーボン源、炭酸カルシウムを含む混合粉末を加熱し、ホウ酸からメタホウ酸の生成、メタホウ酸の溶融によりバルク体を形成すると共に、メタホウ酸が溶融している状態で、炭酸カルシウムの分解により二酸化炭素ガスを生成せしめて発泡させる方法が挙げられる。   In the production method of the present invention, the form of the mixture containing the respective raw materials is not particularly limited, and may remain in a powder form, but a porous bulk body may be formed. The porous bulk body is formed by, for example, heating the mixed powder containing the boron compound, the carbon source, and calcium carbonate to form a bulk body by generating metaboric acid from boric acid and melting the metaboric acid. In the melted state, carbon dioxide gas is generated by decomposition of calcium carbonate and foamed.

また、上記多孔質バルク体の形状は、混合粉末の加熱に使用する容器等の形状に応じて適宜決定すればよく、特に限定されるものではないが、例えば、四角柱状、円柱状、球状、多角形状、不定形状、針状及び板状等の形状が挙げられるが、ハンドリング性の観点から、四角柱状、円柱状、球状等の形状であることが好ましい。また、その大きさは、径(球状以外は相当径)5〜300mm程度が一般的である。   In addition, the shape of the porous bulk body may be appropriately determined according to the shape of the container or the like used for heating the mixed powder, and is not particularly limited, but for example, a quadrangular prism shape, a cylindrical shape, a spherical shape, Examples of the shape include a polygonal shape, an indefinite shape, a needle shape, and a plate shape. From the viewpoint of handling properties, a shape such as a quadrangular prism shape, a cylindrical shape, or a spherical shape is preferable. Further, the size is generally about 5 to 300 mm in diameter (equivalent diameter other than spherical).

本発明の製造方法において、前記ホウ素化合物、カーボン源、含酸素カルシウム化合物の混合方法は特に制限されず、振動ミル、ビーズミル、ボールミル、ヘンシェルミキサー、ドラムミキサー、振動攪拌機、V字混合機等の一般的な混合機が使用可能である。   In the production method of the present invention, the mixing method of the boron compound, the carbon source, and the oxygen-containing calcium compound is not particularly limited. A typical blender can be used.

(製造条件)
本発明において、還元窒化は、前記ホウ素化合物、カーボン源および含酸素カルシウム化合物を含む混合物(以下、原料混合物ともいう)を、窒素ガスを含む雰囲気下で加熱することで実施可能であるが、加熱温度、反応生成物中のカーボン量を制御することが重要である。即ち、該原料混合物を、窒素雰囲気下で、1550℃の温度に至るまでに反応物中のカーボン濃度が5質量%以下となるように反応させた後、1700℃以上の温度で六方晶窒化ホウ素を生成せしめることが必要である。
(Production conditions)
In the present invention, reductive nitriding can be performed by heating a mixture containing the boron compound, carbon source and oxygen-containing calcium compound (hereinafter also referred to as a raw material mixture) in an atmosphere containing nitrogen gas. It is important to control the temperature and the amount of carbon in the reaction product. That is, the raw material mixture is reacted in a nitrogen atmosphere so that the carbon concentration in the reactant is 5 mass% or less before reaching a temperature of 1550 ° C., and then hexagonal boron nitride at a temperature of 1700 ° C. or higher. Must be generated.

上記1550℃の温度に至るまでに反応物中のカーボン濃度が5質量%を超える場合、その後の昇温により炭化ホウ素が生成し易くなり、その結果、CaBの生成量が増加し、本発明の目的を達成することが出来ない。上記反応物中のカーボン濃度は、好ましくは、3質量%以下となるまで前記温度で維持することが望ましい。また、上記反応物中のカーボン濃度は、少ないほど好ましいが、工業的に、下限は、1質量%である。 When the carbon concentration in the reaction product exceeds 5 mass% by the time the temperature reaches 1550 ° C., boron carbide is easily generated by the subsequent temperature increase, and as a result, the amount of CaB 6 generated increases, and the present invention. Cannot achieve the goal. The carbon concentration in the reactant is preferably maintained at the above temperature until it becomes 3% by mass or less. Moreover, although the carbon concentration in the said reaction material is so preferable that it is small, industrially a minimum is 1 mass%.

本発明の製造方法において、上述した反応物中のカーボン濃度は、実施例に示す蛍光X線分析装置を使用して測定した値である。   In the production method of the present invention, the carbon concentration in the reaction product described above is a value measured using the fluorescent X-ray analyzer shown in the examples.

本発明の製造方法において、1550℃に至るまでに前記還元窒化反応を進行させるための反応温度は特に制限されないが、一般に、カーボン源によるホウ素化合物の還元反応は、1200℃以上で開始し、非晶質六方晶窒化ホウ素が生成し始めるため、1200℃以上、好ましくは、1300℃以上の温度に調整することが好ましい。また、1550℃に至るまでの温度プロファイルは、特定の温度に一定に保持するパターンを含んでもよいし、特定の勾配を持って昇温するパターンを含んでもよい。   In the production method of the present invention, the reaction temperature for proceeding the reductive nitridation reaction up to 1550 ° C. is not particularly limited, but in general, the boron compound reduction reaction with a carbon source starts at 1200 ° C. or higher, Since crystalline hexagonal boron nitride begins to form, it is preferable to adjust the temperature to 1200 ° C. or higher, preferably 1300 ° C. or higher. Further, the temperature profile up to 1550 ° C. may include a pattern in which the temperature is kept constant at a specific temperature, or may include a pattern in which the temperature is increased with a specific gradient.

本発明の製造方法において、1550℃の温度に至るまでに反応物中のカーボン濃度が前記範囲を満足しているかどうかの確認する方法は、特に制限されない。例えば、1550℃の温度における反応物中のカーボン濃度を測定するのが直接的であるが、1550℃以下の任意の温度において、反応物中のカーボン濃度が前記範囲を満足していることを確認してもよい。また、製造の度毎に、カーボン濃度を測定して本発明を実施してもよいが、予め実験を行い、前記温度プロファイルを含む運転条件において反応物中のカーボン濃度が5質量%以下となる時間を特定し、上記運転条件での処理時間により管理することが工業的であり、好ましい。上記処理時間は、運転時要件により異なり一概には決定できないが、一般に、1200℃以上の温度において、2〜10時間、特に、3〜8時間の範囲である場合が多い。   In the production method of the present invention, the method for confirming whether or not the carbon concentration in the reaction product satisfies the above range before reaching the temperature of 1550 ° C. is not particularly limited. For example, it is straightforward to measure the carbon concentration in the reaction product at a temperature of 1550 ° C., but it is confirmed that the carbon concentration in the reaction product satisfies the above range at any temperature below 1550 ° C. May be. In addition, although the present invention may be carried out by measuring the carbon concentration every time of production, the carbon concentration in the reaction product becomes 5% by mass or less under the operating conditions including the temperature profile by conducting experiments in advance. It is industrially preferable that the time is specified and managed by the processing time under the above operating conditions. The treatment time varies depending on the operating requirements and cannot be determined unconditionally. In general, the treatment time is generally in the range of 2 to 10 hours, particularly 3 to 8 hours at a temperature of 1200 ° C. or higher.

本発明において、上記工程後、結晶性の高い六方晶窒化ホウ素粉末を得るために通常1700℃以上、好ましくは、1700〜2200℃、更に好ましくは1800〜2000℃で熱処理を行い、六方晶窒化ホウ素を得る。即ち、かかる熱処理温度が1700℃未満では、結晶性の高い六方晶窒化ホウ素が得られないだけでなく、粒成長も起こり難いので、本発明における低アスペクト比の単粒子が得られ難く好ましくない。また2200℃以上では、効果が頭打ちとなり、経済的に不利である。   In the present invention, after the above step, in order to obtain highly crystalline hexagonal boron nitride powder, heat treatment is usually performed at 1700 ° C. or higher, preferably 1700-2200 ° C., more preferably 1800-2000 ° C. Get. That is, when the heat treatment temperature is less than 1700 ° C., not only high crystallinity hexagonal boron nitride can be obtained but also grain growth hardly occurs, and it is difficult to obtain single particles having a low aspect ratio in the present invention. At 2200 ° C. or higher, the effect reaches its peak and is economically disadvantageous.

本発明の製造方法において、窒素雰囲気は、公知の手段によって形成することが出来る。使用するガスとしては、上記窒化処理条件でホウ素に窒素を与えることが可能なガスであれば特に制限されず、窒素ガス、アンモニアガスを使用することも可能であり、窒素ガス、アンモニアガスに、水素、アルゴン、ヘリウム等の非酸化性ガスを混合したガスも使用可能である。   In the production method of the present invention, the nitrogen atmosphere can be formed by known means. The gas to be used is not particularly limited as long as it is a gas that can give nitrogen to boron under the above nitriding conditions, and nitrogen gas and ammonia gas can also be used. A gas in which a non-oxidizing gas such as hydrogen, argon, or helium is mixed can also be used.

本発明の製造方法は、反応雰囲気制御の可能な公知の装置を使用して行うことができる。例えば、高周波誘導加熱やヒーター加熱により加熱処理を行う雰囲気制御型高温炉が挙げられ、バッチ炉の他、プッシャー式トンネル炉、縦型反応炉等の連続炉も使用可能である。   The production method of the present invention can be carried out using a known apparatus capable of controlling the reaction atmosphere. For example, an atmosphere-controlled high-temperature furnace that performs heat treatment by high-frequency induction heating or heater heating can be used. In addition to a batch furnace, a continuous furnace such as a pusher-type tunnel furnace or a vertical reaction furnace can also be used.

本発明において、上述の窒化処理を施した直後は六方晶窒化ホウ素を主成分とするが、ホウ酸カルシウム等の化合物も含まれているため、必要に応じて酸を用いて洗浄することで、高純度かつ高結晶性の六方晶窒化ホウ素を得ることが可能である。   In the present invention, immediately after performing the above nitriding treatment, hexagonal boron nitride is the main component, but since compounds such as calcium borate are also included, washing with an acid if necessary, It is possible to obtain hexagonal boron nitride having high purity and high crystallinity.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

実施例、比較例における各種物性の測定は、以下の方法によって行った。   Various physical properties in Examples and Comparative Examples were measured by the following methods.

1)GI値
X線回折測定は、Rigaku社製全自動水平型多目的X線回折装置 SmartLabを用いて測定した。測定条件はスキャンスピード20度/分、ステップ幅0.02度、スキャン範囲10〜90度とした。GI値は、六方晶窒化ホウ素粉末のX線回折スペクトルの(100)、(101)及び(102)回折線の積分強度比(面積比)から、式、GI=[{(100)+(101)}/[(102)]によって算出した。
1) GI value X-ray diffraction measurement was performed using a fully automatic horizontal multi-purpose X-ray diffractometer SmartLab manufactured by Rigaku. The measurement conditions were a scan speed of 20 degrees / minute, a step width of 0.02 degrees, and a scan range of 10 to 90 degrees. The GI value is calculated from the integral intensity ratio (area ratio) of (100), (101) and (102) diffraction lines of the X-ray diffraction spectrum of the hexagonal boron nitride powder: GI = [{(100) + (101 )} / [(102)].

2)反応物のカーボン濃度
反応物のカーボン濃度は、蛍光X線分析装置を用いて測定した。取り出された反応物を、室温まで冷却させた後、アルミナ乳鉢で1〜1000μm程度の粒径に租粉砕して、測定サンプルとした。蛍光X線分析装置としては、Rigaku社製ZSX Primus2を使用した。
2) Carbon concentration of the reactant The carbon concentration of the reactant was measured using a fluorescent X-ray analyzer. The reaction product taken out was cooled to room temperature, and then ground in an alumina mortar to a particle size of about 1 to 1000 μm to obtain a measurement sample. As a fluorescent X-ray analyzer, ZSX Primus 2 manufactured by Rigaku was used.

3)窒化ホウ素粉末中のCaB濃度
得られた窒化ホウ素粉末のX線回折スペクトルから、CaB由来ピークの有無を確認した。また得られた六方晶窒化ホウ素粉末の蛍光X線分析測定結果Ca濃度より、CaBの含有量を測定した。
3) CaB 6 concentration in boron nitride powder From the X-ray diffraction spectrum of the obtained boron nitride powder, the presence or absence of a CaB 6 -derived peak was confirmed. Also from the fluorescent X-ray analysis measurements Ca concentration of hexagonal boron nitride powder obtained was measured for the content of CaB 6.

4)窒化ホウ素単粒子の平均粒子径(d)、アスペクト比(A1)
窒化ホウ素粉末を、倍率2000倍で観察した60μm×40μm四方の複数のSEM観察像を画像解析装置(A像くん:旭化成エンジニアリング株式会社製)により解析し、異なる単粒子を無作為に選び、長軸の長さを測定し、合計1000個の一次粒子について、上記測定値の平均値を算出して平均粒子径(d)とした。また同時に厚み方向の長さを測定し、長軸の長さ/厚み方向の長さをアスペクト比(A1)とした。
4) Average particle diameter (d) and aspect ratio (A1) of boron nitride single particles
Boron nitride powder was observed at a magnification of 2000 times, and a plurality of 60 μm × 40 μm square SEM observation images were analyzed with an image analyzer (A image-kun: manufactured by Asahi Kasei Engineering Co., Ltd.), and different single particles were randomly selected and long The length of the shaft was measured, and the average value of the above measured values was calculated for a total of 1000 primary particles to obtain the average particle diameter (d). At the same time, the length in the thickness direction was measured, and the length of the major axis / the length in the thickness direction was defined as the aspect ratio (A1).

5)窒化ホウ素凝集粒子の平均粒子径(D1)、凝集粒子を構成する一次粒子の平均粒子径(D2)、アスペクト比(A2)
窒化ホウ素粉末を、倍率2000倍で観察した60μm×40μm四方の複数のSEM観察像を画像解析装置(A像くん:旭化成エンジニアリング株式会社製)により解析し、異なる凝集粒子100個を無作為に選び、それぞれの凝集粒子の長軸の長さを測定し、凝集粒子の平均粒子径(D1)とした。各凝集粒子から無作為に一次粒子10個を選択し、それぞれの一次粒子について長軸の長さを測定し、合計1000個の一次粒子について、上記測定値の平均値を算出して平均一次粒子径(D2)とした。また同時に厚み方向の長さを測定し、長軸の長さ/厚み方向の長さをアスペクト比(A2)とした。
5) Average particle size (D1) of boron nitride aggregated particles, average particle size (D2) of primary particles constituting the aggregated particles, aspect ratio (A2)
A plurality of 60 μm × 40 μm square SEM observation images of boron nitride powder observed at a magnification of 2000 times are analyzed by an image analyzer (A image-kun: manufactured by Asahi Kasei Engineering Co., Ltd.), and 100 different aggregated particles are randomly selected. The length of the major axis of each aggregated particle was measured and used as the average particle diameter (D1) of the aggregated particles. Ten primary particles are randomly selected from each aggregated particle, the length of the major axis is measured for each primary particle, and the average value of the above measured values is calculated for a total of 1000 primary particles to obtain the average primary particle. The diameter (D2) was used. At the same time, the length in the thickness direction was measured, and the length of the long axis / the length in the thickness direction was defined as the aspect ratio (A2).

6)窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部
窒化ホウ素粉末を、倍率500倍で観察した250μm×170μm四方のSEM観察像を画像解析装置(A像くん:旭化成エンジニアリング株式会社製)により解析し、異なる粒子5000個となるまで無作為に選び、凝集粒子と単粒子に選別した。尚、2つ以上の単粒子を含むものを凝集粒子とした。選別した粒子について画像解析により、窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部を算出した。
6) Mass parts of boron nitride single particles with respect to 100 parts by mass of boron nitride aggregated particles Boron nitride powder was observed at an image magnification of 500 × 250 μm × 170 μm square SEM observation image (A Image-kun: manufactured by Asahi Kasei Engineering Co., Ltd.) ) And randomly selected until 5000 different particles were obtained, and then sorted into aggregated particles and single particles. A particle containing two or more single particles was defined as an agglomerated particle. The mass part of the boron nitride single particle with respect to 100 parts by mass of the boron nitride aggregated particles was calculated by image analysis on the selected particles.

7)六方晶窒化ホウ素粉末のBET比表面積及び吸油量
得られた六方晶窒化ホウ素粉末のBET比表面積は窒素ガス吸着BET一点法により測定し、吸油量はJIS K 5101−13−1に基づいて測定した。
7) BET specific surface area and oil absorption of hexagonal boron nitride powder The BET specific surface area of the obtained hexagonal boron nitride powder was measured by a nitrogen gas adsorption BET one-point method, and the oil absorption was based on JIS K 5101-13-1. It was measured.

実施例1
ホウ酸100g、アセチレンブラック24g、及び結晶化触媒として酸化カルシウム12gをボールミルにて混合した。該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1300℃まで昇温し、1300℃で4時間保持した。1300℃保持後、15℃/分で1800℃まで昇温し、1800℃、2時間窒化処理した。次いで酸洗浄を行い、白色の六方晶窒化ホウ素粉末を得た。得られた六方晶窒化ホウ素粉末には、目視において、黒色異物は確認されなかった。
Example 1
100 g boric acid, 24 g acetylene black, and 12 g calcium oxide as a crystallization catalyst were mixed in a ball mill. The mixture was heated to 1300 ° C. at 15 ° C./min in a nitrogen gas atmosphere using a graphite Tamman furnace, and held at 1300 ° C. for 4 hours. After maintaining at 1300 ° C., the temperature was raised to 1800 ° C. at 15 ° C./min, and nitriding was performed at 1800 ° C. for 2 hours. Next, acid cleaning was performed to obtain white hexagonal boron nitride powder. No black foreign matter was visually confirmed in the obtained hexagonal boron nitride powder.

尚、上記方法と同条件で1550℃に至ったときの反応物中のカーボン濃度を測定した結果を表1に示す。   Table 1 shows the results of measuring the carbon concentration in the reaction product when the temperature reached 1550 ° C. under the same conditions as those described above.

得られた六方晶窒化ホウ素粉末のGI値を測定した。また、得られた六方晶窒化ホウ素粉末の蛍光X線分析測定結果Ca濃度より、CaBの含有量を測定し、結果を表1に示した。得られた六方晶窒化ホウ素粉末のCaB含有量は260ppmと低濃度であった。また、CaBのX線回折スペクトルは確認されなかった。さらに、上記六方晶窒化ホウ素粉末を、SEM観察において粒子形状を確認したところ、一次粒子の長軸/厚み比が3〜10の六方晶窒化ホウ素粒子の存在を確認した。上記六方晶窒化ホウ素粉末の窒化ホウ素単粒子の平均粒子径(d)、アスペクト比(A1)、窒化ホウ素凝集粒子の平均粒子径(D1)、窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部、凝集粒子を構成する一次粒子の平均粒子径(D2)、アスペクト比(A2)、BET比表面積、吸油量を測定し、表2に示した。 The GI value of the obtained hexagonal boron nitride powder was measured. Further, the content of CaB 6 was measured from the Ca concentration of the obtained hexagonal boron nitride powder, and the results are shown in Table 1. The obtained hexagonal boron nitride powder had a low CaB 6 content of 260 ppm. Further, X-ray diffraction spectrum of CaB 6 was not confirmed. Further, when the particle shape of the hexagonal boron nitride powder was confirmed by SEM observation, the presence of hexagonal boron nitride particles having a primary particle major axis / thickness ratio of 3 to 10 was confirmed. The average particle diameter (d), aspect ratio (A1), average particle diameter (D1) of boron nitride aggregated particles, and boron nitride single particles with respect to 100 parts by mass of boron nitride aggregated particles of the hexagonal boron nitride powder. The average particle diameter (D2), aspect ratio (A2), BET specific surface area, and oil absorption of primary particles constituting the mass part and aggregated particles were measured and shown in Table 2.

実施例2
ホウ酸100g、カーボンブラック24g、及び結晶化触媒として炭酸カルシウム44gをボールミルにて混合した。該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1200℃まで昇温し、1200℃で6時間保持した。1200℃保持後、15℃/分で2000℃まで昇温し、2000℃、3時間窒化処理した。次いで解砕、酸洗浄を行い、白色の六方晶窒化ホウ素粉末を得た。得られた六方晶窒化ホウ素粉末には、目視において、黒色異物は確認されなかった。
Example 2
100 g of boric acid, 24 g of carbon black, and 44 g of calcium carbonate as a crystallization catalyst were mixed in a ball mill. The mixture was heated to 1200 ° C. at 15 ° C./min in a nitrogen gas atmosphere using a graphite Tamman furnace, and held at 1200 ° C. for 6 hours. After maintaining at 1200 ° C., the temperature was raised to 2000 ° C. at 15 ° C./min, and nitriding was performed at 2000 ° C. for 3 hours. Next, crushing and acid cleaning were performed to obtain white hexagonal boron nitride powder. No black foreign matter was visually confirmed in the obtained hexagonal boron nitride powder.

尚、上記方法と同条件で1550℃に至ったときの反応物中のカーボン濃度を測定した結果を表1に示す。   The results of measuring the carbon concentration in the reaction product when the temperature reaches 1550 ° C. under the same conditions as in the above method are shown in Table 1.

得られた六方晶窒化ホウ素粉末のGI値を測定した。また、得られた六方晶窒化ホウ素粉末の蛍光X線分析測定結果Ca濃度より、CaBの含有量を測定し、結果を表1に示した。さらに、上記六方晶窒化ホウ素粉末を、SEM観察において粒子形状を確認したところ、一次粒子の長軸/厚み比が3〜10の六方晶窒化ホウ素粒子の存在を確認した。上記六方晶窒化ホウ素粉末の窒化ホウ素単粒子の平均粒子径(d)、アスペクト比(A1)、窒化ホウ素凝集粒子の平均粒子径(D1)、窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部、凝集粒子を構成する一次粒子の平均粒子径(D2)、アスペクト比(A2)、BET比表面積、吸油量を測定し、表2に示した。 The GI value of the obtained hexagonal boron nitride powder was measured. Further, the content of CaB 6 was measured from the Ca concentration of the obtained hexagonal boron nitride powder, and the results are shown in Table 1. Further, when the particle shape of the hexagonal boron nitride powder was confirmed by SEM observation, the presence of hexagonal boron nitride particles having a primary particle major axis / thickness ratio of 3 to 10 was confirmed. The average particle diameter (d), aspect ratio (A1), average particle diameter (D1) of boron nitride aggregated particles, and boron nitride single particles with respect to 100 parts by mass of boron nitride aggregated particles of the hexagonal boron nitride powder. The average particle diameter (D2), aspect ratio (A2), BET specific surface area, and oil absorption of primary particles constituting the mass part and aggregated particles were measured and shown in Table 2.

実施例3
ホウ酸100g、アセチレンブラック22g、及び結晶化触媒として炭酸カルシウム11gをボールミルにて混合した。該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1500℃まで昇温し、1500℃で3時間保持した。1500℃保持後、15℃/分で1750℃まで昇温し、1750℃、3時間窒化処理した。次いで解砕、酸洗浄を行い、白色の六方晶窒化ホウ素粉末を得た。得られた六方晶窒化ホウ素粉末には、目視において、黒色異物は確認されなかった。
Example 3
100 g boric acid, 22 g acetylene black, and 11 g calcium carbonate as a crystallization catalyst were mixed in a ball mill. The mixture was heated to 1500 ° C. at 15 ° C./min in a nitrogen gas atmosphere using a graphite Tamman furnace, and held at 1500 ° C. for 3 hours. After maintaining at 1500 ° C., the temperature was raised to 1750 ° C. at 15 ° C./min, and nitriding was performed at 1750 ° C. for 3 hours. Next, crushing and acid cleaning were performed to obtain white hexagonal boron nitride powder. No black foreign matter was visually confirmed in the obtained hexagonal boron nitride powder.

尚、上記方法と同条件で1550℃に至ったときの反応物中のカーボン濃度を測定した結果を表1に示す。   The results of measuring the carbon concentration in the reaction product when the temperature reaches 1550 ° C. under the same conditions as in the above method are shown in Table 1.

得られた六方晶窒化ホウ素粉末のGI値を測定した。また、得られた六方晶窒化ホウ素粉末の蛍光X線分析測定結果Ca濃度より、CaBの含有量を測定し、結果を表1に示した。さらに、上記六方晶窒化ホウ素粉末を、SEM観察において粒子形状を確認したところ、一次粒子の長軸/厚み比が3〜10の六方晶窒化ホウ素粒子の存在を確認した。上記六方晶窒化ホウ素粉末の窒化ホウ素単粒子の平均粒子径(d)、アスペクト比(A1)、窒化ホウ素凝集粒子の平均粒子径(D1)、窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部、凝集粒子を構成する一次粒子の平均粒子径(D2)、アスペクト比(A2)、BET比表面積、吸油量を測定し、表2に示した。 The GI value of the obtained hexagonal boron nitride powder was measured. Further, the content of CaB 6 was measured from the Ca concentration of the obtained hexagonal boron nitride powder, and the results are shown in Table 1. Further, when the particle shape of the hexagonal boron nitride powder was confirmed by SEM observation, the presence of hexagonal boron nitride particles having a primary particle major axis / thickness ratio of 3 to 10 was confirmed. The average particle diameter (d), aspect ratio (A1), average particle diameter (D1) of boron nitride aggregated particles, and boron nitride single particles with respect to 100 parts by mass of boron nitride aggregated particles of the hexagonal boron nitride powder. The average particle diameter (D2), aspect ratio (A2), BET specific surface area, and oil absorption of primary particles constituting the mass part and aggregated particles were measured and shown in Table 2.

実施例4
ホウ酸100g、カーボンブラック32g、及び結晶化触媒として炭酸カルシウム59gをボールミルにて混合した。該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1350℃まで昇温し、1350℃で5時間保持した。1500℃保持後、15℃/分で1800℃まで昇温し、1800℃、4時間窒化処理した。次いで解砕、酸洗浄を行い、白色の六方晶窒化ホウ素粉末を得た。得られた六方晶窒化ホウ素粉末には、目視において、黒色異物は確認されなかった。
Example 4
100 g of boric acid, 32 g of carbon black, and 59 g of calcium carbonate as a crystallization catalyst were mixed in a ball mill. The mixture was heated to 1350 ° C. at 15 ° C./min in a nitrogen gas atmosphere using a graphite Tamman furnace, and held at 1350 ° C. for 5 hours. After holding at 1500 ° C., the temperature was raised to 1800 ° C. at 15 ° C./min, and nitriding was performed at 1800 ° C. for 4 hours. Next, crushing and acid cleaning were performed to obtain white hexagonal boron nitride powder. No black foreign matter was visually confirmed in the obtained hexagonal boron nitride powder.

尚、上記方法と同条件で1550℃に至ったときの反応物中のカーボン濃度を測定した結果を表1に示す。   The results of measuring the carbon concentration in the reaction product when the temperature reaches 1550 ° C. under the same conditions as in the above method are shown in Table 1.

得られた六方晶窒化ホウ素粉末のGI値を測定した。また、得られた六方晶窒化ホウ素粉末の蛍光X線分析測定結果Ca濃度より、CaBの含有量を測定し、結果を表1に示した。さらに、上記六方晶窒化ホウ素粉末を、SEM観察において粒子形状を確認したところ、一次粒子の長軸/厚み比が3〜10の六方晶窒化ホウ素粒子の存在を確認した。上記六方晶窒化ホウ素粉末の窒化ホウ素単粒子の平均粒子径(d)、アスペクト比(A1)、窒化ホウ素凝集粒子の平均粒子径(D1)、窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部、凝集粒子を構成する一次粒子の平均粒子径(D2)、アスペクト比(A2)、BET比表面積、吸油量を測定し、表2に示した。 The GI value of the obtained hexagonal boron nitride powder was measured. Further, the content of CaB 6 was measured from the Ca concentration of the obtained hexagonal boron nitride powder, and the results are shown in Table 1. Further, when the particle shape of the hexagonal boron nitride powder was confirmed by SEM observation, the presence of hexagonal boron nitride particles having a primary particle major axis / thickness ratio of 3 to 10 was confirmed. The average particle diameter (d), aspect ratio (A1), average particle diameter (D1) of boron nitride aggregated particles, and boron nitride single particles with respect to 100 parts by mass of boron nitride aggregated particles of the hexagonal boron nitride powder. The average particle diameter (D2), aspect ratio (A2), BET specific surface area, and oil absorption of primary particles constituting the mass part and aggregated particles were measured and shown in Table 2.

実施例5
ホウ酸100g、カーボンブラック28g、及び結晶化触媒として酸化カルシウム38gをボールミルにて混合した。該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1400℃まで昇温し、1400℃で4時間保持した。1400℃保持後、15℃/分で1750℃まで昇温し、1750℃、3時間窒化処理した。次いで解砕、酸洗浄を行い、白色の六方晶窒化ホウ素粉末を得た。得られた六方晶窒化ホウ素粉末には、目視において、黒色異物は確認されなかった。
Example 5
100 g boric acid, 28 g carbon black, and 38 g calcium oxide as a crystallization catalyst were mixed in a ball mill. The mixture was heated to 1400 ° C. at 15 ° C./min in a nitrogen gas atmosphere using a graphite Tamman furnace, and held at 1400 ° C. for 4 hours. After maintaining at 1400 ° C., the temperature was raised to 1750 ° C. at 15 ° C./min, and nitriding was performed at 1750 ° C. for 3 hours. Next, crushing and acid cleaning were performed to obtain white hexagonal boron nitride powder. No black foreign matter was visually confirmed in the obtained hexagonal boron nitride powder.

尚、上記方法と同条件で1550℃に至ったときの反応物中のカーボン濃度を測定した結果を表1に示す。   The results of measuring the carbon concentration in the reaction product when the temperature reaches 1550 ° C. under the same conditions as in the above method are shown in Table 1.

得られた六方晶窒化ホウ素粉末のGI値を測定した。また、得られた六方晶窒化ホウ素粉末の蛍光X線分析測定結果Ca濃度より、CaBの含有量を測定し、結果を表1に示した。さらに、上記六方晶窒化ホウ素粉末を、SEM観察において粒子形状を確認したところ、一次粒子の長軸/厚み比が3〜10の六方晶窒化ホウ素粒子の存在を確認した。上記六方晶窒化ホウ素粉末の窒化ホウ素単粒子の平均粒子径(d)、アスペクト比(A1)、窒化ホウ素凝集粒子の平均粒子径(D1)、窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部、凝集粒子を構成する一次粒子の平均粒子径(D2)、アスペクト比(A2)、BET比表面積、吸油量を測定し、表2に示した。 The GI value of the obtained hexagonal boron nitride powder was measured. Further, the content of CaB 6 was measured from the Ca concentration of the obtained hexagonal boron nitride powder, and the results are shown in Table 1. Further, when the particle shape of the hexagonal boron nitride powder was confirmed by SEM observation, the presence of hexagonal boron nitride particles having a primary particle major axis / thickness ratio of 3 to 10 was confirmed. The average particle diameter (d), aspect ratio (A1), average particle diameter (D1) of boron nitride aggregated particles, and boron nitride single particles with respect to 100 parts by mass of boron nitride aggregated particles of the hexagonal boron nitride powder. The average particle diameter (D2), aspect ratio (A2), BET specific surface area, and oil absorption of primary particles constituting the mass part and aggregated particles were measured and shown in Table 2.

比較例1
ホウ酸100g、カーボンブラック24g、及び結晶化触媒として酸化カルシウム12gをボールミルにて混合した。該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1800℃まで昇温し、1800℃で4時間保持した。このとき1200〜1550℃における温度域の保持時間は23分となる。次いで解砕、酸洗浄を行い、六方晶窒化ホウ素粉末を得た。得られた六方晶窒化ホウ素粉末には、目視において、黒色異物が確認された。尚、上記方法と同条件で1550℃に至ったときの反応物中のカーボン濃度を測定した結果を表1に示す。
Comparative Example 1
100 g boric acid, 24 g carbon black, and 12 g calcium oxide as a crystallization catalyst were mixed in a ball mill. The mixture was heated to 1800 ° C. at 15 ° C./min in a nitrogen gas atmosphere using a graphite Tamman furnace, and held at 1800 ° C. for 4 hours. At this time, the holding time in the temperature region at 1200 to 1550 ° C. is 23 minutes. Next, crushing and acid cleaning were performed to obtain hexagonal boron nitride powder. In the obtained hexagonal boron nitride powder, black foreign matter was visually confirmed. The results of measuring the carbon concentration in the reaction product when the temperature reaches 1550 ° C. under the same conditions as in the above method are shown in Table 1.

得られた六方晶窒化ホウ素粉末のGI値を測定した。また、得られた六方晶窒化ホウ素粉末の蛍光X線分析測定結果Ca濃度より、CaBの含有量を測定し、結果を表1に示した。1550℃途中品のカーボン濃度が7.5質量%と高かった。また得られた六方晶窒化ホウ素粉末はCaB含有量が26000ppmと高く、X線回折測定結果より、CaBを含んでいた。上記六方晶窒化ホウ素粉末の窒化ホウ素単粒子の平均粒子径(d)、アスペクト比(A1)、窒化ホウ素凝集粒子の平均粒子径(D1)、窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部、凝集粒子を構成する一次粒子の平均粒子径(D2)、アスペクト比(A2)、BET比表面積、吸油量を測定し、表2に示した。 The GI value of the obtained hexagonal boron nitride powder was measured. Further, the content of CaB 6 was measured from the Ca concentration of the obtained hexagonal boron nitride powder, and the results are shown in Table 1. The carbon concentration of the intermediate product at 1550 ° C. was as high as 7.5% by mass. Hexagonal boron nitride powder obtained also CaB 6 content as high as 26000Ppm, from X-ray diffraction measurement results contained CaB 6. The average particle diameter (d), aspect ratio (A1), average particle diameter (D1) of boron nitride aggregated particles, and boron nitride single particles with respect to 100 parts by mass of boron nitride aggregated particles of the hexagonal boron nitride powder. The average particle diameter (D2), aspect ratio (A2), BET specific surface area, and oil absorption of primary particles constituting the mass part and aggregated particles were measured and shown in Table 2.

比較例2
ホウ酸100g、アセチレンブラック28g、及び結晶化触媒として酸化カルシウム38gをボールミルにて混合した。該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1250℃まで昇温し、1250℃で5時間保持した。1250℃保持後、15℃/分で1650℃まで昇温し、1650℃、4時間窒化処理した。次いで解砕、酸洗浄を行い、白色の六方晶窒化ホウ素粉末を得た。得られた六方晶窒化ホウ素粉末には、目視において、黒色異物は確認されなかった。尚、上記方法と同条件で1550℃に至ったときの反応物中のカーボン濃度を測定した結果を表1に示す。
Comparative Example 2
100 g boric acid, 28 g acetylene black, and 38 g calcium oxide as a crystallization catalyst were mixed in a ball mill. The mixture was heated to 1250 ° C. at 15 ° C./min in a nitrogen gas atmosphere using a graphite Tamman furnace, and held at 1250 ° C. for 5 hours. After maintaining at 1250 ° C., the temperature was raised to 1650 ° C. at 15 ° C./min, and nitriding was performed at 1650 ° C. for 4 hours. Next, crushing and acid cleaning were performed to obtain white hexagonal boron nitride powder. No black foreign matter was visually confirmed in the obtained hexagonal boron nitride powder. The results of measuring the carbon concentration in the reaction product when the temperature reaches 1550 ° C. under the same conditions as in the above method are shown in Table 1.

得られた六方晶窒化ホウ素粉末のGI値を測定した。また、得られた六方晶窒化ホウ素粉末の蛍光X線分析測定結果Ca濃度より、CaBの含有量を測定し、結果を表1に示した。得られた六方晶窒化ホウ素粉末は最高焼成温度が1650℃と低いため、結晶化度が2.5と低結晶性である。さらにSEM観察において粒子形状を確認したところ、一次粒子の長軸/厚み比が3〜10の六方晶窒化ホウ素粒子は確認されず、鱗片状粒子及び凝集粒子のみが確認された。上記六方晶窒化ホウ素粉末の窒化ホウ素単粒子の平均粒子径(d)、アスペクト比(A1)、窒化ホウ素凝集粒子の平均粒子径(D1)、窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部、凝集粒子を構成する一次粒子の平均粒子径(D2)、アスペクト比(A2)、BET比表面積、吸油量を測定し、表2に示した。 The GI value of the obtained hexagonal boron nitride powder was measured. Further, the content of CaB 6 was measured from the Ca concentration of the obtained hexagonal boron nitride powder, and the results are shown in Table 1. The obtained hexagonal boron nitride powder has a low crystallinity of 2.5 because the maximum firing temperature is as low as 1650 ° C. Further, when the particle shape was confirmed by SEM observation, hexagonal boron nitride particles having a major axis / thickness ratio of primary particles of 3 to 10 were not confirmed, and only scaly particles and aggregated particles were confirmed. The average particle diameter (d), aspect ratio (A1), average particle diameter (D1) of boron nitride aggregated particles, and boron nitride single particles with respect to 100 parts by mass of boron nitride aggregated particles of the hexagonal boron nitride powder. The average particle diameter (D2), aspect ratio (A2), BET specific surface area, and oil absorption of primary particles constituting the mass part and aggregated particles were measured and shown in Table 2.

比較例3
ホウ酸100g、カーボンブラック48g、及び結晶化触媒として酸化カルシウム30gをボールミルにて混合した。該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1500℃まで昇温し、1500℃で4時間保持した。1500℃保持後、15℃/分で1800℃まで昇温し、1800℃、3時間窒化処理した。次いで解砕、酸洗浄を行い、六方晶窒化ホウ素粉末を得た。得られた六方晶窒化ホウ素粉末には、目視において、黒色異物が確認された。尚、上記方法と同条件で1550℃に至ったときの反応物中のカーボン濃度を測定した結果を表1に示す。
Comparative Example 3
100 g boric acid, 48 g carbon black, and 30 g calcium oxide as a crystallization catalyst were mixed in a ball mill. The mixture was heated to 1500 ° C. at 15 ° C./min in a nitrogen gas atmosphere using a graphite Tamman furnace, and held at 1500 ° C. for 4 hours. After holding at 1500 ° C., the temperature was raised to 1800 ° C. at 15 ° C./min, and nitriding was performed at 1800 ° C. for 3 hours. Next, crushing and acid cleaning were performed to obtain hexagonal boron nitride powder. In the obtained hexagonal boron nitride powder, black foreign matter was visually confirmed. The results of measuring the carbon concentration in the reaction product when the temperature reaches 1550 ° C. under the same conditions as in the above method are shown in Table 1.

得られた六方晶窒化ホウ素粉末のGI値を測定した。また、得られた六方晶窒化ホウ素粉末の蛍光X線分析測定結果Ca濃度より、CaBの含有量を測定し、結果を表1に示した。1550℃途中品のカーボン濃度が9.5質量%と高かった。また得られた六方晶窒化ホウ素粉末はCaB含有量が55000ppmと高く、X線回折測定結果より、CaBを含んでいた。上記六方晶窒化ホウ素粉末の窒化ホウ素単粒子の平均粒子径(d)、アスペクト比(A1)、窒化ホウ素凝集粒子の平均粒子径(D1)、窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部、凝集粒子を構成する一次粒子の平均粒子径(D2)、アスペクト比(A2)、BET比表面積、吸油量を測定し、表2に示した。 The GI value of the obtained hexagonal boron nitride powder was measured. Further, the content of CaB 6 was measured from the Ca concentration of the obtained hexagonal boron nitride powder, and the results are shown in Table 1. The carbon concentration of the intermediate product at 1550 ° C. was as high as 9.5% by mass. Hexagonal boron nitride powder obtained also CaB 6 content as high as 55000Ppm, from X-ray diffraction measurement results contained CaB 6. The average particle diameter (d), aspect ratio (A1), average particle diameter (D1) of boron nitride aggregated particles, and boron nitride single particles with respect to 100 parts by mass of boron nitride aggregated particles of the hexagonal boron nitride powder. The average particle diameter (D2), aspect ratio (A2), BET specific surface area, and oil absorption of primary particles constituting the mass part and aggregated particles were measured and shown in Table 2.

比較例4
ホウ酸100g、カーボンブラック28g、及び結晶化触媒として炭酸カルシウム92gをボールミルにて混合した。該混合物を、黒鉛製タンマン炉を用い、窒素ガス雰囲気下で15℃/分で1500℃まで昇温し、1500℃で4時間保持した。1500℃保持後、15℃/分で1800℃まで昇温し、1800℃、2時間窒化処理した。次いで解砕、酸洗浄を行い、六方晶窒化ホウ素粉末を得た。得られた六方晶窒化ホウ素粉末には、目視において、黒色異物が確認された。尚、上記方法と同条件で1550℃に至ったときの反応物中のカーボン濃度を測定した結果を表1に示す。
Comparative Example 4
100 g boric acid, 28 g carbon black, and 92 g calcium carbonate as a crystallization catalyst were mixed in a ball mill. The mixture was heated to 1500 ° C. at 15 ° C./min in a nitrogen gas atmosphere using a graphite Tamman furnace, and held at 1500 ° C. for 4 hours. After holding at 1500 ° C., the temperature was raised to 1800 ° C. at 15 ° C./min, and nitriding was performed at 1800 ° C. for 2 hours. Next, crushing and acid cleaning were performed to obtain hexagonal boron nitride powder. In the obtained hexagonal boron nitride powder, black foreign matter was visually confirmed. The results of measuring the carbon concentration in the reaction product when the temperature reaches 1550 ° C. under the same conditions as in the above method are shown in Table 1.

得られた六方晶窒化ホウ素粉末のGI値を測定した。また、得られた六方晶窒化ホウ素粉末の蛍光X線分析測定結果Ca濃度より、CaBの含有量を測定し、結果を表1に示した。また得られた六方晶窒化ホウ素粉末はCaB含有量が2100ppmと高く、X線回折測定結果より、CaBを含んでいた。上記六方晶窒化ホウ素粉末の窒化ホウ素単粒子の平均粒子径(d)、アスペクト比(A1)、窒化ホウ素凝集粒子の平均粒子径(D1)、窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部、凝集粒子を構成する一次粒子の平均粒子径(D2)、アスペクト比(A2)、BET比表面積、吸油量を測定し、表2に示した。 The GI value of the obtained hexagonal boron nitride powder was measured. Further, the content of CaB 6 was measured from the Ca concentration of the obtained hexagonal boron nitride powder, and the results are shown in Table 1. Hexagonal boron nitride powder obtained also CaB 6 content as high as 2100 ppm, from X-ray diffraction measurement results contained CaB 6. The average particle diameter (d), aspect ratio (A1), average particle diameter (D1) of boron nitride aggregated particles, and boron nitride single particles with respect to 100 parts by mass of boron nitride aggregated particles of the hexagonal boron nitride powder. The average particle diameter (D2), aspect ratio (A2), BET specific surface area, and oil absorption of primary particles constituting the mass part and aggregated particles were measured and shown in Table 2.

表1、2に、実施例1〜5、比較例1〜4の結果についてまとめた。   Tables 1 and 2 summarize the results of Examples 1 to 5 and Comparative Examples 1 to 4.

Figure 0006483508
Figure 0006483508

Figure 0006483508
Figure 0006483508

実施例6〜10
本例は、六方晶窒化ホウ素粉末の樹脂成型品への添加剤としての性能比較試験を行ったものである。すなわち、六方晶窒化ホウ素粉末とシリコーン樹脂(KE106:信越化学工業株式会社製)を体積比で40:60の割合で乳鉢混合後、測定温度25℃においてB型粘度計TBA−10(東機工業製)で粘度を測定した。その結果を表3に示した。実施例1〜5で製造された六方晶窒化ホウ素粉末を含んだ樹脂組成物粘度は150Pa・s以下であり、更なる高充填が可能であった。
Examples 6-10
In this example, a performance comparison test as an additive to a resin molded product of hexagonal boron nitride powder was performed. That is, after mixing a hexagonal boron nitride powder and a silicone resin (KE106: manufactured by Shin-Etsu Chemical Co., Ltd.) at a volume ratio of 40:60, a B-type viscometer TBA-10 (Toki Industries Co., Ltd.) at a measurement temperature of 25 ° C. The viscosity was measured. The results are shown in Table 3. The viscosity of the resin composition containing the hexagonal boron nitride powder produced in Examples 1 to 5 was 150 Pa · s or less, and further high filling was possible.

比較例5〜8
比較例1〜4で製造された六方晶窒化ホウ素粉末においても、同様の樹脂成型品への添加剤としての性能比較試験を行った。その結果を表3に示した。比較例2で製造された六方晶窒化ホウ素粉末を含んだ樹脂組成物粘度は200Pa・s以上と実施例1で製造された六方晶窒化ホウ素粉末を含んだ樹脂組成物粘度に対して高粘度であり、更なる高充填が不可能であった。
Comparative Examples 5-8
The hexagonal boron nitride powder produced in Comparative Examples 1 to 4 was also subjected to a performance comparison test as an additive to the same resin molded product. The results are shown in Table 3. The viscosity of the resin composition including the hexagonal boron nitride powder manufactured in Comparative Example 2 is 200 Pa · s or higher, which is higher than the viscosity of the resin composition including the hexagonal boron nitride powder manufactured in Example 1. There was no further high filling.

実施例6〜10
比較例5〜8
窒化ホウ素粉末を樹脂に充填した熱伝導率及び絶縁耐力の評価
得られた窒化ホウ素粉末を樹脂に充填した際の熱伝導率及び絶縁耐力の評価は、以下のようにして行った。
Examples 6-10
Comparative Examples 5-8
Evaluation of thermal conductivity and dielectric strength with boron nitride powder filled in resin Evaluation of thermal conductivity and dielectric strength when the obtained boron nitride powder was filled into resin was performed as follows.

基剤樹脂として、エポキシ樹脂(三菱化学株式会社製JER806)100重量部と硬化剤(脂環式ポリアミン系硬化剤、三菱化学株式会社製JERキュア113)28重量部との混合物(表3において「エポキシ」と記載する。)、及び、シリコーン樹脂(信越化学工業社製KE−106)100重量部と硬化剤(信越化学工業社製CAT−RG)10重量部との混合物(表3において「シリコーン」と記載する。)を準備した。   As a base resin, a mixture of 100 parts by weight of an epoxy resin (JER806 manufactured by Mitsubishi Chemical Corporation) and 28 parts by weight of a curing agent (alicyclic polyamine-based curing agent, JER Cure 113 manufactured by Mitsubishi Chemical Corporation) (in Table 3, “ And a mixture of 100 parts by weight of a silicone resin (KE-106 manufactured by Shin-Etsu Chemical Co., Ltd.) and 10 parts by weight of a curing agent (CAT-RG manufactured by Shin-Etsu Chemical Co., Ltd.). ”) Was prepared.

次に、各基材樹脂35体積%と、前記特定窒化ホウ素粉末65体積%とをメチルエチルケトンを溶媒として混合した後、溶媒を乾固させて樹脂組成物を得た。   Next, 35% by volume of each base resin and 65% by volume of the specific boron nitride powder were mixed using methyl ethyl ketone as a solvent, and then the solvent was dried to obtain a resin composition.

これを金型体に注型し、熱プレスを使用し、温度:150℃、圧力:5MPa、保持時間:1時間の条件で硬化させ、直径10mm、厚さ0.2mmのシートを作製し、温度波熱分析法にて熱伝導率を測定した。また、耐電圧試験機(多摩電測株式会社製)にて絶縁耐力を測定した。測定結果を表3に示した。実施例1〜5で得られた六方晶窒化ホウ素粉末を用いた樹脂組成物は10W/m・K、25kV/mmであり、高熱伝導率且つ高絶縁耐力であった。   This is cast into a mold body, using a hot press, cured at a temperature of 150 ° C., a pressure of 5 MPa, and a holding time of 1 hour to produce a sheet having a diameter of 10 mm and a thickness of 0.2 mm. The thermal conductivity was measured by temperature wave thermal analysis. In addition, the dielectric strength was measured with a withstand voltage tester (manufactured by Tama Denso Co., Ltd.) The measurement results are shown in Table 3. The resin composition using the hexagonal boron nitride powder obtained in Examples 1 to 5 had 10 W / m · K and 25 kV / mm, and had high thermal conductivity and high dielectric strength.

Figure 0006483508
Figure 0006483508

Claims (5)

六方晶窒化ホウ素凝集粒子と、平均アスペクト比が3〜25、平均粒径が4〜30μmの六方晶窒化ホウ素単粒子とを含み、上記窒化ホウ素凝集粒子100質量部に対する窒化ホウ素単粒子の質量部が10〜50質量部、BET比表面積が0.5〜6.0m/g、JIS K 5101−13−1に基づいて測定される吸油量が100g/100g以下であり、且つ、CaBの含有量が500ppm以下であることを特徴とする六方晶窒化ホウ素粉末。 Containing hexagonal boron nitride aggregated particles and hexagonal boron nitride single particles having an average aspect ratio of 3 to 25 and an average particle size of 4 to 30 μm, and the mass parts of the boron nitride single particles with respect to 100 parts by mass of the boron nitride aggregated particles Is 10 to 50 parts by mass, the BET specific surface area is 0.5 to 6.0 m 2 / g, the oil absorption measured based on JIS K 5101-13-1 is 100 g / 100 g or less, and CaB 6 A hexagonal boron nitride powder having a content of 500 ppm or less. 請求項1記載の六方晶窒化ホウ素単粒子の平均アスペクト比が3〜5である請求項1記載の六方晶窒化ホウ素粉末。   The hexagonal boron nitride powder according to claim 1, wherein the hexagonal boron nitride single particles according to claim 1 have an average aspect ratio of 3 to 5. 請求項1又は2に記載の六方晶窒化ホウ素粉末を充填してなる樹脂組成物。 Resin composition obtained by filling the hexagonal boron nitride powder according to claim 1 or 2. 請求項記載の樹脂組成物よりなる電子部品の放熱材。 A heat dissipating material for an electronic component comprising the resin composition according to claim 3 . ホウ素化合物、カーボン源および含酸素カルシウム化合物を、ホウ素化合物とカーボン源との割合がB/C(元素比)換算で0.5〜1.0、ホウ素化合物とカーボン源との合計量(HBO、C換算値)100質量部に対して含酸素カルシウム化合物をCaO換算で3〜30質量部となる割合で含有する混合物を、窒素雰囲気下に加熱し、1550℃の温度に至るまでに、反応物中のカーボン濃度が5質量%以下となるように反応させた後、1700℃以上の温度に加熱することを特徴とする六方晶窒化ホウ素粉末の製造方法。 The boron compound, the carbon source, and the oxygen-containing calcium compound are such that the ratio of the boron compound to the carbon source is 0.5 to 1.0 in terms of B / C (element ratio), and the total amount of the boron compound and the carbon source (H 3 BO 3 , C conversion value) A mixture containing an oxygen-containing calcium compound in a proportion of 3 to 30 parts by mass in terms of CaO with respect to 100 parts by mass is heated in a nitrogen atmosphere and reaches a temperature of 1550 ° C. The method for producing a hexagonal boron nitride powder, wherein the reaction is performed so that the carbon concentration in the reaction product is 5% by mass or less, and then heated to a temperature of 1700 ° C. or higher.
JP2015080562A 2014-04-18 2015-04-10 Hexagonal boron nitride powder and method for producing the same Active JP6483508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015080562A JP6483508B2 (en) 2014-04-18 2015-04-10 Hexagonal boron nitride powder and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014086079 2014-04-18
JP2014086079 2014-04-18
JP2015080562A JP6483508B2 (en) 2014-04-18 2015-04-10 Hexagonal boron nitride powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015212217A JP2015212217A (en) 2015-11-26
JP6483508B2 true JP6483508B2 (en) 2019-03-13

Family

ID=54696734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015080562A Active JP6483508B2 (en) 2014-04-18 2015-04-10 Hexagonal boron nitride powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6483508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022163650A1 (en) * 2021-01-26 2022-08-04

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536045B2 (en) * 2015-01-28 2019-07-03 日立化成株式会社 Resin composition, resin sheet and cured resin sheet
CN108473308B (en) * 2016-02-22 2021-10-29 昭和电工株式会社 Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet
JP6704271B2 (en) * 2016-03-15 2020-06-03 デンカ株式会社 Hexagonal boron nitride primary particle aggregate, resin composition and use thereof
JP6892583B2 (en) * 2016-03-31 2021-06-23 日本ガスケット株式会社 Method for manufacturing a molded product using a thermally conductive insulating resin composition
JP6676479B2 (en) * 2016-06-13 2020-04-08 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
JP6746443B2 (en) * 2016-09-13 2020-08-26 株式会社トクヤマ Hexagonal boron nitride powder
US10246623B2 (en) 2016-09-21 2019-04-02 NAiEEL Technology Resin composition, article prepared by using the same, and method of preparing the same
US10919767B2 (en) 2016-12-01 2021-02-16 Tokuyama Corporation Hexagonal boron nitride powder and production process therefor
JP6979034B2 (en) * 2016-12-26 2021-12-08 株式会社トクヤマ Hexagonal boron nitride powder and its manufacturing method
JP6822836B2 (en) * 2016-12-28 2021-01-27 昭和電工株式会社 Hexagonal boron nitride powder, its manufacturing method, resin composition and resin sheet
EP3564185B1 (en) * 2016-12-28 2023-11-08 Resonac Corporation Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
JP7002196B2 (en) * 2017-01-05 2022-01-20 デンカ株式会社 Hexagonal boron nitride powder and cosmetics
KR102115720B1 (en) * 2017-02-07 2020-05-28 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
CA3080094A1 (en) * 2017-12-20 2019-06-27 Covestro Deutschland Ag Polycarbonate composition with good flame retardancy
KR101898234B1 (en) * 2018-02-07 2018-09-12 내일테크놀로지 주식회사 Resin composition, article prepared by using the same and method of preparing the same
JP7138481B2 (en) * 2018-05-30 2022-09-16 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
JP7138482B2 (en) * 2018-05-30 2022-09-16 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
JP7109274B2 (en) * 2018-06-22 2022-07-29 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
JP7109275B2 (en) * 2018-06-22 2022-07-29 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
JP2020176020A (en) * 2019-04-15 2020-10-29 三菱瓦斯化学株式会社 Scaly boron nitride aggregate, composition, resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material and adhesive
JP7107901B2 (en) * 2019-08-26 2022-07-27 株式会社トクヤマ Boron nitride powder for cosmetics and method for producing the same
US20220363539A1 (en) * 2019-10-28 2022-11-17 Tokuyama Corporation Method for producing hexagonal boron nitride powder, and hexagonal boron nitride powder
TW202124261A (en) * 2019-11-21 2021-07-01 日商電化股份有限公司 Method for adjusting particle crushing strength of boron nitride powder, boron nitride powder and method for producing same
KR20220117201A (en) * 2019-12-19 2022-08-23 가부시끼가이샤 도꾸야마 Hexagonal boron nitride powder and its manufacturing method
JP7356364B2 (en) * 2020-01-24 2023-10-04 デンカ株式会社 Hexagonal boron nitride powder and method for producing hexagonal boron nitride powder
JP7360962B2 (en) * 2020-01-24 2023-10-13 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7203284B2 (en) * 2021-01-26 2023-01-12 デンカ株式会社 Method for producing sintered boron nitride sheet, and sintered sheet
CN117203155A (en) * 2021-04-19 2023-12-08 电化株式会社 Hexagonal boron nitride powder for cosmetics and cosmetics
WO2023162641A1 (en) * 2022-02-22 2023-08-31 デンカ株式会社 Powder, powder manufacturing method, and heat dissipation sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416502A (en) * 1990-05-02 1992-01-21 Shin Etsu Chem Co Ltd Production of boron nitride
JP3669818B2 (en) * 1997-07-09 2005-07-13 電気化学工業株式会社 Hexagonal boron nitride powder
JPH1160216A (en) * 1997-08-04 1999-03-02 Shin Etsu Chem Co Ltd Heat conductive boron nitride filler and insulating heat releasing sheet
JPH11171511A (en) * 1997-12-15 1999-06-29 Shin Etsu Chem Co Ltd Hexagonal boron nitride powder and its production
JP2009280720A (en) * 2008-05-23 2009-12-03 Denki Kagaku Kogyo Kk Hexagonal boron nitride powder and organic resin composition containing hexagonal boron nitride powder
DE102010050900A1 (en) * 2010-11-10 2012-05-10 Esk Ceramics Gmbh & Co. Kg Boron nitride agglomerates, process for their preparation and their use
JP5579029B2 (en) * 2010-11-24 2014-08-27 電気化学工業株式会社 Boron nitride powder, method for producing the same, composition containing the same, and heat dissipation material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022163650A1 (en) * 2021-01-26 2022-08-04
WO2022163650A1 (en) * 2021-01-26 2022-08-04 デンカ株式会社 Hexagonal boron nitride sintered body and method for producing same
JP7203290B2 (en) 2021-01-26 2023-01-12 デンカ株式会社 Sheet-like hexagonal boron nitride sintered body and method for producing the same

Also Published As

Publication number Publication date
JP2015212217A (en) 2015-11-26

Similar Documents

Publication Publication Date Title
JP6483508B2 (en) Hexagonal boron nitride powder and method for producing the same
JP6516509B2 (en) Hexagonal boron nitride powder and method for producing the same
JP5645559B2 (en) Spherical aluminum nitride powder
JP5618734B2 (en) Spherical aluminum nitride powder
JP4750220B2 (en) Hexagonal boron nitride powder and method for producing the same
JP7421605B2 (en) hexagonal boron nitride powder
JP5923106B2 (en) Continuous production method of boron nitride powder
JP6356025B2 (en) Boron nitride powder and method for producing the same
JP6979034B2 (en) Hexagonal boron nitride powder and its manufacturing method
JP6676479B2 (en) Hexagonal boron nitride powder and method for producing the same
JP6452873B2 (en) Boron nitride powder and method for producing the same
JP2019182737A (en) Hexagonal boron nitride powder and manufacturing method therefor
JPWO2020032060A1 (en) Hexagonal Boron Nitride Powder and Method for Producing Hexagonal Boron Nitride Powder
JP6516553B2 (en) Hexagonal boron nitride powder
JP6516594B2 (en) Hexagonal boron nitride particles and method for producing the same
WO2015105145A1 (en) Method for producing hexagonal boron nitride, and heat dissipation sheet
JPH08217424A (en) Hexagonal boron nitride powder and its production
JP5109882B2 (en) Method for producing hexagonal boron nitride powder
JP6382621B2 (en) Silicone resin composition
JP6441027B2 (en) Method for producing boron nitride powder
JP2021172535A (en) Method for producing spherical aluminum nitride powder and spherical aluminum nitride powder
JP6196544B2 (en) Method for producing boron nitride
JP2017066017A (en) Manufacturing method of silicon nitride powder
JP2022133951A (en) hexagonal boron nitride powder
JP2024037327A (en) Manufacturing method of hexagonal boron nitride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190214

R150 Certificate of patent or registration of utility model

Ref document number: 6483508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250