JP7107901B2 - Boron nitride powder for cosmetics and method for producing the same - Google Patents

Boron nitride powder for cosmetics and method for producing the same Download PDF

Info

Publication number
JP7107901B2
JP7107901B2 JP2019154057A JP2019154057A JP7107901B2 JP 7107901 B2 JP7107901 B2 JP 7107901B2 JP 2019154057 A JP2019154057 A JP 2019154057A JP 2019154057 A JP2019154057 A JP 2019154057A JP 7107901 B2 JP7107901 B2 JP 7107901B2
Authority
JP
Japan
Prior art keywords
boron nitride
nitride powder
reaction
powder
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019154057A
Other languages
Japanese (ja)
Other versions
JP2021031443A (en
Inventor
真人 油谷
祥太 台木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2019154057A priority Critical patent/JP7107901B2/en
Publication of JP2021031443A publication Critical patent/JP2021031443A/en
Application granted granted Critical
Publication of JP7107901B2 publication Critical patent/JP7107901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)

Description

本発明は、化粧料用に用いられる窒化ホウ素粉末およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a boron nitride powder used for cosmetics and a method for producing the same.

窒化ホウ素粉末は、六方晶系の層状結晶構造を有する白色の体質顔料であり、被覆力、透明感、展延性、付着性および潤滑性等に優れることから、光沢付与、感触改良、粉末の増量・充填等を目的として、メイクアップ化粧品等の化粧料の粉体基材として用いられている。 Boron nitride powder is a white extender pigment with a hexagonal layered crystal structure and is excellent in covering power, transparency, spreadability, adhesion and lubricity.・It is used as a powder base material for cosmetics such as make-up cosmetics for the purpose of filling.

化粧料の粉体基材としての使用感(感触)は、球状、板状などの粉体形状や粒子径、硬度、表面状態等によって異なってくるものであり、前記粉体形状等を制御することによって、化粧料の粉体基材として好ましい、潤滑性、白色度、耐加水分解性、展延性、付着性等の物性に優れた窒化ホウ素粉末を得られることが知られている(例えば、特許文献1~4参照)。 The feeling of use (feeling) of a cosmetic as a powdery base material varies depending on the shape of the powder, such as spherical or plate-like, particle size, hardness, surface condition, etc., and the shape of the powder, etc. is controlled. By this, it is known that a boron nitride powder having excellent physical properties such as lubricity, whiteness, hydrolysis resistance, spreadability, and adhesion, which is preferable as a powder base material for cosmetics, can be obtained (for example, See Patent Documents 1 to 4).

ここで、数μm~数十μm程度の粒子径を有する粒子からなる粉体は、一般的に凝集性を有しており、凝集性が高い場合は粉体が固まりやすいことから、潤滑性、展延性、付着性等を向上するためには凝集性は低い方が好ましい。また、凝集体が存在すると肌触りが悪くなる問題もある。
従来技術においては、凝集性を低くするために、解砕、粉砕、分散等の処理を必須としているため、製造コストが高くなるという問題がある。
また、被覆力、透明感、展延性、付着性の点において、最も好まれる化粧料用の窒化ホウ素粉末は、平均長径3~7μm、平均アスペクト比6~15のものであるが、これまでの還元窒化法では凝集体を含むものや、凝集体が少なくても平均長径8~12μmの窒化ホウ素が得られるものであり、凝集体が少なく、且つ、平均長径3~7μmの窒化ホウ素粉末を得ることは困難であった。
Here, powder composed of particles having a particle diameter of about several μm to several tens of μm generally has cohesion, and when the cohesion is high, the powder tends to clump, so lubricity, In order to improve spreadability, adhesiveness, etc., the lower the cohesion, the better. In addition, the presence of aggregates also poses a problem of poor touch.
In the prior art, processing such as pulverization, pulverization, and dispersion is essential in order to reduce cohesiveness, so there is a problem of high production costs.
In terms of covering power, transparency, spreadability, and adhesion, the most preferred boron nitride powder for cosmetics has an average length of 3 to 7 μm and an average aspect ratio of 6 to 15. In the reductive nitriding method, it is possible to obtain boron nitride having an average major diameter of 8 to 12 μm even if it contains agglomerates or few aggregates, and a boron nitride powder with few aggregates and an average major diameter of 3 to 7 μm is obtained. was difficult.

特開2019-043792号公報JP 2019-043792 A 特開2004-035273号公報Japanese Patent Application Laid-Open No. 2004-035273 特開昭63-274603号公報JP-A-63-274603 特開2012-176910号公報JP 2012-176910 A

本発明は、前記事情を鑑み、凝集性が低く、化粧料用に適した平均長径を有する化粧料用窒化ホウ素粉末を提供することを目的とする。また、本発明は、前記化粧料用窒化ホウ素粉末を低コストで製造することが可能な製造方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a cosmetic boron nitride powder having low cohesiveness and an average length suitable for cosmetic use. Another object of the present invention is to provide a manufacturing method capable of manufacturing the boron nitride powder for cosmetics at a low cost.

本発明は、レーザ回折散乱法で測定したメディアン径(D1)が4~30μmの範囲にあり、平均長径が3~7μm、平均アスペクト比が6~15の範囲にある窒化ホウ素粉末であって、エタノール中、出力25Wで1200秒間超音波分散させたときのメディアン径(D2)が4~10μmの範囲にあることを特徴とする化粧料用窒化ホウ素粉末を提供する。 The present invention is a boron nitride powder having a median diameter (D1) measured by a laser diffraction scattering method in the range of 4 to 30 μm, an average major axis in the range of 3 to 7 μm, and an average aspect ratio in the range of 6 to 15, Provided is a cosmetic boron nitride powder characterized by having a median diameter (D2) in the range of 4 to 10 μm when ultrasonically dispersed in ethanol at an output of 25 W for 1200 seconds.

また、本発明は、含酸素ホウ素化合物及び含酸素アルカリ土類金属化合物と共に、炭素源となる化合物を含む原料混合物を用意する工程;
前記原料混合物を窒素雰囲気下で加熱して還元窒化を行う反応工程;
前記反応工程で得られた窒化ホウ素を含む反応生成物を酸洗浄する洗浄工程;
を含む窒化ホウ素粉末の製造方法において、
前記原料混合物は、B/C原子比が0.80~2.00、酸化物換算での含酸素アルカリ土類金属化合物(MO;Mはアルカリ土類金属)と含酸素ホウ素化合物(B)とのモル比(MO/B)が0.12以下に設定されており、
前記反応工程において、反応生成物中のM/Bモル比が0.1~0.7となるように反応条件が調整されて還元窒化反応が行われる、前記化粧料用窒化ホウ素粉末の製造方法を提供する。
Further, the present invention provides a step of preparing a raw material mixture containing a compound serving as a carbon source together with an oxygen-containing boron compound and an oxygen-containing alkaline earth metal compound;
a reaction step of heating the raw material mixture in a nitrogen atmosphere for reduction nitriding;
a cleaning step of acid-cleaning the reaction product containing boron nitride obtained in the reaction step;
In a method for producing a boron nitride powder comprising
The raw material mixture has a B/C atomic ratio of 0.80 to 2.00, and contains an oxygen-containing alkaline earth metal compound (MO; M is an alkaline earth metal) and an oxygen-containing boron compound (B 2 O 3 ) and the molar ratio (MO/B 2 O 3 ) is set to 0.12 or less,
The boron nitride powder for cosmetics, wherein in the reaction step, the reaction conditions are adjusted so that the molar ratio of M/B 2 O 3 in the reaction product is 0.1 to 0.7, and the reductive nitriding reaction is performed. to provide a method of manufacturing

本発明の化粧料用窒化ホウ素粉末は、化粧料用に適した平均長径とアスペクト比を有するため、被覆力、透明感、展延性、付着性に優れ、化粧料用の窒化ホウ素粉末として適している。また、凝集体が少なく且つ柔らかいため、化粧料用として使用したときの肌触りが良い。 Since the boron nitride powder for cosmetics of the present invention has an average major diameter and an aspect ratio suitable for cosmetics, it is excellent in covering power, transparency, spreadability, and adhesion, and is suitable as a boron nitride powder for cosmetics. there is In addition, since it has few aggregates and is soft, it feels good on the skin when used in cosmetics.

本発明は、レーザ回折散乱法で測定したメディアン径(D1)が4~30μmの範囲にあり、平均長径が3~7μm、平均アスペクト比が6~15の範囲にある窒化ホウ素粉末であって、エタノール中、出力25Wで1200秒間超音波分散させたときのメディアン径(D2)が4~10μmの範囲にある化粧料用窒化ホウ素粉末である。 The present invention is a boron nitride powder having a median diameter (D1) measured by a laser diffraction scattering method in the range of 4 to 30 μm, an average major axis in the range of 3 to 7 μm, and an average aspect ratio in the range of 6 to 15, It is a cosmetic boron nitride powder having a median diameter (D2) in the range of 4 to 10 μm when ultrasonically dispersed in ethanol at an output of 25 W for 1200 seconds.

ここで、レーザ回折散乱法で測定したメディアン径(D1)は、エタノールを分散媒とし、製造された後に何も処理を行っていない状態の窒化ホウ素粉末を試料として、レーザ回折散乱法で測定した場合の累積粒径分布グラフ(縦軸は粒子体積の累積率で0~100%、横軸は粒径を表す右肩上がりのグラフ)において累積率50%における粒径を示しており、これは一般的にはd50とも表され、凝集体を含んだ状態の窒化ホウ素粉末の平均粒径を意味している。
メディアン径(D1)が前記範囲より大きくなると、肌に塗布する際にざらつきを感じるようになり、また、潤滑性、展延性、付着性等が低下してしまう。また、メディアン径(D1)が前記範囲より小さくなると、平均長径が3μmよりも小さくなってしまい、被覆力、透明感、展延性、付着性が低下してしまう。
Here, the median diameter (D1) measured by the laser diffraction scattering method is measured by the laser diffraction scattering method using ethanol as a dispersion medium and using boron nitride powder as a sample that has not been subjected to any treatment after production. In the cumulative particle size distribution graph of the case (the vertical axis is the cumulative rate of particle volume from 0 to 100%, and the horizontal axis is an upward-sloping graph representing the particle size), the particle size at a cumulative rate of 50% is shown. Generally, it is also expressed as d50, which means the average particle size of the boron nitride powder containing aggregates.
If the median diameter (D1) is larger than the above range, the product will feel rough when applied to the skin, and lubricity, spreadability, adhesion, etc. will be reduced. On the other hand, when the median diameter (D1) is smaller than the above range, the average length becomes smaller than 3 μm, resulting in deterioration of covering power, transparency, spreadability and adhesiveness.

また、平均長径は、窒化ホウ素粉末を分散させたエポキシ樹脂の断面をミリング加工し、その加工面をSEMにより撮影したときの窒化ホウ素粒子の長辺の長さの平均値を示し、平均アスペクト比は、前記粒子の長辺(長径)を、それぞれの粒子の短辺(厚さ)で除した場合の数値であるアスペクト比の平均値を示しており、窒化ホウ素粉末がミクロンオーダーの大きさの薄片であることを意味している。 In addition, the average length indicates the average length of the long side of the boron nitride particles when the cross section of the epoxy resin in which the boron nitride powder is dispersed is milled and the processed surface is photographed by SEM, and the average aspect ratio is the average value of the aspect ratio, which is a numerical value obtained by dividing the long side (long diameter) of the particles by the short side (thickness) of each particle, and the boron nitride powder has a micron-order size. It is meant to be flaky.

そして、エタノール中、出力25Wで1200秒間超音波分散させたときのメディアン径(D2)は、超音波ホモジナイザーを用い、前記条件で超音波分散処理を行った後の試料を、そのままD1と同じ条件で測定したメディアン径を示し、超音波分散処理により、凝集体の一部/又はすべてが破壊された窒化ホウ素粉末の平均粒径を意味している。
このメディアン径(D2)が小さいほど、凝集体が柔らかいことを意味し、4~10μmのものは、化粧品の製造工程において、他の粉体等と混合した際に凝集体が破壊されやすいため、化粧品製品中に凝集体が残りにくく、また、製品中に凝集体が僅かに残ったとしても、肌に塗るときに容易に壊れるため、潤滑性、展延性、付着性等に優れる。
なお、ホモジナイザーの出力100Wで1200秒間の超音波分散処理をした上で、粒度分布を測定することが一般的であるが、この出力では極めて硬い凝集体も破壊されてしまうため、凝集体の柔らかさを評価するには不適切である。
Then, the median diameter (D2) when ultrasonically dispersed in ethanol at an output of 25 W for 1200 seconds was obtained by using an ultrasonic homogenizer and performing ultrasonic dispersion treatment under the above conditions. indicates the median diameter measured in , and means the average particle diameter of the boron nitride powder in which some/or all of the aggregates are destroyed by ultrasonic dispersion treatment.
The smaller the median diameter (D2), the softer the aggregate. Agglomerates are less likely to remain in cosmetic products, and even if a small amount of aggregates remain in the product, they are easily broken when applied to the skin, resulting in excellent lubricity, spreadability, adhesion, and the like.
In addition, it is common to measure the particle size distribution after performing ultrasonic dispersion treatment for 1200 seconds at an output of 100 W of a homogenizer. inadequate to assess

したがって、本発明は、平均長径が3~7μmの薄片粒子から構成され、凝集体が存在せず完全に分散した状態か、または凝集体が存在したとしてもごくわずかな力でほぼ完全に分散した状態である化粧料用窒化ホウ素粉末である。 Therefore, the present invention is composed of flake particles with an average major axis of 3 to 7 μm, completely dispersed in the absence of agglomerates, or almost completely dispersed with very little force if agglomerates are present. It is a boron nitride powder for cosmetics that is in a state.

さらに、本発明では、前記特定の還元窒化法を用いて、出発原料から1回の加熱処理で前記窒化ホウ素粉末を製造することができ、窒化ホウ素粉末製造後に凝集性を低くするための解砕、粉砕、分散等の処理を行う必要がないことから、低コストで化粧料用窒化ホウ素粉末を製造することができる。 Furthermore, in the present invention, the boron nitride powder can be produced by one heat treatment from the starting material using the specific reduction nitriding method, and after the production of the boron nitride powder, pulverization is performed to reduce cohesion. Since there is no need to perform treatments such as pulverization, dispersion, etc., the boron nitride powder for cosmetics can be produced at low cost.

還元窒化法による六方晶窒化ホウ素(以下、「h-BN」ともいう。)の製造を、例えば、以下のようにして実施できる。即ち、ホウ素源として酸化ホウ素(B)等の含酸素ホウ素化合物を使用し、この含酸素ホウ素化合物の粉末と、カーボン粉末及び助剤との混合粉末を反応原料として、窒化反応炉内において、窒素を供給し、含酸素ホウ素化合物の還元及び窒化により、h-BNを得る。 Hexagonal boron nitride (hereinafter also referred to as “h-BN”) can be produced by the reductive nitriding method, for example, as follows. That is, an oxygen-containing boron compound such as boron oxide (B 2 O 3 ) is used as a boron source, and a mixed powder of this oxygen-containing boron compound powder, carbon powder, and an auxiliary agent is used as a reaction raw material in a nitriding reaction furnace. , nitrogen is supplied to obtain h-BN by reduction and nitridation of the oxygen-containing boron compound.

上記の反応は、下記式により表され、一般に1200℃以上で反応が進行する。
+3C+N → 2BN+3CO
上記の反応は、一般に、1550℃以下の温度で進行させることが好ましい。1550℃以上の温度において、カーボンが5質量%以上残存していると、CaB等の黒色不純物が生成してしまい好ましくない。例えば、1500℃程度の温度で2~10時間保持することで反応を十分に進行させることが好ましい。
The above reaction is represented by the following formula, and generally proceeds at 1200° C. or higher.
B2O3+ 3C + N2 →2BN+3CO
It is generally preferred that the above reaction proceed at a temperature of 1550° C. or less. If 5% by mass or more of carbon remains at a temperature of 1550° C. or higher, black impurities such as CaB 6 are generated, which is not preferable. For example, it is preferable to allow the reaction to proceed sufficiently by holding at a temperature of about 1500° C. for 2 to 10 hours.

上記の反応後、一般に、窒化反応炉内を1700~2000℃、好ましくは1750~1900℃の温度に保持することでBNの結晶成長が進む。この温度が低すぎると、化粧料用として相応しい平均長径まで成長せず、また、窒化反応炉内の温度が必要以上に高いと、平均長径が大きくなり過ぎてしまう。 After the above reaction, the inside of the nitriding reactor is generally kept at a temperature of 1700 to 2000° C., preferably 1750 to 1900° C., so that BN crystal growth proceeds. If this temperature is too low, the particles will not grow to a suitable average major axis for cosmetics, and if the temperature in the nitriding reactor is higher than necessary, the average major axis will become too large.

また、反応原料中の助剤としての含酸素アルカリ土類金属化合物は、上記の結晶成長を促進させるために使用されるものであり、含酸素アルカリ土類金属化合物として、例えば酸化カルシウム(CaO)を使用できる。通常、還元窒化を行う上では酸化ホウ素(B)を過剰に添加しており、1700℃~2000℃の結晶成長の段階において二成分系の液相(B-CaO)が存在し、この液相中で結晶成長が進行する。ここで、液相中Ca濃度が高すぎる場合には、h-BNの長径が大きくなり過ぎるばかりでなく、粒子同士の凝集を助長してしまう問題もある。従って、本発明のh-BNを得るには、このCa濃度を低く保つ必要があり、液相中のCa濃度を制御する手段としては、原料中のホウ素源と炭素源と助剤の割合を調整する方法と、前記液相の揮発量を制御する方法が挙げられる。 Further, the oxygen-containing alkaline earth metal compound as an auxiliary agent in the reaction raw material is used to promote the above crystal growth. can be used. Boron oxide ( B.sub.2O.sub.3 ) is usually added excessively for reduction nitridation, and a two -component liquid phase ( B.sub.2O.sub.3 --CaO) forms at the stage of crystal growth at 1700.degree. C. to 2000.degree . Crystal growth proceeds in this liquid phase. Here, when the Ca concentration in the liquid phase is too high, not only does the length of the h-BN become too large, but there is also the problem of promoting aggregation of particles. Therefore, in order to obtain the h-BN of the present invention, it is necessary to keep this Ca concentration low, and as a means of controlling the Ca concentration in the liquid phase, the ratio of the boron source, the carbon source and the auxiliary agent in the raw material and a method of controlling the volatilization amount of the liquid phase.

反応原料中、ホウ素源と炭素源との割合は、B/C原子比が0.80~2.00、特に0.80~1.20の範囲となるように設定される。この原子比(B/C)が上記範囲よりも小さいと、液相中Ca濃度が高くなり、h-BNの長径が目的より大きくなり、また、凝集が硬くなるおそれがある。また、上記範囲よりも大きいと、未反応Bの割合が余りにも過剰になり、原料充填量に対する窒化ホウ素の収率が著しく低下してしまい、生産性が低下する。
また、助剤と含ホウ素化合物との割合は、例えば酸化物換算での含酸素アルカリ土類金属化合物と含酸素ホウ素化合物のモル比(MO/B)が0.12以下、特に0.10以下とすることが好適である。このモル比が、当該範囲を超えると、h-BNの長径が目的より大きくなりやすい。また、モル比に下限は無いが、完全に0とすると結晶化が促進されず、目的の長径よりも著しく小さい微粉が増える可能性があるため、少量でも存在すればよく、下限は好ましくは0.002である。
The ratio of the boron source and the carbon source in the reaction raw materials is set so that the B/C atomic ratio is in the range of 0.80 to 2.00, especially 0.80 to 1.20. If the atomic ratio (B/C) is smaller than the above range, the concentration of Ca in the liquid phase becomes high, the major axis of h-BN becomes larger than intended, and aggregation may become hard. On the other hand, if it is larger than the above range, the ratio of unreacted B 2 O 3 becomes too excessive, and the yield of boron nitride with respect to the amount of charged raw materials is remarkably lowered, resulting in lowered productivity.
Further, the ratio of the auxiliary agent and the boron-containing compound is such that the molar ratio (MO/B 2 O 3 ) of the oxygen-containing alkaline earth metal compound and the oxygen-containing boron compound in terms of oxide is 0.12 or less, particularly 0. 0.10 or less is preferable. If this molar ratio exceeds this range, the major axis of h-BN tends to be larger than intended. In addition, there is no lower limit to the molar ratio, but if it is completely 0, crystallization will not be promoted, and there is a possibility that fine powder that is significantly smaller than the desired major axis will increase. .002.

ここで、前記反応工程の進行中には、徐々に液相が揮発するものであるが、CaOよりもBの方が揮発しやすいため、揮発が進むに連れ液相中Ca濃度が上昇することになる。そのため、h-BNの長径を制御するには、液相の揮発量を制御する必要がある。
前記反応工程において、窒化反応炉内は大気圧の窒素雰囲気であり、窒素ガスを窒化反応炉の容積1Lあたり0.1~10L/hrの流量で給排気させることが一般的であるが、窒素ガスの流量が増すほど、液相が揮発しやすくなるため、h-BNの長径が大きくなりやすい。よって、平均長径3~7μmの窒化ホウ素粉末を得るためには、窒素ガスの流量を低くすることが好ましい。ただし、液相の揮発量は、反応炉内の構造にも大きく依存するものである。従って、好ましい窒素ガス流量は特に限定されるものではないが、一般的には、窒化反応炉の容積1Lあたり0.1~3L/hrが好ましい。
前記反応工程で得られた窒化ホウ素粉末の中に含まれるアルカリ土類金属(M)と未反応Bとのモル比(M/B)は、0.1~0.7であることが好ましい。このモル比が、当該範囲より大きいと、前記反応工程の終了までに液相中Ca濃度が上昇したことを意味し、h-BNの長径が目的より大きくなりやすい。また、モル比が上記範囲より小さいと、前記反応工程中の液相中Ca濃度が低過ぎることを意味し、目的の長径よりも著しく小さい微粉が増える可能性がある。
Here, the liquid phase gradually volatilizes during the reaction process, but since B 2 O 3 volatilizes more easily than CaO, the Ca concentration in the liquid phase increases as the volatilization progresses. going to rise. Therefore, in order to control the length of h-BN, it is necessary to control the volatilization amount of the liquid phase.
In the reaction step, the inside of the nitriding reactor is a nitrogen atmosphere at atmospheric pressure, and nitrogen gas is generally supplied and exhausted at a flow rate of 0.1 to 10 L/hr per 1 L of the volume of the nitriding reactor. As the flow rate of the gas increases, the liquid phase becomes more likely to volatilize, so the major axis of h-BN tends to increase. Therefore, in order to obtain boron nitride powder having an average length of 3 to 7 μm, it is preferable to lower the flow rate of nitrogen gas. However, the volatilization amount of the liquid phase also greatly depends on the structure inside the reactor. Therefore, although the preferred nitrogen gas flow rate is not particularly limited, it is generally preferred to be 0.1 to 3 L/hr per 1 L volume of the nitriding reactor.
The molar ratio (M/B 2 O 3 ) between the alkaline earth metal (M) contained in the boron nitride powder obtained in the reaction step and the unreacted B 2 O 3 is 0.1 to 0.7. is preferably If this molar ratio is larger than the range, it means that the Ca concentration in the liquid phase has increased by the end of the reaction step, and the major axis of h-BN tends to be larger than intended. On the other hand, if the molar ratio is smaller than the above range, it means that the Ca concentration in the liquid phase during the reaction step is too low, and there is a possibility that fine powder having a remarkably smaller diameter than the intended major axis will increase.

アルカリ土類金属(M)と未反応Bとのモル比(M/B)は、硫酸水溶液に前記反応工程で得られた窒化ホウ素粉末を入れ、硫酸水溶液に溶出させたMとBの濃度(ppm)をICP発光分光分析により定量し、モル比(M/B)に換算した値である。
次いで、モル比(M/B)の分析に用いた以外の窒化ホウ素粉末を酸洗浄することにより、窒化ホウ素粉末に含まれる副生成物を除去する。例えば、ポリエチレン製容器へ投入し、窒化ホウ素の10倍量の塩酸水溶液(10重量%HCl)を加え、回転数300rpmで15時間撹拌する。
該酸洗浄の後、酸をろ過する。その後、使用した酸と同僚の純水に酸洗浄した窒化ホウ素を分散させ、再度ろ過する。さらに、ろ液が中性になるまで純水による洗浄とろ過を繰り返す。
該純水洗浄の後、得られた粉末を50~250℃の大気、もしくは減圧下で乾燥することで、高純度の窒化ホウ素粉末が得られる。
The molar ratio (M/B 2 O 3 ) of alkaline earth metal (M) and unreacted B 2 O 3 was obtained by adding the boron nitride powder obtained in the reaction step to an aqueous sulfuric acid solution and eluting it into the aqueous sulfuric acid solution. The concentration (ppm) of M and B was quantified by ICP emission spectrometry and converted into a molar ratio (M/B 2 O 3 ).
Next, the boron nitride powders other than those used for analysis of the molar ratio (M/B 2 O 3 ) are washed with an acid to remove by-products contained in the boron nitride powders. For example, it is put into a container made of polyethylene, an aqueous solution of hydrochloric acid (10% by weight HCl) is added in an amount ten times that of boron nitride, and the mixture is stirred at a rotation speed of 300 rpm for 15 hours.
After the acid wash, the acid is filtered. The acid-washed boron nitride is then dispersed in the acid used and pure water from a colleague and filtered again. Further, washing with pure water and filtration are repeated until the filtrate becomes neutral.
After washing with pure water, the obtained powder is dried in the air at 50 to 250° C. or under reduced pressure to obtain a highly pure boron nitride powder.

本発明において、前記含酸素ホウ素化合物は、特に制限されるものではないが、例えば、ホウ酸、無水ホウ酸、メタホウ酸、過ホウ酸、次ホウ酸、四ホウ酸ナトリウム、過ホウ酸ナトリウム等が使用できる。一般的には入手が容易なホウ酸が好適に用いられる。 In the present invention, the oxygen-containing boron compound is not particularly limited, but examples include boric acid, boric anhydride, metaboric acid, perboric acid, hypoboric acid, sodium tetraborate, sodium perborate, and the like. can be used. Boric acid, which is generally easily available, is preferably used.

本発明において、前記炭素源は、特に制限されるものではないが、例えば、カーボンブラック、活性炭、カーボンファイバー等の非晶質炭素の他、ダイヤモンド、グラファイト、ナノカーボン等の結晶性炭素、モノマーやポリマーを熱分解して得られる熱分解炭素等が使用できる。一般的には安価なカーボンブラックが用いられる。 In the present invention, the carbon source is not particularly limited, and examples include amorphous carbon such as carbon black, activated carbon and carbon fiber, crystalline carbon such as diamond, graphite and nanocarbon, Pyrolytic carbon or the like obtained by pyrolyzing a polymer can be used. Inexpensive carbon black is generally used.

本発明において、前記含酸素アルカリ土類金属化合物は、特に制限されるものではないが、例えば、酸化マグネシウム、酸化カルシウム、炭酸マグネシウム、炭酸カルシウム、炭酸水素マグネシウム、炭酸水素カルシウム、水酸化マグネシウム、水酸化カルシウム、硝酸マグネシウム、硝酸カルシウム、硫酸マグネシウム、硫酸カルシウム、リン酸マグネシウム、リン酸カルシウム、シュウ酸マグネシウム、シュウ酸カルシウム等が使用でき、これら2種類以上を混合して使用することも可能である。 In the present invention, the oxygen-containing alkaline earth metal compound is not particularly limited, but examples include magnesium oxide, calcium oxide, magnesium carbonate, calcium carbonate, magnesium hydrogen carbonate, calcium hydrogen carbonate, magnesium hydroxide, water Calcium oxide, magnesium nitrate, calcium nitrate, magnesium sulfate, calcium sulfate, magnesium phosphate, calcium phosphate, magnesium oxalate, calcium oxalate, etc. can be used, and two or more of these can be mixed and used.

尚、前記反応原料である混合粉末を調製するための混合は、各成分が均一に混合される限り、特に制限されず、振動ミル、ボールミル、ドラムミキサー振動攪拌機等の混合装置を用いて行われる。 The mixing for preparing the mixed powder, which is the reaction raw material, is not particularly limited as long as each component is uniformly mixed, and is performed using a mixing device such as a vibration mill, a ball mill, and a drum mixer vibration stirrer. .

本発明において、窒素雰囲気は、公知の手段によって形成することができる。使用するガスとしては、上記窒化反応でホウ素に窒素を与えることが可能なガスであれば特に制限されず、窒素ガス、アンモニアガスを使用することも可能であり、窒素ガス、アンモニアガスに、水素、アルゴン、ヘリウム等の非酸化性ガスを混合したガスも使用可能である。 In the present invention, the nitrogen atmosphere can be formed by known means. The gas to be used is not particularly limited as long as it can give nitrogen to boron in the nitriding reaction, and nitrogen gas and ammonia gas can also be used. , argon, helium, and other non-oxidizing gases can also be used.

本発明において、還元窒化反応工程は、反応雰囲気制御の可能な公知の装置を使用して行うことができる。例えば、高周波誘導加熱やヒーター加熱により加熱処理を行う雰囲気制御型高温炉が挙げられ、バッチ炉の他、プッシャー式トンネル炉、縦型反応炉等の連続炉も使用可能である。 In the present invention, the reduction-nitridation reaction step can be performed using a known apparatus capable of controlling the reaction atmosphere. For example, an atmosphere-controlled high-temperature furnace in which heat treatment is performed by high-frequency induction heating or heater heating can be used. In addition to batch furnaces, continuous furnaces such as pusher-type tunnel furnaces and vertical reaction furnaces can also be used.

本発明において、酸洗浄に用いる酸としては、塩酸以外にも、硝酸、硫酸、酢酸等を用いることもできる。 In the present invention, nitric acid, sulfuric acid, acetic acid, etc. can also be used as the acid used for acid cleaning in addition to hydrochloric acid.

以下、本発明を実施例により詳細に説明するが、本発明は、これらの実施例に限定されるものではない。 EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1
<原料混合物の調製及び還元窒化反応工程>
酸化ホウ素70g、カーボンブラック30g、炭酸カルシウム10gをボールミルにて混合した。該混合物を黒鉛性タンマン炉を用い、窒素ガス雰囲気下、15℃/分で1500℃まで昇温し、1500℃で6時間保持した。1500℃保持後、15℃/分で1800℃まで昇温し、1800℃で2時間保持し、還元窒化処理した。
ここで、酸化ホウ素、カーボンブラック、炭酸カルシウムの分子量はそれぞれ69.6、12.0、100.1であることから、原料混合物中のモル数はそれぞれ1.01(70/69.6=1.01)モル、2.50(30/12.0=2.50)モル、0.10(10/100.1=0.10)モルであり、B/C原子比は0.81(1.01×2/2.5=0.81)、モル比(CaO/B)は0.10(0.10/1.01=0.10)と算出される。
Example 1
<Preparation of Raw Material Mixture and Reductive Nitriding Reaction Step>
70 g of boron oxide, 30 g of carbon black and 10 g of calcium carbonate were mixed in a ball mill. Using a graphite Tammann furnace, the mixture was heated to 1500° C. at 15° C./min under a nitrogen gas atmosphere and held at 1500° C. for 6 hours. After holding at 1500° C., the temperature was raised to 1800° C. at a rate of 15° C./min, held at 1800° C. for 2 hours, and subjected to reductive nitriding treatment.
Here, since the molecular weights of boron oxide, carbon black, and calcium carbonate are 69.6, 12.0, and 100.1, respectively, the number of moles in the raw material mixture is 1.01 (70/69.6=1 .01) mol, 2.50 (30/12.0 = 2.50) mol, 0.10 (10/100.1 = 0.10) mol, and the B/C atomic ratio is 0.81 (1 .01×2/2.5=0.81), and the molar ratio (CaO/B 2 O 3 ) is calculated to be 0.10 (0.10/1.01=0.10).

<還元窒化反応工程後のCa/B測定>
超純水48gに濃硫酸2gを溶かした硫酸水溶液50gを50ccスクリュー管瓶に入れ、さらに酸洗浄前の窒化ホウ素粉末1gを加えてミックスローター(アズワン社製FLMX-T6-5、回転数70rpm)で24h撹拌した後の窒化ホウ素懸濁液を、0.45μmのメンブレンフィルターでろ過し、ろ液に含まれるカルシウム(Ca)とホウ素(B)についてICP発光分光分析により定量した。さらに、得られた各成分の濃度(ppm)を換算し、モル比(Ca/B)とした。
<Ca/B 2 O 3 measurement after reduction nitridation reaction step>
Put 50 g of a sulfuric acid aqueous solution prepared by dissolving 2 g of concentrated sulfuric acid in 48 g of ultrapure water into a 50 cc screw tube bottle, add 1 g of boron nitride powder before acid cleaning, and mix with a mixing rotor (FLMX-T6-5 manufactured by AS ONE Corporation, rotation speed 70 rpm). The boron nitride suspension after stirring for 24 h was filtered through a 0.45 μm membrane filter, and calcium (Ca) and boron (B) contained in the filtrate were quantified by ICP emission spectrometry. Furthermore, the obtained concentration (ppm) of each component was converted into a molar ratio (Ca/B 2 O 3 ).

<酸洗浄を含む洗浄工程及び乾燥>
次いで、残りの窒化ホウ素粉末をポリエチレン製の容器へ投入し、窒化ホウ素の10倍量の塩酸水溶液(10重量%HCl)を加え、回転数300rpmで15時間撹拌した。該酸洗浄の後、酸を濾過し、投入した窒化ホウ素の300倍量の25℃における比抵抗が1MΩ・cmの純水を用いて再度洗浄の後、吸引による濾過により濾過後の粉末中含水率が50wt%以下になるまで脱水を行った。該純水洗浄の後、得られた粉末を1kPaAの圧力のもと、200℃で15時間、減圧乾燥させ、高純度の窒化ホウ素粉末を得た。
<Washing process including acid cleaning and drying>
Next, the rest of the boron nitride powder was put into a polyethylene container, an aqueous solution of hydrochloric acid (10% by weight HCl) in an amount ten times that of the boron nitride was added, and the mixture was stirred at 300 rpm for 15 hours. After the acid washing, the acid is filtered, and after washing again with pure water having a specific resistance of 1 MΩ cm at 25 ° C., which is 300 times the amount of the charged boron nitride, the water content in the powder after filtering by suction filtration. Dehydration was carried out until the percent was 50 wt% or less. After washing with pure water, the obtained powder was dried under reduced pressure at 200° C. for 15 hours under a pressure of 1 kPaA to obtain a highly pure boron nitride powder.

<窒化ホウ素粉末の平均長径、平均厚み、アスペクト比の測定>
エポキシ樹脂(ヘンケル社製、EA E-30CL)100質量部中に得られた窒化ホウ素粉末10質量部を分散し、得られた樹脂組成物を減圧脱泡した後、10mm角、厚さ1mmの型枠に流し込み、温度70℃にて硬化させた。
次いで、硬化した樹脂組成物を型枠から抜き出し、両面が並行になるように両面を研磨した後、さらに、樹脂組成物の厚み方向に垂直な面のうち一方の面について、その中央を断面ミリング加工し、その加工面を倍率2500倍の条件でSEMにより画像を撮影した。得られた画像の中から窒化ホウ素粒子100個を無作為に選び、粒子の長辺(=長径)と短辺(=厚み)を拡大倍率を考慮して測定し、各平均値をそれぞれ平均長径(μm)、平均厚み(μm)とし、さらに、平均長径を平均厚みで除した値をアスペクト比(平均長径/平均厚み)とした。
<Measurement of average length, average thickness and aspect ratio of boron nitride powder>
10 parts by mass of the obtained boron nitride powder was dispersed in 100 parts by mass of epoxy resin (EA E-30CL, manufactured by Henkel), and the resulting resin composition was degassed under reduced pressure. It was poured into a mold and cured at a temperature of 70°C.
Next, the cured resin composition is extracted from the mold, and after both surfaces are polished so that they are parallel, one of the surfaces perpendicular to the thickness direction of the resin composition is subjected to cross-sectional milling at the center. After processing, an image of the processed surface was taken by SEM at a magnification of 2500 times. Randomly select 100 boron nitride particles from the resulting image, measure the long side (= major diameter) and short side (= thickness) of the particles in consideration of the magnification, and calculate each average value as the average major diameter (μm), average thickness (μm), and the value obtained by dividing the average length by the average thickness was defined as the aspect ratio (average length/average thickness).

<メディアン径(D1)の測定>
得られた窒化ホウ素粉末0.3gを50ccのエタノールに入れ、軽く撹拌した後の窒化ホウ素懸濁液についてレーザー回折/散乱式粒子径分布測定装置(HORIBA製LA-950V2)を用いて、粒度分布を測定し、平均粒径(D50)(μm)を求めた。
<Measurement of median diameter (D1)>
0.3 g of the obtained boron nitride powder was placed in 50 cc of ethanol, and the boron nitride suspension after light stirring was measured using a laser diffraction/scattering particle size distribution analyzer (LA-950V2 manufactured by HORIBA) to determine the particle size distribution. was measured to obtain the average particle size (D50) (μm).

<メディアン径(D2)の測定>
得られた窒化ホウ素粉末0.3gを50ccのエタノールと共に、容積100cc、直径4cmのスクリュー管瓶に投入し、0.2cmの直径を有するプローブを水中に1cm挿入した状態で、室温下、上記プローブより25Wの出力で20分間超音波を作用せしめた後の窒化ホウ素懸濁液についてレーザー回折/散乱式粒子径分布測定装置(HORIBA製LA-950V2)を用いて、粒度分布を測定し、平均粒径(D50)(μm)を求めた。
<Measurement of median diameter (D2)>
0.3 g of the obtained boron nitride powder was put into a screw tube bottle with a volume of 100 cc and a diameter of 4 cm together with 50 cc of ethanol. Using a laser diffraction/scattering particle size distribution analyzer (LA-950V2 manufactured by HORIBA), the particle size distribution of the boron nitride suspension after being subjected to ultrasonic waves at an output of 25 W for 20 minutes was measured, and the average particle size The diameter (D50) (μm) was determined.

<パウダーファンデーションの調製及び評価>
得られた窒化ホウ素粉末を用いて、以下の配合割合でパウダーファンデーションを調製した。得られたパウダーファンデーションについて、20名の専門パネラーにより、被覆力、透明感、展延性、付着性、肌触りについて官能評価を行った。良好と感じたパネラーが30%未満である場合を×、30%以上60%未満である場合を△、60%以上80%未満である場合を○、80%以上である場合を◎とした。

六方晶窒化ホウ素粉末 20.0質量%
マイカ 15.0質量%
合成金雲母 12.0質量%
メトキシケイヒ酸エチルヘキシル 8.0質量%
(ビニルジメチコン/メチコンシルセスキオキサン)クロス
ポリマー 8.0質量%
(ジフェニルジメチコン/ビニルジフェニルジメチコン/
シルセスキオキサン)クロスポリマー 8.0質量%
ナイロン12 3.0質量%
シリカ 3.0質量%
タルク 3.0質量%
アクリレーツクロスポリマー 3.0質量%
パーフルオロオクチルトリエトキシシラン 3.0質量%
酸化亜鉛 3.0質量%
ポリメチルメタクリレートポリマー 3.0質量%
シリコーン処理ベンガラ(赤酸化鉄) 1.0質量%
シリコーン処理黄酸化鉄 0.6質量%
シリコーン処理黒酸化鉄 0.4質量%
シリコーン処理酸化チタン 6.0質量%
<Preparation and evaluation of powder foundation>
Using the obtained boron nitride powder, a powder foundation was prepared in the following proportions. The obtained powder foundation was subjected to sensory evaluation by 20 expert panelists in terms of coverage, transparency, spreadability, adhesion, and skin feel. The case where less than 30% of the panelists felt good was evaluated as x, the case where 30% or more and less than 60% was Δ, the case where 60% or more and less than 80% was ◯, and the case where 80% or more was ⊚.

Hexagonal boron nitride powder 20.0% by mass
Mica 15.0% by mass
Synthetic phlogopite 12.0% by mass
Ethylhexyl methoxycinnamate 8.0% by mass
(vinyl dimethicone/methicone silsesquioxane) crosspolymer 8.0% by mass
(Diphenyl dimethicone/vinyl diphenyl dimethicone/
Silsesquioxane) crosspolymer 8.0% by mass
Nylon 12 3.0% by mass
Silica 3.0% by mass
Talc 3.0% by mass
Acrylates crosspolymer 3.0% by mass
Perfluorooctyltriethoxysilane 3.0% by mass
Zinc oxide 3.0% by mass
Polymethyl methacrylate polymer 3.0% by mass
Silicon-treated red iron oxide (red iron oxide) 1.0% by mass
Silicone treated yellow iron oxide 0.6% by mass
Silicone-treated black iron oxide 0.4% by mass
Silicone treated titanium oxide 6.0% by mass

実施例2~4、比較例1~4
実施例1の原料混合物のB/C原子比およびCaO/Bモル比、窒素流量、最高温度、を変更して、実施例2~4、比較例1~4の窒化ホウ素粉末を製造した。各窒化ホウ素の製造条件と評価結果を表1に示す。
Examples 2-4, Comparative Examples 1-4
By changing the B/C atomic ratio, CaO/B 2 O 3 molar ratio, nitrogen flow rate, and maximum temperature of the raw material mixture of Example 1, boron nitride powders of Examples 2 to 4 and Comparative Examples 1 to 4 were produced. did. Table 1 shows the production conditions and evaluation results of each boron nitride.

実施例1~4の窒化ホウ素粉末は、反応生成物中のCa/Bモル比が0.1~0.7となるように製造されており、メディアン径(D1)が4~30μm、メディアン径(D2)が4~10μmの窒化ホウ素粉末が得られている。即ち、これらの窒化ホウ素粉末は凝集体が小さく柔らかいため肌触りが良い。また、平均長径が3~7μm、平均アスペクト比が6~15の窒化ホウ素粉末であり、被覆力、透明感、展延性、付着性に優れ、化粧料用窒化ホウ素粉末として適したものである。 The boron nitride powders of Examples 1 to 4 were produced so that the Ca/B 2 O 3 molar ratio in the reaction product was 0.1 to 0.7, and the median diameter (D1) was 4 to 30 μm. , a boron nitride powder having a median diameter (D2) of 4 to 10 μm is obtained. That is, these boron nitride powders have small agglomerates and are soft to the touch. Further, the boron nitride powder has an average length of 3 to 7 μm and an average aspect ratio of 6 to 15, and is excellent in covering power, transparency, spreadability and adhesion, and is suitable as a boron nitride powder for cosmetics.

また、前記化粧料用窒化ホウ素粉末を低コストで製造することが可能であるため、工業的に極めて有用である。

Figure 0007107901000001
Moreover, since the boron nitride powder for cosmetics can be produced at low cost, it is industrially extremely useful.
Figure 0007107901000001

Claims (2)

レーザ回折散乱法で測定したメディアン径(D1)が21~30μmの範囲にあり、平均長径が3~7μm、平均厚みが0.5μmより大きく、平均アスペクト比が6~15の範囲にある窒化ホウ素粉末であって、エタノール中、出力25Wで1200秒間超音波分散させたときのメディアン径(D2)が4~10μmの範囲にあることを特徴とする化粧料用窒化ホウ素粉末。 Boron nitride having a median diameter (D1) measured by a laser diffraction scattering method in the range of 21 to 30 μm, an average length of 3 to 7 μm, an average thickness of more than 0.5 μm, and an average aspect ratio in the range of 6 to 15 . 1. A boron nitride powder for cosmetics, characterized in that the powder has a median diameter (D2) in the range of 4 to 10 μm when ultrasonically dispersed in ethanol at an output of 25 W for 1200 seconds. 含酸素ホウ素化合物として酸化ホウ素及び含酸素アルカリ土類金属化合物として炭酸カルシウム、酸化カルシウムのいずれか1つまたは両方と共に、炭素源となる化合物としてカーボンブラックを含む原料混合物を用意する工程;
前記原料混合物を窒素雰囲気下で加熱して還元窒化を行う反応工程;
前記反応工程で得られた窒化ホウ素を含む反応生成物を酸洗浄する洗浄工程;
を含む窒化ホウ素粉末の製造方法において、
前記原料混合物は、B/C原子比が0.80~2.00、酸化物換算での含酸素アルカリ土類金属化合物(MO;Mはアルカリ土類金属)と含酸素ホウ素化合物(B)とのモル比(MO/B)が0.12以下に設定されており、
前記反応工程において、反応生成物中のM/Bモル比が0.1~0.7となるように反応条件が調整されて還元窒化反応が行われる、請求項1に記載の化粧料用窒化ホウ素粉末の製造方法。
A step of preparing a raw material mixture containing boron oxide as an oxygen-containing boron compound and one or both of calcium carbonate and calcium oxide as an oxygen-containing alkaline earth metal compound and carbon black as a compound serving as a carbon source;
a reaction step of heating the raw material mixture in a nitrogen atmosphere for reduction nitriding;
a cleaning step of acid-cleaning the reaction product containing boron nitride obtained in the reaction step;
In a method for producing a boron nitride powder comprising
The raw material mixture has a B/C atomic ratio of 0.80 to 2.00, and contains an oxygen-containing alkaline earth metal compound (MO; M is an alkaline earth metal) and an oxygen-containing boron compound (B 2 O 3 ) and the molar ratio (MO/B 2 O 3 ) is set to 0.12 or less,
2. The cosmetic according to claim 1, wherein in the reaction step, the reaction conditions are adjusted so that the M/B 2 O 3 molar ratio in the reaction product is 0.1 to 0.7, and the reductive nitriding reaction is performed. A method for producing raw boron nitride powder.
JP2019154057A 2019-08-26 2019-08-26 Boron nitride powder for cosmetics and method for producing the same Active JP7107901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019154057A JP7107901B2 (en) 2019-08-26 2019-08-26 Boron nitride powder for cosmetics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019154057A JP7107901B2 (en) 2019-08-26 2019-08-26 Boron nitride powder for cosmetics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2021031443A JP2021031443A (en) 2021-03-01
JP7107901B2 true JP7107901B2 (en) 2022-07-27

Family

ID=74675379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154057A Active JP7107901B2 (en) 2019-08-26 2019-08-26 Boron nitride powder for cosmetics and method for producing the same

Country Status (1)

Country Link
JP (1) JP7107901B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120092A1 (en) * 2021-12-21 2023-06-29 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same
WO2023182380A1 (en) * 2022-03-25 2023-09-28 Jfeミネラル株式会社 Hexagonal boron nitride powder for cosmetic, and cosmetic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176910A (en) 2011-02-25 2012-09-13 Mizushima Ferroalloy Co Ltd Hexagonal boron nitride powder for cosmetic, method for producing the same and cosmetic
JP2015212217A (en) 2014-04-18 2015-11-26 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
WO2018101241A1 (en) 2016-12-01 2018-06-07 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same
WO2018123571A1 (en) 2016-12-26 2018-07-05 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176910A (en) 2011-02-25 2012-09-13 Mizushima Ferroalloy Co Ltd Hexagonal boron nitride powder for cosmetic, method for producing the same and cosmetic
JP2015212217A (en) 2014-04-18 2015-11-26 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same
WO2018101241A1 (en) 2016-12-01 2018-06-07 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same
WO2018123571A1 (en) 2016-12-26 2018-07-05 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same

Also Published As

Publication number Publication date
JP2021031443A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP7421605B2 (en) hexagonal boron nitride powder
JP5204663B2 (en) Highly filled transition aluminum oxide-containing dispersion
JP7107901B2 (en) Boron nitride powder for cosmetics and method for producing the same
JP6516509B2 (en) Hexagonal boron nitride powder and method for producing the same
JP2009504552A (en) Hollow silica particles and method for producing the same
JPWO2012147886A1 (en) Hexagonal zinc oxide particles, manufacturing method thereof, cosmetics containing the same, heat dissipating filler, heat dissipating resin composition, heat dissipating grease and heat dissipating coating composition
JP6356025B2 (en) Boron nitride powder and method for producing the same
KR20140024865A (en) Rounded zinc peroxide particles, rounded zinc oxide particles, manufacturing method therefor, cosmetic material, and heat-dissipating filler
JP6676479B2 (en) Hexagonal boron nitride powder and method for producing the same
JP2017190267A (en) Alumina particle material and production method of the same
WO2021039586A1 (en) Modified boron nitride powder
JP6516594B2 (en) Hexagonal boron nitride particles and method for producing the same
JPS61201623A (en) Production of spherical flocculated particle of zirconia ultrafine crystal
KR101494340B1 (en) method of preparing titanium carbide powder
JP2004332103A (en) Method for producing nano-phase tac-transition metal based complex powder
Dehghanzadeh et al. Synthesis of nanosize silicon carbide powder by carbothermal reduction of SiO 2
JP2020075845A (en) Hexagonal boron nitride powder
KR20070010777A (en) PREPARING METHOD FOR PLATEY alpha;- ALUMINA
JP7372141B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP6993265B2 (en) Composition for solid cosmetics
JP3568234B2 (en) Silica-modified alumina sol and method for producing the same
JP7088773B2 (en) Plate-shaped zinc oxide powder and cosmetics containing it
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JP2009519196A (en) Highly filled dispersion containing aluminum oxide
EP4303180A1 (en) Hexagonal boron nitride agglomerated particles, hexagonal boron nitride powder, resin composition, and resin sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220714

R150 Certificate of patent or registration of utility model

Ref document number: 7107901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150