JP6704271B2 - Hexagonal boron nitride primary particle aggregate, resin composition and use thereof - Google Patents

Hexagonal boron nitride primary particle aggregate, resin composition and use thereof Download PDF

Info

Publication number
JP6704271B2
JP6704271B2 JP2016051592A JP2016051592A JP6704271B2 JP 6704271 B2 JP6704271 B2 JP 6704271B2 JP 2016051592 A JP2016051592 A JP 2016051592A JP 2016051592 A JP2016051592 A JP 2016051592A JP 6704271 B2 JP6704271 B2 JP 6704271B2
Authority
JP
Japan
Prior art keywords
boron nitride
hexagonal boron
primary particle
aggregate
particle aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016051592A
Other languages
Japanese (ja)
Other versions
JP2017165609A (en
Inventor
黒川 史裕
史裕 黒川
五十嵐 厚樹
厚樹 五十嵐
光永 敏勝
敏勝 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2016051592A priority Critical patent/JP6704271B2/en
Publication of JP2017165609A publication Critical patent/JP2017165609A/en
Application granted granted Critical
Publication of JP6704271B2 publication Critical patent/JP6704271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、例えばパワーデバイス(電力用半導体素子ともいう)などの発熱性電子部品の熱を放熱部材に伝達する中間部材の樹脂組成物中に含まれる六方晶窒化ホウ素の一次粒子凝集体に関する。また、本発明は該六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物に関する。また、本発明は本発明に係る樹脂組成物の用途に関する。 The present invention relates to a primary particle aggregate of hexagonal boron nitride contained in a resin composition of an intermediate member that transfers heat of an exothermic electronic component such as a power device (also referred to as a power semiconductor element) to a heat dissipation member. The present invention also relates to a resin composition containing the hexagonal boron nitride primary particle aggregate. The present invention also relates to uses of the resin composition according to the present invention.

パワーデバイス、トランジスタ、サイリスタ、CPU等の発熱性電子部品においては、使用時に発生する熱を如何に効率的に放熱するかが重要な課題となっている。従来から、この分野における放熱効率の向上策としては、例えば発熱性電子部品が実装されるプリント配線板の絶縁層を高熱伝導化する、および発熱性電子部品又は発熱性電子部品を実装したプリント配線板を電気絶縁性の熱インターフェース材を介してヒートシンク等の放熱部材に取り付けることなどが一般的に行われてきた。プリント配線板の電気絶縁層や熱インターフェース材等(これらをまとめて電気絶縁部材という)の主な材料としては、例えばシリコーン樹脂やエポキシ樹脂に熱伝導率の高いセラミックス粉末を充填させた樹脂組成物が好ましく用いられている。 In heat-generating electronic components such as power devices, transistors, thyristors, and CPUs, how to efficiently dissipate heat generated during use has become an important issue. Conventionally, as a measure for improving heat dissipation efficiency in this field, for example, the insulating layer of a printed wiring board on which a heat-generating electronic component is mounted has high thermal conductivity, and a heat-generating electronic component or a printed wiring on which the heat-generating electronic component is mounted. It has been common practice to attach the plate to a heat dissipation member such as a heat sink via an electrically insulating thermal interface material. As a main material for an electrical insulating layer of a printed wiring board, a thermal interface material and the like (these are collectively referred to as an electrical insulating member), for example, a resin composition obtained by filling a silicone resin or an epoxy resin with a ceramic powder having a high thermal conductivity. Is preferably used.

近年、電子機器の軽薄短小化に伴い、発熱性電子部品の実装密度も増加する一方で、電子機器内部の発熱密度も年々増加しており、熱伝導率を従来にも増して高めたセラミックス粉末が求められてきている。また、機器の信頼性要求、特に電気的信頼性の要求が高まっており、併せて高い電気絶縁性を有するセラミックス粉末も求められている。 In recent years, as electronic devices have become lighter, thinner, shorter, and smaller, the mounting density of heat-generating electronic components has also increased, while the heat generation density inside electronic devices has also increased year by year. Ceramic powders with higher thermal conductivity than ever before Is being sought after. In addition, the demand for reliability of equipment, especially the demand for electrical reliability is increasing, and at the same time, ceramic powder having high electric insulation is also required.

以上のような背景により、基本的に高熱伝導率な電気絶縁性素材として優れている六方晶窒化ホウ素が注目されている。但し、六方晶窒化ホウ素の一次粒子は、その結晶構造に由来して、面内方向(a軸方向ともいう)の熱伝導率が400W/(m・K)、厚み方向(c軸方向ともいう)の熱伝導率が2W/(m・K)であり、熱伝導率の異方性が甚だしく大きい(非特許文献1)。このような六方晶窒化ホウ素一次粒子をそのまま樹脂に充填すると、該一次粒子が同一方向に揃って配向するため、例えば、熱インターフェース材の製造時に、六方晶窒化ホウ素一次粒子の面内方向(即ち、高い熱伝導率を有する方向)と熱インターフェース材の厚み方向(即ち、熱を伝達したい方向)が垂直になり、六方晶窒化ホウ素粒子の高熱伝導率を十分に活かすことができなかった。 Based on the above background, hexagonal boron nitride, which is basically excellent as an electrically insulating material having high thermal conductivity, is drawing attention. However, the primary particles of hexagonal boron nitride have a thermal conductivity of 400 W/(m·K) in the in-plane direction (also referred to as a-axis direction) and a thickness direction (also referred to as c-axis direction) due to their crystal structure. The thermal conductivity of 2) is 2 W/(m·K), and the anisotropy of thermal conductivity is extremely large (Non-Patent Document 1). When such a hexagonal boron nitride primary particle is directly filled in the resin, the primary particles are aligned in the same direction, and therefore, for example, in the production of the thermal interface material, the in-plane direction of the hexagonal boron nitride primary particle (that is, , The direction having high thermal conductivity) and the thickness direction of the thermal interface material (that is, the direction in which heat is to be transferred) are vertical, and the high thermal conductivity of the hexagonal boron nitride particles cannot be fully utilized.

このような熱伝導率の異方性に由来する課題を解決するため、鱗片形状の六方晶窒化ホウ素一次粒子を、さらに等方的な熱伝導率を持たせるように意図された六方晶窒化ホウ素一次粒子凝集体が開発されている。 In order to solve the problem caused by such anisotropy of thermal conductivity, the hexagonal boron nitride primary particles in the form of flakes are intended to have more isotropic thermal conductivity. Primary particle aggregates have been developed.

例えば特許文献1及び2では、六方晶窒化ホウ素一次粒子を同一方向に配向させないように凝集させた、六方晶窒化ホウ素凝集体の使用が提案されており、熱伝導率の異方性が抑制されたことが示されている。また、特許文献3では、ホウ酸塩粒子を六方晶窒化ホウ素一次粒子で被覆した、平均球形度の高い六方晶窒化ホウ素被覆粒子の使用が提案されている。 For example, Patent Documents 1 and 2 propose the use of hexagonal boron nitride agglomerates in which hexagonal boron nitride primary particles are aggregated so as not to be oriented in the same direction, and anisotropy of thermal conductivity is suppressed. It has been shown that Patent Document 3 proposes the use of hexagonal boron nitride-coated particles having a high average sphericity, in which borate particles are coated with hexagonal boron nitride primary particles.

特開平9−202663号公報JP, 9-202663, A 特開2011−98882号公報JP, 2011-98882, A 特開2001−122615号公報JP, 2001-122615, A

R.F.Hill,P.H.Supancic,J.Am.Ceram.Soc.,85,851(2002)R. F. Hill, P.M. H. Supanic, J.M. Am. Ceram. Soc. , 85, 851 (2002)

特許文献1及び特許文献2で提案されている六方晶窒化ホウ素凝集体の形状は、松ぼっくり状(例えば、特許文献1:段落[0020]図6参照)や塊状(例えば、特許文献2:段落[0037]図3〜5参照)であり、また、平均球形度が小さいため、樹脂への充填にも限界があり、必ずしも十分な熱伝導率の向上が達せられなかった。また、特許文献3で提案されている被覆粒子においては、熱伝導率の異方性の抑制と樹脂への充填性の向上には一定の効果がある。しかしながら、熱伝導率の低いホウ酸塩粒子の含有率が高いため(例えば、特許文献3の段落[0020]、[0028]参照)、六方晶窒化ホウ素の高い熱伝導率を十分に活かしきれない課題があった。 The shapes of the hexagonal boron nitride aggregates proposed in Patent Documents 1 and 2 are pine cone-shaped (for example, Patent Document 1: Paragraph [0020] see FIG. 6) or lump-shaped (for example, Patent Document 2: Paragraph [ 3 to 5), and because the average sphericity is small, there is a limit to the filling of the resin, and a sufficient improvement in the thermal conductivity cannot always be achieved. Further, the coated particles proposed in Patent Document 3 have a certain effect in suppressing the anisotropy of thermal conductivity and improving the filling property into the resin. However, since the content of borate particles having a low thermal conductivity is high (see, for example, paragraphs [0020] and [0028] of Patent Document 3, the high thermal conductivity of hexagonal boron nitride cannot be fully utilized. There were challenges.

さらに従来の六方晶窒化ホウ素一次粒子凝集体の内部には、樹脂が浸入しにくい空隙が多く存在し、従って電気絶縁性を担うべき樹脂が十分に充填されないため、従来の放熱部材では、電気絶縁性が不足する課題があった。即ち、高い熱伝導率と電気的絶縁性とを両立する六方晶窒化ホウ素一次粒子の凝集体は、従来開発されていなかった。 Furthermore, in the conventional hexagonal boron nitride primary particle agglomerates, there are many voids into which the resin does not easily penetrate, and therefore the resin that is responsible for electrical insulation is not sufficiently filled. There was a problem of lack of sex. That is, an aggregate of hexagonal boron nitride primary particles having both high thermal conductivity and electrical insulation has not been developed so far.

上記の従来技術に鑑み、本発明は樹脂組成物の高い熱伝導性と高い電気絶縁性の両立に寄与する六方晶窒化ホウ素一次粒子凝集体を提供することを課題の一つとする。また、本発明はパワーデバイスなどの発熱性電子部品が実装されるプリント配線板の電気絶縁層や、熱を放熱部材に伝達する熱インターフェース材に適用可能な、該新規六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物を提供することを別の課題とする。本発明は該樹脂組成物を用いた電気絶縁部材を提供することを更に別の課題とする。 In view of the above-mentioned conventional techniques, it is an object of the present invention to provide a hexagonal boron nitride primary particle aggregate that contributes to both high thermal conductivity and high electrical insulation of a resin composition. Further, the present invention can be applied to an electrical insulating layer of a printed wiring board on which heat-generating electronic components such as power devices are mounted, and a thermal interface material that transfers heat to a heat radiating member. Another object is to provide a resin composition containing the aggregate. Another object of the present invention is to provide an electric insulating member using the resin composition.

本発明者は上記課題を解決すべく鋭意検討したところ、凝集体の平均粒子径、吸油量、吸油量と比表面積との比の、焼結助剤に由来する金属元素の含有率、及び平均球形度を適正に組み合わせた六方晶窒化ホウ素一次粒子凝集体が上記課題に対して有効であることを見出した。 The present inventors have made extensive studies to solve the above problems, and the average particle diameter of the aggregate, the oil absorption amount, the ratio of the oil absorption amount and the specific surface area, the content of the metal element derived from the sintering aid, and the average. It has been found that a hexagonal boron nitride primary particle aggregate in which sphericity is properly combined is effective for the above problems.

本発明は一側面において、六方晶窒化ホウ素の一次粒子凝集体であって、焼結助剤に由来する金属元素を500質量ppm以上5000質量ppm以下含み、吸油量が200ml/100g以上、比表面積が1m2/g以上6m2/g以下、吸油量と比表面積との比(吸油量/比表面積)の値が0.7ml/m2以上、当該凝集体の平均粒子径が10μm以上200μm以下、平均球形度が0.40以上0.80以下の六方晶窒化ホウ素の一次粒子凝集体である。 The present invention is, in one aspect, a primary particle aggregate of hexagonal boron nitride, containing 500 mass ppm or more and 5000 mass ppm or less of a metal element derived from a sintering additive, having an oil absorption of 200 ml/100 g or more, and a specific surface area. Is 1 m 2 /g or more and 6 m 2 /g or less, the ratio of the oil absorption amount and the specific surface area (oil absorption amount/specific surface area) is 0.7 ml/m 2 or more, and the average particle diameter of the aggregate is 10 μm or more and 200 μm or less. A hexagonal boron nitride primary particle aggregate having an average sphericity of 0.40 or more and 0.80 or less.

本発明に係る六方晶窒化ホウ素の一次粒子凝集体の一実施形態においては、焼結助剤に由来する金属元素がカルシウムである。 In one embodiment of the primary particle aggregate of hexagonal boron nitride according to the present invention, the metal element derived from the sintering aid is calcium.

本発明は別の一側面において、本発明に係る六方晶窒化ホウ素の一次粒子凝集体を含む樹脂組成物である。 The present invention, in another aspect, is a resin composition comprising the hexagonal boron nitride primary particle aggregate according to the present invention.

本発明は更に別の一側面において、本発明に係る樹脂組成物を含む電気絶縁部材である。 The present invention, in yet another aspect, is an electrical insulating member including the resin composition according to the present invention.

本発明は更に別の一側面において、ホウ素を含む化合物と窒素を含む化合物とを含む混合物を焼成して、窒化ホウ素前駆体を得る工程、該窒化ホウ素前駆体と焼結助剤を含む水スラリーであって、該窒化ホウ素前駆体に対する該焼結助剤に由来する金属の質量割合が0.2%〜1.9%である水スラリーを得る工程、該水スラリーをアトマイザー回転数を2000〜18000rpmとして噴霧乾燥して乾燥体を得る工程、該乾燥体を1750℃〜2200℃の温度で焼成することにより六方晶窒化ホウ素の一次粒子凝集体を得る工程、該六方晶窒化ホウ素の一次粒子凝集体にせん断速度6000〜20000(1/秒)でせん断力を加えることにより粗化処理を施す工程を実施することを含む六方晶窒化ホウ素の一次粒子凝集体の製造方法である。 In still another aspect of the present invention, a step of firing a mixture containing a compound containing boron and a compound containing nitrogen to obtain a boron nitride precursor, an aqueous slurry containing the boron nitride precursor and a sintering aid. And a step of obtaining a water slurry in which a mass ratio of the metal derived from the sintering aid to the boron nitride precursor is 0.2% to 1.9%, and the atomization speed of the water slurry is 2000 to Spray drying at 18000 rpm to obtain a dried body, firing the dried body at a temperature of 1750° C. to 2200° C. to obtain a primary particle aggregate of hexagonal boron nitride, and a primary particle aggregation of the hexagonal boron nitride. A method for producing a primary particle agglomerate of hexagonal boron nitride, which comprises performing a roughening treatment by applying a shearing force to the assembly at a shear rate of 6000 to 20000 (1/sec).

本発明に係る六方晶窒化ホウ素一次粒子凝集体を樹脂組成物に配合することにより、高い熱伝導性と高い電気絶縁性を兼備する樹脂組成物を得ることが可能となる。このため、該六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物は電気絶縁部材の材料として好適である。 By blending the hexagonal boron nitride primary particle aggregate according to the present invention with the resin composition, it becomes possible to obtain a resin composition having both high thermal conductivity and high electric insulation. Therefore, the resin composition containing the hexagonal boron nitride primary particle aggregate is suitable as a material for the electrical insulating member.

実施例で作製した粗化処理前の六方晶窒化ホウ素一次粒子凝集体aのSEM写真である。3 is a SEM photograph of a hexagonal boron nitride primary particle aggregate a before the roughening treatment, which is manufactured in an example. 実施例で作製した粗化処理後の六方晶窒化ホウ素一次粒子凝集体A3のSEM写真である。6 is a SEM photograph of the hexagonal boron nitride primary particle aggregate A3 after the roughening treatment produced in the example.

本発明の第1の実施形態である六方晶窒化ホウ素一次粒子凝集体は、ホウ素を含む化合物と、窒素を含む化合物とを含む混合物を焼成して、窒化ホウ素前駆体を得る工程、該窒化ホウ素前駆体と焼結助剤を含む水スラリーを得る工程、該水スラリーを噴霧乾燥して乾燥体を得る工程、該乾燥体を焼成することにより六方晶窒化ホウ素一次粒子凝集体を得る工程、該六方晶窒化ホウ素の一次粒子凝集体に粗化処理を施す工程を適切な条件で経ることで製造可能である。本発明に係る六方晶窒化ホウ素一次粒子凝集体は一実施態様において、吸油量が200ml/100g以上、吸油量と比表面積との比の値が0.7ml/m2以上、平均粒子径が10μm以上200μm以下である。 The hexagonal boron nitride primary particle aggregates according to the first embodiment of the present invention include a step of firing a mixture containing a compound containing boron and a compound containing nitrogen to obtain a boron nitride precursor. A step of obtaining an aqueous slurry containing a precursor and a sintering aid, a step of spray-drying the aqueous slurry to obtain a dried body, a step of obtaining a hexagonal boron nitride primary particle aggregate by firing the dried body, It can be produced by performing a roughening treatment on the primary particle aggregates of hexagonal boron nitride under appropriate conditions. In one embodiment, the hexagonal boron nitride primary particle aggregate according to the present invention has an oil absorption of 200 ml/100 g or more, a ratio of the oil absorption to the specific surface area of 0.7 ml/m 2 or more, and an average particle diameter of 10 μm. It is 200 μm or less.

本発明の六方晶窒化ホウ素一次粒子凝集体は、従来技術で得られていた六方晶窒化ホウ素一次粒子凝集体に、その平均粒子径、吸油量、比表面積と吸油量との比率が特定範囲内に収まるようにさらに粗化処理を施すことにより、従来の技術では達成できなかった、樹脂組成物に高絶縁性と高熱伝導率を同時に与えることの可能な窒化ホウ素粉末を得ることができる。
なお、焼成による一次粒子同士の結合は、走査型電子顕微鏡を用いて、六方晶窒化ホウ素一次粒子凝集体断面の一次粒子同士の結合部分に連続組織が形成されていることを観察することにより評価することができる。また、六方晶窒化ホウ素一次粒子凝集体表面の状態、即ち、粗化の進行程度は、該凝集体を走査型電子顕微鏡を用いて観察することで判断できる。
The hexagonal boron nitride primary particle agglomerates of the present invention are hexagonal boron nitride primary particle agglomerates obtained in the prior art, and their average particle size, oil absorption, and the ratio of the specific surface area and the oil absorption are within a specific range. By further subjecting the resin composition to a roughening treatment so as to fall within the range, it is possible to obtain a boron nitride powder capable of simultaneously imparting high insulation and high thermal conductivity to a resin composition, which could not be achieved by conventional techniques.
The bonding between the primary particles by firing is evaluated by observing, using a scanning electron microscope, that a continuous structure is formed in the bonding portion between the primary particles of the hexagonal boron nitride primary particle aggregate cross section. can do. The state of the surface of the hexagonal boron nitride primary particle aggregate, that is, the degree of progress of roughening, can be determined by observing the aggregate using a scanning electron microscope.

<六方晶窒化ホウ素一次粒子凝集体の製造方法>
本発明に係る、粗化処理前の六方晶窒化ホウ素一次粒子凝集体(以下、未粗化凝集体ということもある)の製造方法の例について詳述する。ホウ素を含む化合物の粉末及び窒素を含む化合物の粉末(出発原料)の混合物を焼成して窒化ホウ素前駆体を得る。ホウ素を含む化合物としては、ホウ酸、酸化ホウ素、ホウ砂などを好ましく、特にホウ酸を好ましく用いることができる。また、窒素を含む化合物としては、シアンジアミド、メラミン、尿素などを好ましく、特にメラミンを好ましく選択することができる。窒化ホウ素前駆体は結晶性の異なる二種類以上を組み合わせて使用することが凝集体の製造に有利である。
<Method for producing hexagonal boron nitride primary particle aggregate>
An example of a method for producing a hexagonal boron nitride primary particle aggregate before roughening treatment (hereinafter, also referred to as an unroughened aggregate) according to the present invention will be described in detail. A mixture of a powder of a compound containing boron and a powder of a compound containing nitrogen (starting material) is fired to obtain a boron nitride precursor. As the compound containing boron, boric acid, boron oxide, borax, etc. are preferable, and boric acid can be particularly preferably used. As the nitrogen-containing compound, cyandiamide, melamine, urea and the like are preferable, and melamine can be particularly preferably selected. It is advantageous for the production of the aggregate that the boron nitride precursor is used in combination of two or more having different crystallinity.

次いで、窒化ホウ素前駆体を、アルカリ金属、アルカリ土類金属化合物など、焼成時における出発原料の六方晶窒化ホウ素への変換を促進する焼結助剤の粉末、並びに、本発明の目的を逸脱しない範囲において、必要に応じて添加される、出発原料や焼結助剤以外の単体や化合物と共に水中で加熱攪拌して水スラリーを調製する。焼結助剤として使用可能なアルカリ金属、アルカリ土類金属化合物としては、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ナトリウムが挙げられ、少ない添加量で凝集粒子を形成し易い点の理由により炭酸カルシウムが好ましい。出発原料や焼結助剤以外の単体や化合物の例としては、炭素などの還元性物質、炭化ホウ素などのホウ素含有化合物を挙げることができる。 Then, the boron nitride precursor, such as an alkali metal, an alkaline earth metal compound, a powder of a sintering aid that promotes the conversion of the starting material into hexagonal boron nitride during firing, and the object of the present invention is not deviated. Within the range, a water slurry is prepared by heating and stirring in water together with a simple substance or a compound other than the starting material and the sintering aid, which is added as necessary. Examples of the alkali metal and alkaline earth metal compounds that can be used as a sintering aid include potassium carbonate, magnesium carbonate, calcium carbonate, and sodium carbonate. Calcium carbonate is used because it is easy to form agglomerated particles with a small addition amount. Is preferred. Examples of simple substances or compounds other than the starting materials and sintering aids include reducing substances such as carbon and boron-containing compounds such as boron carbide.

水スラリー中には、窒化ホウ素前駆体に対して焼結助剤に由来する金属が質量割合で0.2〜1.9%含まれるように、好ましくは1.0〜1.6%含まれるように焼結助剤の添加量を調整することが望ましい。焼結助剤に由来する金属の量は多すぎても少なすぎても熱伝導率及び絶縁破壊電圧の特性が低下する傾向にある。 In the water slurry, the metal derived from the sintering aid is contained in a mass ratio of 0.2 to 1.9%, preferably 1.0 to 1.6% with respect to the boron nitride precursor. Therefore, it is desirable to adjust the addition amount of the sintering aid. If the amount of metal derived from the sintering aid is too large or too small, the characteristics of thermal conductivity and dielectric breakdown voltage tend to deteriorate.

得られた水スラリーを噴霧乾燥して乾燥体を得る。この際、アトマイザーの回転数は最終的に得られる凝集体の粒径に影響を与えるため、2000〜18000rpmとして噴霧乾燥することが好ましく、5000〜10000rpmとして噴霧乾燥することがより好ましい。 The obtained water slurry is spray-dried to obtain a dried body. At this time, since the number of revolutions of the atomizer affects the particle size of the aggregate finally obtained, spray drying is preferably performed at 2000 to 18000 rpm, more preferably 5000 to 10000 rpm.

なお、六方晶窒化ホウ素を製造するための出発原料や焼結助剤として用いる各種化合物等は一種類に限定する必要はなく、複数種類の化合物等を同時に使用することもできる。また、出発原料中に含まれるホウ素原子と窒素原子のモル比率は、必ずしも5:5に固定する必要はなく、反応性や収率に応じて、ホウ素原子と窒素原子のモル比率を、2:8〜8:2の範囲で、好ましくは3:7〜7:3の範囲で適宜変えることが可能である。 It should be noted that the starting materials for producing hexagonal boron nitride and various compounds used as sintering aids do not have to be limited to one kind, and a plurality of kinds of compounds can be used at the same time. The molar ratio of the boron atom and the nitrogen atom contained in the starting material does not necessarily have to be fixed to 5:5, and the molar ratio of the boron atom and the nitrogen atom is 2:5 depending on the reactivity and the yield. It can be appropriately changed within the range of 8 to 8:2, preferably within the range of 3:7 to 7:3.

該乾燥体を1750℃以上の温度で焼成することにより六方晶窒化ホウ素の一次粒子凝集体を得ることができる。焼成時の雰囲気は窒素、ヘリウム、アルゴン、アンモニア等の不活性雰囲気とする方法が好ましく適用される。該乾燥体を焼成する最高温度としては、1750℃以上2200℃以下の範囲の温度が好ましく設定される。焼成温度の最高値が1750℃未満であると六方晶窒化ホウ素への変換が進み難くなる。焼成温度の最高値が2200℃を超えると、六方晶窒化ホウ素の結晶成長が進みすぎるため、比表面積が小さくなりやすく、また、解砕が困難になることがある。焼成温度は一定に保持しても、連続的または不連続的に変化させても良く、焼成時間や昇温冷却の速度にも特に制限はない。さらに該乾燥体を焼成する装置類にも特に限定はないが、該乾燥体を収納する容器には、例えば六方晶窒化ホウ素製の容器を用いることができ、加熱装置として、例えば電気ヒータを用いた焼成炉を用いることができる。
また、出発原料を準備するところから焼成が終了するまでの間に、本発明の目的を逸脱しない範囲内で、さらに加熱、冷却、加湿、乾燥、及び洗浄の操作を加えることも可能である。
By firing the dried body at a temperature of 1750° C. or higher, a primary particle aggregate of hexagonal boron nitride can be obtained. A method of applying an inert atmosphere of nitrogen, helium, argon, ammonia or the like as an atmosphere during firing is preferably applied. The maximum temperature for firing the dried product is preferably set to a temperature in the range of 1750°C or higher and 2200°C or lower. If the maximum firing temperature is less than 1750° C., conversion to hexagonal boron nitride is difficult to proceed. When the maximum firing temperature exceeds 2200° C., the crystal growth of hexagonal boron nitride proceeds too much, so that the specific surface area tends to be small, and crushing may be difficult. The calcination temperature may be kept constant or may be changed continuously or discontinuously, and the calcination time and the heating/cooling rate are not particularly limited. Further, the apparatus for firing the dried body is not particularly limited, but a container made of hexagonal boron nitride, for example, can be used as a container for housing the dried body, and as a heating device, for example, an electric heater is used. A conventional firing furnace can be used.
Further, it is possible to further add operations of heating, cooling, humidifying, drying, and washing within a range not departing from the object of the present invention, from the preparation of the starting material to the end of the firing.

<粗化処理の方法>
本発明の六方晶窒化ホウ素一次粒子凝集体を得るために実施する粗化処理の原理や方法には、特に限定はないが、該凝集体の表面を荒らして気孔や隙間を増加させる処理方法を好ましく採用することができる。粗化処理に用いる装置にも特に制限はないが、工業的な能率と操作性を考慮すると、被粉砕物にせん断力、圧迫力、衝撃力、摩擦力を与えて該凝集体の表面同士を擦り合わせて粗化処理ができる装置、一般には、せん断型粉砕機またはせん断型解砕機等(以下、まとめてせん断型粉砕機という)と呼ばれている装置を好ましく用いることができる。
粗化処理によって、六方晶窒化ホウ素一次粒子凝集体の吸油量を、粗化処理前の吸油量に対して10%以上高めることができ、好ましくは15%以上高めることができ、より好ましくは20%以上高めることができ、例えば10〜30%高めることができる。粗化処理を実施しない場合、表面気孔が少ないため内部に油分が入り込みにくくなる。このため、200ml/100g以上の吸油量を達成するのは困難である。
粗化処理は微粉化を目的とした処理ではないため、六方晶窒化ホウ素一次粒子凝集体の平均粒子径にほとんど変化が生じない条件で実施することが好ましい。例えば粗化処理前後で、平均粒子径の変化は±10μm以下とすることができ、典型的には±5μm以下とすることができ、より典型的には±2.5μm以下とすることができ、更により典型的には±1μm以下とすることができる。また、粗化処理前後で、比表面積の変化は±10m2/g以下とすることができ、典型的には±5m2/g以下とすることができ、より典型的には±2.5m2/g以下とすることができ、更により典型的には±1m2/g以下とすることができる。なお、該せん断型粉砕機の機械的構造として、例えばその粉砕スペース内に、被粉砕物にせん断力を与える2種類の刃が、所定長さの間隙を持つように配置された構造を有するものがある。2種類の刃は、一方が固定刃で他方が回転刃でも良いし、互いに逆方向に回転する2種類の刃であっても良い。2種類の刃の数については、それぞれ特に制限はないが、2種類の刃の間に発生するせん断速度は6000〜20000(1/秒)の範囲であることが好ましく、8000〜15000(1/秒)の範囲であることがさらに好ましい。せん断速度が6000(1/秒)より小さいと、粉砕物を粗化する効果及び能力が少なく、十分に粗化できなかったり、また処理に時間を要したりすることがある。また、せん断速度が20000(1/秒)を超えるような条件で処理すると、球形度が小さくなり過ぎ、また、一次粒子に近い形態まで微粉化された粒子の影響が無視できなくなるため、本発明の目的とする熱伝導性が発揮できなくなる傾向がある。
また、該粉砕スペース内には、所定の粒子径以下まで砕かれた粒子のみが粉砕スペース外に排出されるようなスクリーンを備えていることが好ましい。
<Method of roughening treatment>
The principle and method of the roughening treatment performed to obtain the hexagonal boron nitride primary particle aggregate of the present invention is not particularly limited, but a treatment method for roughening the surface of the aggregate to increase pores or gaps is used. It can be preferably adopted. The apparatus used for the roughening treatment is not particularly limited, but in consideration of industrial efficiency and operability, shearing force, compressive force, impact force, and frictional force are applied to the object to be ground so that the surfaces of the aggregates are separated from each other. An apparatus capable of rubbing for roughening treatment, generally, an apparatus called a shear type crusher or a shear type crusher (hereinafter, collectively referred to as shear type crusher) can be preferably used.
By the roughening treatment, the oil absorption of the hexagonal boron nitride primary particle aggregates can be increased by 10% or more, preferably 15% or more, and more preferably 20% with respect to the oil absorption before the roughening treatment. % Or more, for example, 10 to 30%. When the roughening treatment is not performed, the oil content is less likely to get inside because the surface pores are few. Therefore, it is difficult to achieve an oil absorption of 200 ml/100 g or more.
Since the roughening treatment is not a treatment intended for pulverization, it is preferably carried out under the condition that the average particle diameter of the hexagonal boron nitride primary particle aggregates hardly changes. For example, before and after the roughening treatment, the change in average particle diameter can be ±10 μm or less, typically ±5 μm or less, and more typically ±2.5 μm or less. And even more typically ±1 μm or less. The change in specific surface area before and after the roughening treatment can be ±10 m 2 /g or less, typically ±5 m 2 /g or less, and more typically ±2.5 m It can be 2 /g or less, and more typically ±1 m 2 /g or less. The mechanical structure of the shearing type crusher has, for example, a structure in which two types of blades that give a shearing force to the object to be crushed are arranged in the crushing space so as to have a gap of a predetermined length. There is. One of the two types of blades may be a fixed blade and the other may be a rotary blade, or may be two types of blades that rotate in mutually opposite directions. The number of the two types of blades is not particularly limited, but the shear rate generated between the two types of blades is preferably in the range of 6000 to 20000 (1/sec), and 8000 to 15000 (1/second). It is more preferable that it is in the range of (sec). When the shear rate is less than 6000 (1/sec), the effect and ability to roughen the pulverized product are small, and the crushed product may not be sufficiently roughened, or the treatment may take time. Further, when the treatment is performed under the condition that the shear rate exceeds 20000 (1/sec), the sphericity becomes too small, and the effect of finely divided particles close to the shape of primary particles cannot be ignored, so that the present invention There is a tendency that the desired thermal conductivity cannot be exhibited.
Further, it is preferable to provide a screen in the crushing space so that only particles crushed to a predetermined particle size or less are discharged to the outside of the crushing space.

<平均球形度>
粗化処理の程度は平均球形度により評価することができる。真球の球形度は1であるところ、球形度は粗化処理によって一般に球形度は小さくなる。本発明の六方晶窒化ホウ素一次粒子凝集体の好ましい実施形態において、平均球形度は0.40〜0.80である。平均球形度が上記範囲にあるということは適度な粗化処理がなされていることを間接的に示している。平均球形度が0.40未満だと高熱伝導性を示すことが困難となり、また、平均球形度が0.80を超えると十分な吸油量を確保することが困難となる。平均球形度はより好ましくは0.45〜0.60であり、更により好ましくは0.45〜0.50である。
<Average sphericity>
The degree of roughening treatment can be evaluated by the average sphericity. Whereas the sphericity of a true sphere is 1, the sphericity is generally reduced by the roughening treatment. In a preferred embodiment of the hexagonal boron nitride primary particle aggregate of the present invention, the average sphericity is 0.40 to 0.80. The fact that the average sphericity is within the above range indirectly indicates that a suitable roughening treatment is performed. If the average sphericity is less than 0.40, it becomes difficult to exhibit high thermal conductivity, and if the average sphericity exceeds 0.80, it becomes difficult to secure a sufficient oil absorption amount. The average sphericity is more preferably 0.45 to 0.60, and even more preferably 0.45 to 0.50.

本発明において、六方晶窒化ホウ素一次粒子凝集体の平均球形度は以下のように測定する。試料台上の導電性両面テープに固定した一次粒子凝集体を、走査型電子顕微鏡、例えば「JSM−6010LA」(日本電子社製)にて撮影し、得られた凝集体像を画像解析ソフトウェア、例えば「Mac−View」(マウンテック社製)に取り込む。次いで、得られた写真から一次粒子凝集体の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その一次粒子凝集体の真円度はA/Bとして表示できる。そこで、一次粒子凝集体の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)2として算出することができる。このようにして得られた任意の一次粒子凝集体100個の球形度を求めその平均値を平均球形度とする。 In the present invention, the average sphericity of the hexagonal boron nitride primary particle aggregate is measured as follows. The primary particle aggregate fixed to the conductive double-sided tape on the sample stage was photographed with a scanning electron microscope, for example, "JSM-6010LA" (manufactured by JEOL Ltd.), and the obtained aggregate image was analyzed with image analysis software. For example, it is incorporated in “Mac-View” (manufactured by Mountech Co., Ltd.). Next, the projected area (A) and the perimeter (PM) of the primary particle aggregate are measured from the obtained photograph. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the primary particle aggregate can be expressed as A/B. Therefore, assuming a perfect circle having the same perimeter as the perimeter (PM) of the primary particle aggregate, PM=2πr and B=πr 2 , so B=π×(PM/2π) 2 The sphericity of the particles can be calculated as sphericity=A/B=A×4π/(PM) 2 . The sphericity of 100 of any primary particle agglomerates thus obtained is determined and the average value is taken as the average sphericity.

<平均粒子径>
本発明の六方晶窒化ホウ素一次粒子凝集体の好ましい実施形態においては、該凝集体の平均粒子径は10μm以上200μm以下である。一般的には平均粒子径が小さくなると、該凝集体と樹脂界面の総数の増加にともなう接触熱抵抗の増加により熱伝導率が低下していく傾向がある。但し、六方晶窒化ホウ素一次粒子凝集体の平均粒子径が大きくなるほど、該凝集体の機械的強度が低下する傾向があり、また樹脂への混練時に受ける剪断応力により凝集体の構造の一部が破壊され、一次粒子へと戻った鱗片形状の六方晶窒化ホウ素が同一方向に配向するため、高熱伝導率を発現しなくなることもある。従って、六方晶窒化ホウ素一次粒子凝集体の平均粒子径は200μm以下である。好ましい平均粒子径は20μm以上120μm以下の範囲である。さらに好ましい平均粒子径は40μm以上70μm以下の範囲である。なお、本発明で言う平均粒子径は、レーザー回折光散乱法による粒度分布測定において、体積基準による累積粒度分布の累積値50%の粒子径である。粒度分布測定に際しては、該凝集体を分散させる溶媒には水、分散剤としてはヘキサメタリン酸を用いることができる。このとき水の屈折率には1.33を、また、窒化ホウ素粉末の屈折率については1.80の数値を用いることができる。また、一回当たりの測定時間にも特に制限はないが、通常5秒以上120秒以下であり、15秒以上60秒以下程度に設定するのが一般的で好ましい。
<Average particle size>
In a preferred embodiment of the hexagonal boron nitride primary particle aggregate of the present invention, the average particle diameter of the aggregate is 10 μm or more and 200 μm or less. Generally, when the average particle size becomes smaller, the thermal conductivity tends to decrease due to the increase in the contact thermal resistance with the increase in the total number of the aggregates and the resin interface. However, the larger the average particle size of the hexagonal boron nitride primary particle aggregates, the mechanical strength of the aggregates tends to decrease, and a part of the structure of the aggregates due to the shear stress received during kneading into the resin. The scale-shaped hexagonal boron nitride, which has been destroyed and returned to the primary particles, is oriented in the same direction, so that high thermal conductivity may not be exhibited. Therefore, the average particle size of the hexagonal boron nitride primary particle aggregate is 200 μm or less. A preferable average particle diameter is in the range of 20 μm or more and 120 μm or less. A more preferable average particle diameter is in the range of 40 μm or more and 70 μm or less. The average particle size referred to in the present invention is a particle size having a cumulative value of 50% of the cumulative particle size distribution based on volume in the particle size distribution measurement by the laser diffraction light scattering method. In measuring the particle size distribution, water can be used as a solvent for dispersing the aggregate and hexametaphosphoric acid can be used as a dispersant. At this time, 1.33 can be used for the refractive index of water, and 1.80 can be used for the refractive index of the boron nitride powder. Further, the measurement time per measurement is not particularly limited, but is usually 5 seconds or more and 120 seconds or less, and it is generally and preferably set to about 15 seconds or more and 60 seconds or less.

<吸油量>
吸油量は本発明の六方晶窒化ホウ素一次粒子凝集体において特定の樹脂浸入量、すなわち絶縁性を示す指標である。なお、本発明者らの鋭意検討により、焼成で得られた直後の六方晶窒化ホウ素に、さらに粗化処理を施すことにより吸油量の向上を図ることが可能であることを見出した。吸油量の数値が高いほど樹脂の浸入量が高くなる傾向が示される。好ましい実施形態において、本発明の六方晶窒化ホウ素一次粒子凝集体100g当たりの吸油量は200ml(以下、200ml/100gのように記す)以上である。吸油量が200ml/100g未満であると、樹脂浸入量が不足してボイドが残るため、電気的高絶縁性を得ることができない。好ましい吸油量は220ml/100g以上である。なお、樹脂の浸入量の観点からは吸油量は高い方が好ましいが、吸油量が高すぎることは、該凝集体の凝集密度が低くて、その機械的強度も低く、必ずしも絶縁性能が優れることを意味しないため、500ml/100g以下であることが一般的に望ましく、400ml/100g以下であることがより望ましく、300ml/100g以下であることが更により望ましい。
本発明において吸油量は、JIS K5101−13−1:2004(「顔料試験方法」−第13部:吸油量−第1節:精製あまに油法)に示される手順に基づき測定される。
<Oil absorption>
The oil absorption amount is a specific resin penetration amount in the hexagonal boron nitride primary particle aggregate of the present invention, that is, an index showing the insulating property. The inventors of the present invention have made earnest studies and found that it is possible to improve the oil absorption amount by further roughening the hexagonal boron nitride immediately after firing. The higher the oil absorption value, the higher the resin penetration amount. In a preferred embodiment, the oil absorption amount per 100 g of the hexagonal boron nitride primary particle aggregate of the present invention is 200 ml or more (hereinafter referred to as 200 ml/100 g). If the oil absorption is less than 200 ml/100 g, the resin infiltration amount is insufficient and voids remain, so that electrical high insulation cannot be obtained. A preferable oil absorption amount is 220 ml/100 g or more. From the viewpoint of the amount of resin infiltration, it is preferable that the oil absorption is high, but if the oil absorption is too high, the aggregate density of the aggregate is low, the mechanical strength is low, and the insulation performance is not always excellent. Therefore, it is generally desirable to be 500 ml/100 g or less, more desirably 400 ml/100 g or less, and even more desirably 300 ml/100 g or less.
In the present invention, the oil absorption is measured based on the procedure shown in JIS K5101-13-1:2004 (“Pigment test method”-Part 13: Oil absorption-Section 1: Purified linseed oil method).

<比表面積>
本発明の六方晶窒化ホウ素一次粒子凝集体の比表面積は、一般に市販されているガス吸着現象を利用した測定装置を用い、比表面積の計算方法としてBET1点法を適用して算出した値である。
<Specific surface area>
The specific surface area of the hexagonal boron nitride primary particle agglomerate of the present invention is a value calculated by using a BET one-point method as a method of calculating the specific surface area using a commercially available measuring device utilizing a gas adsorption phenomenon. ..

<吸油量と比表面積との比率>
好ましい実施形態において、本発明の六方晶窒化ホウ素一次粒子凝集体の吸油量と比表面積との比率、即ち、(吸油量/比表面積)の値は、0.70ml/m2以上である。さらに好ましい比率は0.75ml/m2以上であり、さらにより好ましい比率は0.80ml/m2以上である。この比率が0.70ml/m2未満であると、該一次粒子凝集体の内部への樹脂浸入量が減少する傾向があり、要求されている電気的高絶縁性を満足しなくなる。また、この比率の上限は特に設定されないが、典型的には2.0ml/m2以下であり、より典型的には1.8ml/m2以下である。
<Ratio between oil absorption and specific surface area>
In a preferred embodiment, the ratio of the oil absorption amount and the specific surface area of the hexagonal boron nitride primary particle aggregate of the present invention, that is, the value of (oil absorption amount/specific surface area) is 0.70 ml/m 2 or more. A more preferable ratio is 0.75 ml/m 2 or more, and an even more preferable ratio is 0.80 ml/m 2 or more. If this ratio is less than 0.70 ml/m 2 , the amount of resin infiltrating into the inside of the primary particle agglomerate tends to decrease, and the required high electrical insulation cannot be satisfied. The upper limit of this ratio is not particularly set, but is typically 2.0 ml/m 2 or less, and more typically 1.8 ml/m 2 or less.

<焼結助剤に由来する金属元素の含有率>
本発明の六方晶窒化ホウ素一次粒子凝集体が、本発明の特性を有する凝集体であるためには、最終的に得られる本発明の第1の実施形態である六方晶窒化ホウ素一次粒子凝集体に含まれる焼結助剤に由来する金属元素の含有率は、500〜5000質量ppmであることが好ましい。該金属元素の含有率のさらに好ましい範囲は、1000〜3000質量ppmである。なお本発明では、該焼結助剤に由来する金属元素がカルシウムであることが好ましい。該金属元素の含有率が500質量ppmより小さいと、一次粒子同士の焼成による結合強度が不十分となり、樹脂へ充填する際の混練の剪断応力と窒化ホウ素粒子同士の面接触時の圧縮応力(特に加熱加圧成形時)に耐えうる凝集体強度を得ることができない。また、該金属元素の含有率が5000質量ppmより大きいと、窒化ホウ素粒子の弾性率が高くなるため、六方晶窒化ホウ素一次粒子同士の面接触が不十分になり、本発明の第2の実施形態である樹脂組成物となしたときの熱伝導率が低下し、本発明の第3の実施形態である電気絶縁部材を得ることができない。
本発明の六方晶窒化ホウ素一次粒子凝集体に含まれる、焼結助剤に由来する金属元素の含有率は、例えば、走査型蛍光X線分析装置を用いて測定することができる。
<Content of metal element derived from sintering aid>
In order for the hexagonal boron nitride primary particle aggregate of the present invention to be an aggregate having the characteristics of the present invention, the hexagonal boron nitride primary particle aggregate that is the first embodiment of the present invention finally obtained. The content of the metal element derived from the sintering aid contained in is preferably 500 to 5000 mass ppm. A more preferable range of the content of the metal element is 1000 to 3000 mass ppm. In the present invention, the metal element derived from the sintering aid is preferably calcium. When the content of the metal element is less than 500 mass ppm, the bonding strength due to firing of the primary particles becomes insufficient, the shear stress of kneading when filling the resin and the compressive stress at the surface contact of the boron nitride particles ( In particular, it is not possible to obtain an aggregate strength that can withstand heat-press molding. Further, when the content of the metal element is more than 5000 mass ppm, the elastic modulus of the boron nitride particles becomes high, so that the surface contact between the hexagonal boron nitride primary particles becomes insufficient, and the second embodiment of the present invention is performed. The thermal conductivity of the resin composition in the form is lowered, and the electrical insulating member according to the third embodiment of the present invention cannot be obtained.
The content of the metal element derived from the sintering aid contained in the hexagonal boron nitride primary particle aggregate of the present invention can be measured using, for example, a scanning fluorescent X-ray analyzer.

<六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物>
次に本発明の第2の実施形態である、六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物について説明する。該樹脂組成物中に含まれる該一次粒子凝集体の割合は20体積%以上80体積%以下であることが好ましい。なお、このときに本発明の六方晶窒化ホウ素一次粒子凝集体より平均粒子径の小さい各種セラミックミックス粉末(以下、各種セラミックス粉末と称する)、例えば窒化アルミニウム、六方晶窒化ホウ素、窒化ホウ素、窒化ケイ素、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、水酸化マグネシウム、二酸化ケイ素、炭化ケイ素の粉末を、本発明の目的を損なわない範囲において、1種類以上適宜添加しても良い。各種セラミックス粉末の適切な平均粒子径は、本発明の窒化ホウ素粉末の凝集体の平均粒子径によって変化するが、本発明の窒化ホウ素粉末の凝集体の平均粒子径に対して40%以下であることが好ましく、20%以下であることがさらに好ましい。例えば本発明の窒化ホウ素粉末の凝集体の平均粒子径が50μmの場合は、20μm以下が好ましく、10μm以下がさらに好ましい。粒子の充填構造をより密にすることができるので、充填性が向上し、結果として樹脂組成物の熱伝導率を著しく向上させることができる。各種セラミックス粉末の平均粒子径は本発明の六方晶窒化ホウ素一次粒子凝集体と同様の手順で測定される。
<Resin composition containing hexagonal boron nitride primary particle aggregates>
Next, a resin composition containing a hexagonal boron nitride primary particle aggregate, which is a second embodiment of the present invention, will be described. The proportion of the primary particle aggregates contained in the resin composition is preferably 20% by volume or more and 80% by volume or less. At this time, various ceramic mix powders having an average particle size smaller than that of the hexagonal boron nitride primary particle aggregate of the present invention (hereinafter referred to as various ceramic powders), for example, aluminum nitride, hexagonal boron nitride, boron nitride, silicon nitride One or more powders of aluminum oxide, zinc oxide, magnesium oxide, magnesium hydroxide, silicon dioxide, and silicon carbide may be appropriately added within a range that does not impair the object of the present invention. The appropriate average particle size of various ceramic powders varies depending on the average particle size of the aggregate of the boron nitride powder of the present invention, but is 40% or less with respect to the average particle size of the aggregate of the boron nitride powder of the present invention. It is preferably 20% or less, more preferably 20% or less. For example, when the average particle diameter of the aggregate of the boron nitride powder of the present invention is 50 μm, it is preferably 20 μm or less, more preferably 10 μm or less. Since the packing structure of the particles can be made denser, the packing property is improved, and as a result, the thermal conductivity of the resin composition can be significantly improved. The average particle size of various ceramic powders is measured by the same procedure as that for the hexagonal boron nitride primary particle aggregate of the present invention.

<樹脂>
本発明の第2の実施形態である、六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物に用いることのできる樹脂の種類には、特に限定はないが、例えばエポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、ポリアセタール、ナイロン樹脂等を好ましく挙げることができる。これら樹脂、特に熱硬化性樹脂には適宜、硬化剤、無機フィラー、シランカップリング剤、さらに濡れ性やレベリング性の向上及び粘度低下を促進して加熱加圧成形時の欠陥の発生を低減する添加剤を含有することができる。この添加剤としては、例えば、消泡剤、表面調整剤、湿潤分散剤等がある。また、エポキシ樹脂は、耐熱性と銅箔回路への接着強度が優れていることから、プリント配線板の絶縁層として好適である。さらにシリコーン樹脂及びシリコーンゴムは耐熱性、柔軟性及びヒートシンク等への密着性が優れていることから熱インターフェース材として好適である。
<Resin>
The type of resin that can be used in the resin composition containing the hexagonal boron nitride primary particle aggregates, which is the second embodiment of the present invention, is not particularly limited, and examples thereof include epoxy resin, silicone resin, and silicone rubber. , Acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyimide such as polyetherimide, polyester such as polybutylene terephthalate and polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic Group polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, polyglycolic acid resin Preferable examples include polyphthalamide, polyacetal, nylon resin and the like. For these resins, especially thermosetting resins, a curing agent, an inorganic filler, a silane coupling agent, and further improvement of wettability and leveling property and acceleration of viscosity reduction are promoted to reduce the occurrence of defects during heat and pressure molding. Additives can be included. Examples of this additive include a defoaming agent, a surface conditioner, and a wetting and dispersing agent. Further, the epoxy resin is suitable as an insulating layer of a printed wiring board because it has excellent heat resistance and adhesive strength to a copper foil circuit. Furthermore, silicone resin and silicone rubber are suitable as a thermal interface material because they have excellent heat resistance, flexibility, and adhesion to a heat sink and the like.

本発明の六方晶窒化ホウ素一次粒子凝集体と樹脂とを混合して樹脂組成物となす場合には、両者を混合しやすくするため、必要に応じて有機溶剤を加えても良い。有機溶剤としては、例えば、エタノール及びイソプロパノール等のアルコール類、2−メトキシエタノール、1−メトキシエタノール、2−エトキシエタノール、1−エトキシ−2−プロパノール、2−ブトキシエタノール、2−(2−メトキシエトキシ)エタノール、2−(2−エトキシエトキシ)エタノール及び2−(2−ブトキシエトキシ)エタノール等のエーテルアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン及びジイソブチルケトンケトン等のケトン類、トルエン及びキシレン等の炭化水素類が挙げられる。なお、これらの希釈剤は、単独で使用しても、2種以上を混合して使用してもよい。 When the hexagonal boron nitride primary particle agglomerates of the present invention are mixed with a resin to form a resin composition, an organic solvent may be added as necessary in order to facilitate mixing of the two. Examples of the organic solvent include alcohols such as ethanol and isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2-(2-methoxyethoxy). ) Ethanol, ether alcohols such as 2-(2-ethoxyethoxy)ethanol and 2-(2-butoxyethoxy)ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone And ketones such as diisobutyl ketone ketone, and hydrocarbons such as toluene and xylene. These diluents may be used alone or in combination of two or more.

本発明の第3の実施形態である電気絶縁部材は、第2の実施形態である六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物を成形加工した、さらに必要に応じて他の素材等と組み合わせてなした、電気絶縁部材である。 The electrical insulating member according to the third embodiment of the present invention is obtained by molding and processing the resin composition containing the hexagonal boron nitride primary particle aggregates according to the second embodiment, and further, if necessary, with another material or the like. It is an electrical insulating member made by combining them.

以下、本発明を、参考例、実施例、比較例を挙げてさらに具体的に説明する。
<参考例1:未粗化凝集体aの作製>
ホウ酸52kgとメラミン50kgを混合し、バッチ式高周波炉にて窒素雰囲気下で、一次焼成として1000℃で4時間焼成後、さらに二次焼成として1600℃で4時間焼成した前駆体(イ)と、ホウ酸52kgとメラミン50kgを混合し、バッチ式高周波炉にて窒素雰囲気下で、一次焼成として1000℃で4時間焼成後、さらに二次焼成として2000℃で4時間焼成した前駆体(ロ)を得た。
該前駆体(イ)の粉末15.72kgと、該前駆体(ロ)の粉末5.24kgと、焼結助剤の炭酸カルシウム(白石工業社製、PC−700)0.54kg及び水78.5kgを追加添加し、ヘンシェルミキサーを用いて混合した後、ボールミルで5時間粉砕し、水スラリーを得た。さらに該水スラリー100質量部に対して、窒化ホウ素粒子を糊付けするためのポリビニルアルコール樹脂(日本合成化学社製、ゴーセノール)を0.5質量部添加し、溶解するまで50℃で加熱撹拌した後、7000rpmの回転数で運転させた回転式アトマイザーを通して温度230℃の噴霧乾燥機中に噴出させた。回収された該水スラリー乾燥処理物を、さらに三次焼成として、バッチ式高周波炉にて窒素雰囲気下で、1850℃で4時間焼成した後、荒く解砕して未粗化凝集体aを得た。このときの条件を表1にまとめて記した。
Hereinafter, the present invention will be described more specifically with reference to Reference Examples, Examples, and Comparative Examples.
<Reference Example 1: Preparation of unroughened aggregate a>
Boric acid (52 kg) and melamine (50 kg) were mixed, and the precursor (a) was fired in a batch type high-frequency furnace in a nitrogen atmosphere as a primary calcination at 1000° C. for 4 hours and then as a secondary calcination at 1600° C. for 4 hours. , A mixture of 52 kg of boric acid and 50 kg of melamine, which was fired in a batch type high-frequency furnace in a nitrogen atmosphere at 1000° C. for 4 hours as primary firing, and then at 2000° C. for 4 hours as secondary firing (B) Got
15.72 kg of the powder of the precursor (a), 5.24 kg of the powder of the precursor (b), 0.54 kg of calcium carbonate (PC-700 manufactured by Shiraishi Industry Co., Ltd.) as a sintering aid, and 78. After additionally adding 5 kg and mixing using a Henschel mixer, it was pulverized with a ball mill for 5 hours to obtain a water slurry. Furthermore, to 100 parts by mass of the water slurry, 0.5 parts by mass of a polyvinyl alcohol resin (Gosenol manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) for gluing boron nitride particles was added, and after heating and stirring at 50° C. until dissolution. , Through a rotary atomizer operated at a rotation speed of 7,000 rpm into a spray dryer at a temperature of 230°C. The recovered dried product of the water slurry was further subjected to a third calcination in a batch type high-frequency furnace in a nitrogen atmosphere at 1850° C. for 4 hours, and then roughly crushed to obtain an unroughened aggregate a. .. The conditions at this time are summarized in Table 1.

<参考例2〜14:未粗化凝集体b〜nの作製>
さらに前駆体(イ)及び前駆体(ロ)は参考例1と同じ物を用い、それらの配合条件、炭酸カルシウム及び水の配合条件、ボールミル粉砕時間、噴霧乾燥条件、三次焼成条件を調整して、未粗化凝集体aと同様の手順で、未粗化凝集体b〜nを作製した。これらの条件等は、参考例1と併せて表1に示した。
<Reference Examples 2 to 14: Preparation of unroughened aggregates b to n>
Further, the same precursors (a) and (b) as in Reference Example 1 were used, and the mixing conditions thereof, calcium carbonate and water mixing conditions, ball milling time, spray drying conditions, and tertiary firing conditions were adjusted. The unroughened aggregates b to n were produced in the same procedure as the unroughened aggregate a. These conditions and the like are shown in Table 1 together with Reference Example 1.

<実施例1〜10、比較例1〜10:粗化処理された凝集体の作製>
未粗化凝集体aを、固定刃と回転刃を有するせん断型解砕機(グローエンジニアリング社製、ロータリーカッターミニ RC−1S)を用いて粗化処理した。このとき、該ロータリーカッター回転刃の回転数は表2に記載した値に設定し、1kg/分の割合で該凝集体を供給し、解砕機出口に設置された直径0.3mmのスクリーンで粗粒子を取り除いた後の六方晶窒化ホウ素一次粒子凝集体(以下、粗化処理済み凝集体A3という)を回収した。なお、ロータリーカッターの回転数毎に計算したせん断速度を表2に併せて示した。最終的に得られた六方晶窒化ホウ素一次粒子凝集体を走査型電子顕微鏡(日本電子社製、JSM−6010LA)にて表面状態を観察し、粗化処理の状態を確認した。粗化処理前(即ち未粗化凝集体a)と粗化処理後(即ち粗化処理済み凝集体A3)の電子顕微鏡画像を図1、図2に例示する。図2に示された画像から、粗化処理済み凝集体A3は一次粒子が凝集する状態を維持しつつ、その表面に約5〜10μmの細孔が生成していることを確認した。
なお、未粗化処理凝集体aに関しては、粗化処理条件を表2、及び表3に示したように変更して、粗化処理済み凝集体A1〜A7を揃えた。さらに、未粗化凝集体b〜n(但し、未粗化凝集体hを除く)もまた、表2、及び表3に示した条件に従って粗化処理を施し、粗化処理済み凝集体B〜Nを得た。
<Examples 1 to 10 and Comparative Examples 1 to 10: Preparation of roughened aggregate>
The unroughened aggregate a was roughened using a shear type crusher having a fixed blade and a rotary blade (rotary cutter mini RC-1S manufactured by Glow Engineering Co., Ltd.). At this time, the number of rotations of the rotary cutter rotary blade was set to a value shown in Table 2, the aggregate was supplied at a rate of 1 kg/min, and a coarse screen was used with a 0.3 mm diameter screen installed at the exit of the crusher. After removing the particles, the hexagonal boron nitride primary particle aggregates (hereinafter referred to as roughening-treated aggregates A3) were collected. The shear rate calculated for each rotation speed of the rotary cutter is also shown in Table 2. The surface state of the finally obtained hexagonal boron nitride primary particle aggregate was observed with a scanning electron microscope (JSM-6010LA, manufactured by JEOL Ltd.) to confirm the state of roughening treatment. Electron microscope images before roughening treatment (that is, unroughened aggregate a) and after roughening treatment (that is, roughened aggregate A3) are illustrated in FIGS. 1 and 2. From the image shown in FIG. 2, it was confirmed that the roughening-treated aggregate A3 had pores of about 5 to 10 μm formed on the surface thereof while maintaining the state in which the primary particles were aggregated.
Regarding the unroughened aggregate a, the roughening conditions were changed as shown in Table 2 and Table 3 to prepare roughened aggregates A1 to A7. Further, the unroughened aggregates b to n (excluding the unroughened aggregate h) are also subjected to the roughening treatment according to the conditions shown in Tables 2 and 3, and the roughened aggregates B to I got N.

<平均球形度の測定>
粗化処理済み凝集体A1〜A7、及びB〜N(以下、実質的に粗化処理が加えられなかったA1、Hも、粗化処理済み凝集体と併せる)の平均球形度は以下のように測定した。試料台上の導電性両面テープに固定した各粗化処理済み凝集体を、走査型電子顕微鏡「JSM−6010LA」(日本電子社製)にて撮影し、得られた凝集体像を画像解析ソフトウェア「Mac−View」(マウンテック社製)に取り込み、写真から先述した手順によって凝集体の投影面積(A)と周囲長(PM)を測定し、凝集体の一個の球形度を算出した。この際の画像の倍率は100倍、画像解析の画素数は1510万画素であった。これを繰り返して任意の凝集体100個の球形度を求めその平均値を平均球形度とした。
<Measurement of average sphericity>
The average sphericity of the roughened aggregates A1 to A7 and B to N (hereinafter, A1 and H to which substantially no roughening treatment was added are also combined with the roughened aggregate) is as follows. Measured. Each roughening-treated aggregate fixed to the conductive double-sided tape on the sample table was photographed with a scanning electron microscope "JSM-6010LA" (manufactured by JEOL Ltd.), and the obtained aggregate image was analyzed with image analysis software. The projected area (A) and the peripheral length (PM) of the aggregate were measured by the procedure described above from the photograph by taking in “Mac-View” (manufactured by Mountech Co., Ltd.) to calculate the sphericity of one aggregate. The magnification of the image at this time was 100 times, and the number of pixels for image analysis was 15.1 million pixels. By repeating this, the sphericity of 100 arbitrary aggregates was obtained and the average value was used as the average sphericity.

<平均粒子径の測定>
粗化処理済み凝集体A1〜A7、及びB〜N(以下、実質的に粗化処理が加えられなかったA1、Hも、粗化処理済み凝集体と併せる)の平均粒子径を、粒度分布測定機(日機装社製、MT3300EX)を用いて測定した。粒度分布測定に際し、該凝集体を分散させる溶媒には水を、分散剤にはヘキサメタリン酸を用いた。このとき水の屈折率には1.33を、また、窒化ホウ素粉末の屈折率については1.80の数値を用いた。平均粒子径の測定値は、表2、及び表3に示した。
<Measurement of average particle size>
The average particle size of the roughening-treated aggregates A1 to A7 and B to N (hereinafter, A1 and H to which substantially no roughening treatment was added are also combined with the roughening-treated aggregate) It measured using the measuring machine (The Nikkiso Co., Ltd. make, MT3300EX). In measuring the particle size distribution, water was used as the solvent for dispersing the aggregates and hexametaphosphoric acid was used as the dispersant. At this time, 1.33 was used as the refractive index of water, and 1.80 was used as the refractive index of the boron nitride powder. The measured values of the average particle diameter are shown in Tables 2 and 3.

<吸油量の測定>
粗化処理済み凝集体A1〜A7、及びB〜Nの吸油量を、JIS K5101−13−1:2004(「顔料試験方法」−第13部:吸油量−第1節:精製あまに油法)に示される手順に基づき測定した。給油量の測定値は、表2、及び表3に示した。
<Measurement of oil absorption>
The oil absorptions of the roughened aggregates A1 to A7 and B to N are measured according to JIS K5101-13-1:2004 ("Pigment test method"-Part 13: Oil absorption-Section 1: Purified linseed oil method. ) It measured based on the procedure shown by. The measured values of the amount of oil supplied are shown in Tables 2 and 3.

<比表面積及び(吸油量/比表面積)値の算出>
粗化処理済み凝集体A1〜A7、及びB〜Nの比表面積の値は比表面積測定装置(ユアサアイオニクス社製、カンターソーブ)を用いて、BET1点法により測定した。また、粗化処理済み凝集体A1〜A7、及びB〜Nの(吸油量/比表面積)の値は、先に測定した吸油量を測定された比表面積の値で除することにより算出した。なお、比表面積の測定に際しては、試料1gを300℃、15分間乾燥脱気してから測定に供した。比表面積と(吸油量/比表面積)の値は、表2、及び表3に示した。
<Calculation of specific surface area and (oil absorption/specific surface area) value>
The values of the specific surface areas of the roughened aggregates A1 to A7 and B to N were measured by a BET one-point method using a specific surface area measuring device (Cantersorb, manufactured by Yuasa Ionics Inc.). The value of (oil absorption/specific surface area) of the roughened aggregates A1 to A7 and B to N was calculated by dividing the previously measured oil absorption by the value of the measured specific surface area. When measuring the specific surface area, 1 g of the sample was dried and degassed at 300° C. for 15 minutes and then used for the measurement. The values of specific surface area and (oil absorption/specific surface area) are shown in Tables 2 and 3.

<焼結助剤に由来する金属元素の含有率の測定>
粗化処理済み凝集体A1〜A7、及びB〜Nに含まれる、焼結助剤に由来する金属元素の含有率を、走査型蛍光X線分析装置(リガク社製、ZSX PrimusII)を用いて測定した。六方晶窒化ホウ素一次粒子凝集体を、装置に合わせてプレス成型した被検体を装置内に置き、X線管球はRh管球を用い、X線管電力は3.0kWとし、測定径はΦ=30mmとして測定した。なお、金属元素はカルシウムである。カルシウムの測定値は、表2、及び表3に示した。
<Measurement of content rate of metal element derived from sintering aid>
The content of the metal element derived from the sintering aid, which is contained in the roughened aggregates A1 to A7 and B to N, is determined by using a scanning fluorescent X-ray analyzer (ZSX PrimusII, manufactured by Rigaku Corporation). It was measured. A hexagonal boron nitride primary particle agglomerate was press-molded according to the device, a test object was placed in the device, an Rh tube was used as the X-ray tube, the X-ray tube power was 3.0 kW, and the measurement diameter was Φ. =30 mm was measured. The metal element is calcium. The measured values of calcium are shown in Tables 2 and 3.

<樹脂への充填>
得られた粗化処理済み凝集体A1〜A7、及びB〜Nを、電気絶縁部材としての実用特性を評価するため、エポキシ樹脂(三菱化学社製、エピコート807)が90体積%、硬化剤(日本合成化工社製、アクメックスH−84B)が10体積%、粗化処理済み凝集体が60体積%となるように混合して樹脂組成物となし、PET製シート上に厚みが1.0mmになるように塗布した後、500Pa(abs)の減圧脱泡を10分間行った。その後、温度150℃、圧力160kg/cm2条件で60分間のプレス加熱加圧を行って厚さ0.5mmのシートとした。該シートを用いて電気絶縁部材としての評価を実施例1〜10、及び比較例1〜10に対して実施した。
<Filling resin>
In order to evaluate the practical properties of the obtained roughened aggregates A1 to A7 and B to N as an electric insulating member, 90% by volume of an epoxy resin (Epicoat 807, manufactured by Mitsubishi Chemical Corporation) and a curing agent ( Acmex H-84B, manufactured by Nippon Gohsei Co., Ltd., was mixed so as to be 10% by volume and 60% by volume of roughened aggregates to form a resin composition, and the thickness was 1.0 mm on a PET sheet. After being applied so as to be, the defoaming under reduced pressure of 500 Pa (abs) was performed for 10 minutes. After that, press heating and pressing were performed for 60 minutes under conditions of a temperature of 150° C. and a pressure of 160 kg/cm 2 to obtain a sheet having a thickness of 0.5 mm. Using the sheet, evaluation as an electrically insulating member was performed on Examples 1 to 10 and Comparative Examples 1 to 10.

得られた粗化処理済み凝集体とエポキシ樹脂とを含む樹脂組成物シートの、熱伝導率及び絶縁破壊電圧は、次に示す方法に従って評価した。 The thermal conductivity and the dielectric breakdown voltage of the obtained resin composition sheet containing the roughened aggregate and the epoxy resin were evaluated according to the following methods.

<熱伝導率>
熱伝導率(H(W/(m・K))とする)は、熱拡散率(A(m2/秒)とする)、密度(B(kg/m3)とする)及び比熱容量(C(J/(kg・K))とする)から、H=A×B×Cとして算出した。熱拡散率は、測定用試料としてシートを幅10mm×10mm×厚み0.5mmに加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザ(NETZSCH社製、LFA447NanoFlash)を用いた。密度はアルキメデス法を用いて求めた。比熱容量は、DSC測定装置(リガク社製、ThermoPlus Evo DSC8230)を用いて求めた。
<Thermal conductivity>
The thermal conductivity (H (W/(m·K)) is the thermal diffusivity (A (m 2 /sec)), density (B (kg/m 3 )) and specific heat capacity ( From C (J/(kg·K)), H=A×B×C was calculated. The thermal diffusivity was determined by a laser flash method after processing a sheet as a measurement sample into a width of 10 mm×10 mm×a thickness of 0.5 mm. A xenon flash analyzer (LFA447NanoFlash, manufactured by NETZSCH) was used as a measuring device. The density was obtained using the Archimedes method. The specific heat capacity was determined using a DSC measurement device (ThermoPlus Evo DSC8230, manufactured by Rigaku Corporation).

<絶縁破壊電圧>
絶縁破壊電圧はJIS C2110−1:2010(固体電気絶縁材料−絶縁破壊の強さの試験方法−第1部:商用周波数交流電圧印加による試験)に基づき測定した。測定用試料としてシートを100mm×100mmに5枚加工し、直径25mmの電極を用いて各シート5箇所測定した。
<Dielectric breakdown voltage>
The dielectric breakdown voltage was measured based on JIS C2110-1:2010 (solid electric insulating material-testing method for strength of dielectric breakdown-part 1: test by applying commercial frequency AC voltage). Five sheets each having a size of 100 mm×100 mm were processed as a measurement sample, and each sheet was measured at 5 points using an electrode having a diameter of 25 mm.

実施例1〜10、比較例1〜10の熱伝導率、絶縁破壊電圧は表2、表3に併せて示した。 The thermal conductivity and the dielectric breakdown voltage of Examples 1 to 10 and Comparative Examples 1 to 10 are also shown in Tables 2 and 3.

表2の結果から、本発明の六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物を用いた電気絶縁部材は、8(W/m・K)を超える熱伝導率と、10(kV)を超える電気絶縁性を両立したものであることがわかる。また、表3の結果から、比較例の六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物を用いた電気絶縁部材は8(W/m・K)を超える熱伝導率と、10(kV)を超える電気絶縁性を両立することができないことが分かる。その原因は以下に説明する通りである。
比較例1及び比較例2は粗化処理を実施しておらず、吸油量が不足した。
比較例3は未粗化凝集体を作製する際のボールミルによる粉砕時間が長すぎ、また、噴霧乾燥時のアトマイザー回転数が速すぎたことで、凝集粒子が小さくなった。このため、吸油量は高いが比表面積も大きくなってしまい、吸油量と比表面積の比が好適化されなかった。
比較例4は未粗化凝集体を作製する際の噴霧乾燥時のアトマイザー回転数が遅すぎたことで、凝集粒子が過度に大きくなった。
比較例5は焼結助剤由来のカルシウムが不足した。
比較例6は焼結助剤由来のカルシウムが過剰であった。
比較例7は三次焼成のときの焼成温度が低すぎたことで比表面積が大きくなり、吸油量と比表面積の比が好適化されなかった。
比較例8は三次焼成のときの焼成温度が高すぎたことで比表面積が小さくなり、比表面積が好適化されなかった。
比較例9は粗化処理時の剪断速度が速すぎたことにより球形度が0.4を下回った。
比較例10は粗化処理時の剪断速度が遅すぎたことで吸油量が不足した。
From the results of Table 2, the electrical insulating member using the resin composition containing the hexagonal boron nitride primary particle aggregate of the present invention has a thermal conductivity of more than 8 (W/m·K) and 10 (kV). It can be seen that the electrical insulation properties that exceed are compatible. In addition, from the results of Table 3, the electrical insulating member using the resin composition containing the hexagonal boron nitride primary particle aggregate of the comparative example had a thermal conductivity of more than 8 (W/m·K) and 10 (kV). It can be seen that it is not possible to achieve both electrical insulation properties exceeding the range. The cause is as described below.
In Comparative Example 1 and Comparative Example 2, the roughening treatment was not performed, and the oil absorption amount was insufficient.
In Comparative Example 3, the crushing time by the ball mill at the time of producing the unroughened aggregate was too long, and the atomizer rotation speed at the time of spray drying was too fast, so that the aggregated particles became small. Therefore, the oil absorption is high, but the specific surface area is also large, and the ratio between the oil absorption and the specific surface area has not been optimized.
In Comparative Example 4, the atomizer rotation speed at the time of spray-drying when producing the unroughened aggregate was too slow, and therefore the aggregated particles became excessively large.
Comparative Example 5 lacked calcium derived from the sintering aid.
In Comparative Example 6, the calcium derived from the sintering aid was excessive.
In Comparative Example 7, the specific surface area was increased because the firing temperature during the third firing was too low, and the ratio between the oil absorption amount and the specific surface area was not optimized.
In Comparative Example 8, the specific surface area was reduced because the baking temperature during the third baking was too high, and the specific surface area was not optimized.
In Comparative Example 9, the sphericity was less than 0.4 because the shear rate during the roughening treatment was too fast.
In Comparative Example 10, the oil absorption amount was insufficient because the shear rate during the roughening treatment was too slow.

本発明の六方晶窒化ホウ素一次粒子凝集体は、高い熱伝導性と電気絶縁性を両立し、これを含む樹脂組成物を用いた電気絶縁部材は、プリント配線板の絶縁層及び熱インターフェース材として好ましく用いることができる。 The hexagonal boron nitride primary particle aggregate of the present invention has both high thermal conductivity and electrical insulation, and an electrical insulating member using a resin composition containing the same is used as an insulating layer and a thermal interface material of a printed wiring board. It can be preferably used.

Claims (4)

六方晶窒化ホウ素の一次粒子凝集体であって、焼結助剤に由来するカルシウムを500質量ppm以上5000質量ppm以下含み、吸油量が200ml/100g以上、比表面積が1m2/g以上6m2/g以下、吸油量と比表面積との比(吸油量/比表面積)の値が0.7ml/m2以上、当該凝集体の平均粒子径が10μm以上200μm以下、平均球形度が0.40以上0.80以下の六方晶窒化ホウ素の一次粒子凝集体。 It is a primary particle aggregate of hexagonal boron nitride, contains 500 mass ppm or more and 5000 mass ppm or less of calcium derived from a sintering additive, has an oil absorption of 200 ml/100 g or more, and a specific surface area of 1 m 2 /g or more 6 m 2 /G or less, the ratio of the oil absorption amount and the specific surface area (oil absorption amount/specific surface area) is 0.7 ml/m 2 or more, the average particle diameter of the aggregate is 10 μm or more and 200 μm or less, and the average sphericity is 0.40. Hexagonal boron nitride primary particle aggregate of not less than 0.80. 請求項に記載の六方晶窒化ホウ素の一次粒子凝集体を含む樹脂組成物。 A resin composition comprising the primary particle aggregate of the hexagonal boron nitride according to claim 1 . 請求項に記載の樹脂組成物を含む電気絶縁部材。 An electrical insulating member comprising the resin composition according to claim 2 . ホウ素を含む化合物と窒素を含む化合物とを含む混合物を焼成して、窒化ホウ素前駆体を得る工程、該窒化ホウ素前駆体と、カルシウムを含む焼結助剤を含む水スラリーであって、該窒化ホウ素前駆体に対する該焼結助剤に由来する該カルシウムの質量割合が0.2%〜1.9%である水スラリーを得る工程、該水スラリーをアトマイザー回転数を2000〜18000rpmとして噴霧乾燥して乾燥体を得る工程、該乾燥体を1750℃〜2200℃の温度で焼成することにより六方晶窒化ホウ素の一次粒子凝集体を得る工程、該六方晶窒化ホウ素の一次粒子凝集体にせん断速度6000〜20000(1/秒)でせん断力を加えることにより粗化処理を施す工程を実施することを含む六方晶窒化ホウ素の一次粒子凝集体の製造方法。 By firing a mixture comprising a compound comprising a compound and nitrogen containing boron, a water slurry containing step of obtaining a boron nitride precursor, a nitride boron precursor, and a sintering aid containing calcium, the A step of obtaining a water slurry in which the mass ratio of the calcium derived from the sintering aid to the boron nitride precursor is 0.2% to 1.9%, and the water slurry is spray-dried at an atomizer rotation speed of 2000 to 18000 rpm. To obtain a dried body, a step of obtaining a primary particle aggregate of hexagonal boron nitride by firing the dried body at a temperature of 1750° C. to 2200° C., a shear rate of the primary particle aggregate of the hexagonal boron nitride. A method for producing a primary particle aggregate of hexagonal boron nitride, which comprises performing a roughening treatment by applying a shearing force at 6000 to 20000 (1/sec).
JP2016051592A 2016-03-15 2016-03-15 Hexagonal boron nitride primary particle aggregate, resin composition and use thereof Active JP6704271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016051592A JP6704271B2 (en) 2016-03-15 2016-03-15 Hexagonal boron nitride primary particle aggregate, resin composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016051592A JP6704271B2 (en) 2016-03-15 2016-03-15 Hexagonal boron nitride primary particle aggregate, resin composition and use thereof

Publications (2)

Publication Number Publication Date
JP2017165609A JP2017165609A (en) 2017-09-21
JP6704271B2 true JP6704271B2 (en) 2020-06-03

Family

ID=59912711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016051592A Active JP6704271B2 (en) 2016-03-15 2016-03-15 Hexagonal boron nitride primary particle aggregate, resin composition and use thereof

Country Status (1)

Country Link
JP (1) JP6704271B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204732B2 (en) * 2018-03-09 2023-01-16 デンカ株式会社 Hexagonal boron nitride powder, method for producing hexagonal boron nitride powder for cosmetics, and cosmetics
US20220073698A1 (en) * 2019-01-29 2022-03-10 Denka Company Limited Boron nitride powder and resin composition
JP7145315B2 (en) * 2019-03-27 2022-09-30 デンカ株式会社 Agglomerated boron nitride particles, thermally conductive resin composition, and heat dissipation member
US20220204830A1 (en) * 2019-03-28 2022-06-30 Denka Company Limited Boron nitride powder, method for producing same, composite material, and heat dissipation member
JP7356364B2 (en) * 2020-01-24 2023-10-04 デンカ株式会社 Hexagonal boron nitride powder and method for producing hexagonal boron nitride powder
JPWO2021200724A1 (en) * 2020-03-31 2021-10-07
WO2021200725A1 (en) * 2020-03-31 2021-10-07 デンカ株式会社 Boron nitride sintered body, method for manufacturing same, laminate, and method for manufacturing same
CN115702185A (en) * 2020-09-07 2023-02-14 电化株式会社 Insulating resin composition, cured insulating resin, laminate, and circuit board
CN116419944A (en) 2021-03-02 2023-07-11 株式会社德山 Hexagonal boron nitride aggregate particles, hexagonal boron nitride powder, resin composition, and resin sheet
JP7303950B2 (en) * 2021-03-25 2023-07-05 デンカ株式会社 Boron nitride powder and resin composition
CN113336203B (en) * 2021-07-09 2024-06-25 丹东市化工研究所有限责任公司 Boron nitride agglomerate particle with small particle size and preparation method thereof
CN115974011A (en) * 2022-12-23 2023-04-18 雅安百图高新材料股份有限公司 Spherical hexagonal boron nitride and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461651B2 (en) * 1996-01-24 2003-10-27 電気化学工業株式会社 Hexagonal boron nitride powder and its use
JP2005002078A (en) * 2003-04-18 2005-01-06 Kanebo Ltd Water-based liquid cosmetic
JP5666342B2 (en) * 2011-02-23 2015-02-12 電気化学工業株式会社 Composite particles of melamine borate and boron nitride, and a method for producing boron nitride particles using the same.
WO2014049956A1 (en) * 2012-09-28 2014-04-03 水島合金鉄株式会社 Highly water-repellent and highly oil-absorbent boron nitride powder, production method therefor, and cosmetic
CN105026312B (en) * 2013-03-07 2018-03-20 电化株式会社 Boron nitride powder and the resin combination containing the boron nitride powder
JP6468197B2 (en) * 2013-12-20 2019-02-13 住友ベークライト株式会社 Thermosetting resin composition and metal resin composite
JP2015193504A (en) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 Boron nitride particle, resin composition and heat-conductive sheet
JP6483508B2 (en) * 2014-04-18 2019-03-13 株式会社トクヤマ Hexagonal boron nitride powder and method for producing the same

Also Published As

Publication number Publication date
JP2017165609A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6704271B2 (en) Hexagonal boron nitride primary particle aggregate, resin composition and use thereof
KR102187240B1 (en) Boron-nitride powder and resin composition containing same
KR102692141B1 (en) Bulk boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat dissipation member
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
JP6720014B2 (en) Hexagonal boron nitride primary particle aggregate, resin composition and use thereof
JP5969314B2 (en) Boron nitride powder and its use
JP6351585B2 (en) Resin-impregnated boron nitride sintered body and use thereof
JP6815152B2 (en) Hexagonal Boron Nitride Primary Particle Aggregates
JP6875854B2 (en) Hexagonal Boron Nitride Primary Particle Aggregates and Their Applications
US10526492B2 (en) Process for manufacturing boron nitride agglomerates
WO2014003193A1 (en) Sintered spherical bn particles with concave part, method for producing same, and polymer material
JP2019073409A (en) Method for producing bulk boron nitride powder and heat radiation member using the same
JP7079378B2 (en) Boron nitride powder and its manufacturing method, as well as composite materials and heat dissipation members
JPWO2020153505A1 (en) Filler composition, silicone resin composition and heat dissipation parts
JP5647945B2 (en) Insulating resin composition for circuit board, insulating sheet for circuit board, laminated board for circuit board, and metal base circuit board
JP7203290B2 (en) Sheet-like hexagonal boron nitride sintered body and method for producing the same
WO2023162641A1 (en) Powder, powder manufacturing method, and heat dissipation sheet
JP2024022830A (en) Boron nitride powder and method for producing boron nitride powder
TW202313457A (en) A hexagonal boron nitride powder
JP2023147855A (en) boron nitride powder
WO2024210054A1 (en) Aluminum nitride powder
JP2022125061A (en) Aggregated boron nitride particle, boron nitride powder, heat conductivity resin composition, and heat-dissipating sheet
JP2020066563A (en) Boron nitride secondary aggregated particle, heat radiation sheet containing the same, and semiconductor device
CN118660861A (en) Boron nitride powder, resin composition, and method for producing boron nitride powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200512

R150 Certificate of patent or registration of utility model

Ref document number: 6704271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250