JP6875854B2 - Hexagonal Boron Nitride Primary Particle Aggregates and Their Applications - Google Patents

Hexagonal Boron Nitride Primary Particle Aggregates and Their Applications Download PDF

Info

Publication number
JP6875854B2
JP6875854B2 JP2016255585A JP2016255585A JP6875854B2 JP 6875854 B2 JP6875854 B2 JP 6875854B2 JP 2016255585 A JP2016255585 A JP 2016255585A JP 2016255585 A JP2016255585 A JP 2016255585A JP 6875854 B2 JP6875854 B2 JP 6875854B2
Authority
JP
Japan
Prior art keywords
boron nitride
hexagonal boron
nitride primary
primary particle
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016255585A
Other languages
Japanese (ja)
Other versions
JP2018104253A (en
Inventor
隆貴 松井
隆貴 松井
黒川 史裕
史裕 黒川
光永 敏勝
敏勝 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2016255585A priority Critical patent/JP6875854B2/en
Publication of JP2018104253A publication Critical patent/JP2018104253A/en
Application granted granted Critical
Publication of JP6875854B2 publication Critical patent/JP6875854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、六方晶窒化ホウ素一次粒子凝集体、詳しくは、パワーデバイス、パワーモジュールなどの発熱性電子部品の熱を放熱部材に伝達する熱インターフェース材及びプリント配線板の絶縁層に含まれる、六方晶窒化ホウ素一次粒子凝集体、及びその製造方法とその用途に関する。 The present invention is contained in a hexagonal boron nitride primary particle agglomerate, specifically, a thermal interface material that transfers heat of a heat-generating electronic component such as a power device or a power module to a heat-dissipating member, and an insulating layer of a printed wiring board. The present invention relates to a crystallized boron nitride primary particle agglomerate, a method for producing the same, and its use.

パワーデバイス、トランジスタ、サイリスタ、CPU等の発熱性電子部品や、これらを複合化したパワーモジュールにおいては、使用時に発生する熱を如何に効率的に放熱するかが重要な課題となっている。従来から、この分野における放熱効率の向上策としては、例えば発熱性電子部品が実装されるプリント配線板の絶縁層を高熱伝導化する、および発熱性電子部品又は発熱性電子部品を実装したプリント配線板を電気絶縁性の熱インターフェース材を介してヒートシンク等の放熱部材に取り付けることなどが一般的に行われてきた。プリント配線板の絶縁層や熱インターフェース材等の主な材料としては、例えばシリコーン樹脂やエポキシ樹脂に熱伝導率の高いセラミックス粉末を充填させた樹脂組成物が好ましく用いられている。 In heat-generating electronic components such as power devices, transistors, thyristors, and CPUs, and power modules in which these are combined, how to efficiently dissipate heat generated during use has become an important issue. Conventionally, as a measure for improving heat dissipation efficiency in this field, for example, the insulating layer of a printed wiring board on which a heat-generating electronic component is mounted is made highly thermally conductive, and a heat-generating electronic component or a printed wiring board on which a heat-generating electronic component is mounted is mounted. It has been generally practiced to attach a plate to a heat radiating member such as a heat sink via an electrically insulating thermal interface material. As a main material such as an insulating layer of a printed wiring board and a thermal interface material, for example, a resin composition in which a silicone resin or an epoxy resin is filled with ceramic powder having high thermal conductivity is preferably used.

近年、電子機器の軽薄短小化に伴い、発熱性電子部品の実装密度も増加する一方で、電子機器内部の発熱密度も年々増加しており、熱伝導率を従来にも増して高めたセラミックス粉末が求められてきている。また、機器の信頼性要求、特に電気的信頼性の要求が高まっており、併せて高い電気絶縁性を有するセラミックス粉末も求められている。 In recent years, as electronic devices have become lighter, thinner, shorter, and smaller, the mounting density of heat-generating electronic components has increased, while the heat-generating density inside electronic devices has also increased year by year. Has been sought. Further, the demand for reliability of equipment, particularly the demand for electrical reliability is increasing, and at the same time, ceramic powder having high electrical insulation is also required.

以上のような背景により、基本的に高熱伝導率な電気絶縁性素材として優れている六方晶窒化ホウ素が注目されている。但し、六方晶窒化ホウ素の一次粒子は、その結晶構造に由来して、面内方向(a軸方向ともいう)の熱伝導率が400W/(m・K)、厚み方向(c軸方向ともいう)の熱伝導率が2W/(m・K)であり、熱伝導率の異方性が甚だしく大きい。このような六方晶窒化ホウ素一次粒子をそのまま樹脂に充填すると、該一次粒子が同一方向に揃って配向するため、例えば、プリント配線板の絶縁層及び熱インターフェース材の製造時に、六方晶窒化ホウ素一次粒子の面内方向(即ち、高い熱伝導率を有する方向)とプリント配線板の絶縁層及び熱インターフェース材の厚み方向(即ち、熱を伝達したい方向)が垂直になり、六方晶窒化ホウ素粒子の高熱伝導率を十分に活かすことができなかった。 Due to the above background, hexagonal boron nitride, which is basically excellent as an electrically insulating material having high thermal conductivity, is attracting attention. However, due to its crystal structure, the primary particles of hexagonal boron nitride have a thermal conductivity of 400 W / (m · K) in the in-plane direction (also referred to as the a-axis direction) and a thickness direction (also referred to as the c-axis direction). ) Is 2 W / (m · K), and the anisotropy of the thermal conductivity is extremely large. When such hexagonal boron nitride primary particles are filled in the resin as they are, the primary particles are aligned in the same direction and oriented. Therefore, for example, when manufacturing an insulating layer for a printed wiring board and a thermal interface material, hexagonal boron nitride primary particles are used. The in-plane direction of the particles (that is, the direction having high thermal conductivity) and the thickness direction of the insulating layer of the printed wiring board and the thermal interface material (that is, the direction in which heat should be transferred) are perpendicular to each other, and the hexagonal boron nitride particles The high thermal conductivity could not be fully utilized.

このような熱伝導率の異方性に由来する課題を解決するため、鱗片形状の六方晶窒化ホウ素一次粒子を、さらに等方的な熱伝導率を持たせるように意図された六方晶窒化ホウ素一次粒子凝集体が開発されている。 In order to solve the problem caused by the anisotropy of thermal conductivity, the scaly hexagonal boron nitride primary particles are intended to have more isotropic thermal conductivity. Primary particle agglomerates have been developed.

例えば特許文献1及び2では、六方晶窒化ホウ素一次粒子を同一方向に配向させないように凝集させた、六方晶窒化ホウ素一次粒子凝集体の使用が提案されており、熱伝導率の異方性が抑制されたことが示されている。 For example, Patent Documents 1 and 2 propose the use of hexagonal boron nitride primary particle aggregates in which hexagonal boron nitride primary particles are aggregated so as not to be oriented in the same direction, and the anisotropy of thermal conductivity is increased. It has been shown to be suppressed.

特開2014−40341号公報Japanese Unexamined Patent Publication No. 2014-40341 特開2013−241321号公報Japanese Unexamined Patent Publication No. 2013-241321

特許文献1及び特許文献2で提案されている六方晶窒化ホウ素一次粒子凝集体の形状は、概ね球状となり、熱伝導率に関する異方性の抑制に効果がある。しかし、従来の技術となる前記六方晶窒化ホウ素一次粒子中には、焼結により一次粒子同士を凝集させる際に用いるバインダー剤(焼結助材などともいう)に由来する、アルカリ金属やアルカリ土類金属などの金属性不純物が残留していることは特に念頭に置かれておらず、前記六方晶窒化ホウ素一次粒子凝集体を樹脂へ充填するなどして作製したプリント配線板の絶縁層及び熱インターフェース材の絶縁性の信頼性に関して、さらなる改善が求められていた。即ち、近年精力的に開発が進められているハイブリッド車、電気自動車、燃料電池車や、電気的な制御が益々進められる鉄道車両への、パワーデバイス、パワーモジュールの搭載が進められるに伴って、前記パワーデバイスなどに用いられるプリント配線板の絶縁層及び熱インターフェース材として、高い熱伝導性を有すると共に、高温高湿環境下で長期絶縁性(吸湿絶縁性ともいう)が保持される六方晶窒化ホウ素一次粒子凝集体の開発が求められている。但し、吸湿絶縁性の妨げとなるバインダー材を減らすだけでは、六方晶窒化ホウ素一次粒子凝集体の機械的強度が低下し、六方晶窒化ホウ素一次粒子凝集体と樹脂を混練して樹脂組成物とする際などに、前記一次粒子凝集体が破壊することにより、熱伝導性が低下する。組成物作製時の樹脂との混練にも耐え得るような強度を有しながら、金属性不純物が少なく、高温高湿環境下での長期使用にも耐え得るような、六方晶窒化ホウ素一次粒子凝集体、及びその製造方法の開発が求められていた。即ち、高い機械的強度と、等方的な熱伝導性と、吸湿絶縁性を全て満足する六方晶窒化ホウ素一次粒子凝集体は、これまで開発されていなかった。 The shape of the hexagonal boron nitride primary particle agglomerates proposed in Patent Document 1 and Patent Document 2 is substantially spherical, and is effective in suppressing anisotropy related to thermal conductivity. However, among the hexagonal boron nitride primary particles, which is a conventional technique, an alkali metal or alkaline soil derived from a binder agent (also referred to as a sintering aid) used when the primary particles are agglomerated by sintering is used. It is not particularly taken into consideration that metallic impurities such as similar metals remain, and the insulating layer and heat of the printed wiring board produced by filling the resin with the hexagonal boron nitride primary particle agglomerates. Further improvements were required with respect to the reliability of the insulation of the interface material. That is, as power devices and power modules are installed in hybrid vehicles, electric vehicles, fuel cell vehicles, which have been energetically developed in recent years, and railway vehicles, which are increasingly being electrically controlled. Hexagonal nitride as an insulating layer and thermal interface material for printed wiring boards used in power devices and the like, which has high thermal conductivity and long-term insulation (also referred to as moisture absorption insulation) in a high temperature and high humidity environment. Development of boron primary particle aggregates is required. However, simply reducing the binder material that hinders the moisture absorption and insulation properties reduces the mechanical strength of the hexagonal boron nitride primary particle agglomerates, and the hexagonal boron nitride primary particle agglomerates and the resin are kneaded to form a resin composition. When the primary particle agglomerates are destroyed, the thermal conductivity is lowered. Hexagonal boron nitride primary particle coagulation that has strength enough to withstand kneading with resin during composition preparation, has few metallic impurities, and can withstand long-term use in a high temperature and high humidity environment. There was a demand for the development of aggregates and methods for producing them. That is, a hexagonal boron nitride primary particle agglomerate that satisfies all of high mechanical strength, isotropic thermal conductivity, and hygroscopic insulation has not been developed so far.

上記の従来技術に鑑み、本発明は樹脂組成物の高い機械的強度、熱伝導性及び高温高湿環境下での長期絶縁性に寄与する六方晶窒化ホウ素一次粒子凝集体とその製造方法を提供することを課題一つとする。また本発明は、に適用可能な、前記六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物の提供、さらに前記樹脂組成物を用いたプリント配線板の絶縁層及び熱インターフェース材を提供することを課題とする。 In view of the above prior art, the present invention provides a hexagonal boron nitride primary particle agglomerate and a method for producing the same, which contributes to high mechanical strength, thermal conductivity and long-term insulation in a high temperature and high humidity environment of the resin composition. One of the issues is to do. The present invention also provides a resin composition containing the hexagonal boron nitride primary particle aggregate, which is applicable to the present invention, and further provides an insulating layer and a thermal interface material for a printed wiring board using the resin composition. Make it an issue.

前記課題を解決するために、本発明においては、以下の手段を採用する。即ち本発明は、
[1]以下の(1)及び(2)を満たす六方晶窒化ホウ素一次粒子が凝集し、平均粒子径が10μm以上200μm以下、かつ凝集体の圧壊強度が1MPa以上4MPa以下で、アルカリ金属の含有率が10ppm以下である六方晶窒化ホウ素一次粒子凝集体。
(1)粉末X線回折法により算出した黒鉛化指数が1.8以上2.2以下である。
(2)長辺長さが1μm未満の割合が25〜50%、1μm以上5μm以下の割合が50〜75%かつ5μmを超える粒子の割合が5%以下である。
[2]
アルカリ金属がナトリウムまたはリチウムである、[1]の六方晶窒化ホウ素一次粒子凝集体。
[3]ホウ酸メラミンを、400℃以上1200℃以下、1時間以上5時間以下の窒素雰囲気下で一次焼成して一次焼成品を得た後、前記一次焼成品100質量部に対して、アルカリ金属ホウ酸塩を5質量部以上15質量部以下添加し、さらに1900℃以上2200℃以下の窒素雰囲気下で二次焼成する、[1]または[2]の六方晶窒化ホウ素一次粒子凝集体の製造方法。
[4][1]または[2]の六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物。
[5][4]の樹脂組成物を含むプリント配線板の絶縁層。
[6][4]の樹脂組成物を含む熱インターフェース材である。
In order to solve the above problems, the following means are adopted in the present invention. That is, the present invention
[1] Hexagonal boron nitride primary particles satisfying the following (1) and (2) are aggregated, the average particle diameter is 10 μm or more and 200 μm or less, the crushing strength of the aggregate is 1 MPa or more and 4 MPa or less, and the content of alkali metal is contained. Hexagonal boron nitride primary particle agglomerates having a ratio of 10 ppm or less.
(1) The graphitization index calculated by the powder X-ray diffraction method is 1.8 or more and 2.2 or less.
(2) The proportion of particles having a long side length of less than 1 μm is 25 to 50%, the proportion of particles having a long side length of 1 μm or more and 5 μm or less is 50 to 75%, and the proportion of particles exceeding 5 μm is 5% or less.
[2]
The hexagonal boron nitride primary particle aggregate of [1], wherein the alkali metal is sodium or lithium.
[3] After primary firing of melamine borate in a nitrogen atmosphere of 400 ° C. or higher and 1200 ° C. or lower for 1 hour or longer and 5 hours or lower to obtain a primary fired product, alkali is applied to 100 parts by mass of the primary fired product. The hexagonal boron nitride primary particle aggregate of [1] or [2], which is obtained by adding 5 parts by mass or more and 15 parts by mass or less of metal borate and further firing in a nitrogen atmosphere of 1900 ° C. or higher and 2200 ° C. or lower. Production method.
[4] A resin composition containing the hexagonal boron nitride primary particle aggregates of [1] or [2].
[5] An insulating layer of a printed wiring board containing the resin composition of [4].
[6] A thermal interface material containing the resin composition of [4].

本発明の六方晶窒化ホウ素一次粒子凝集体は、樹脂と混練して樹脂組成物となす間に破壊することなく、高い熱伝導性と高温高湿環境下における高い絶縁性を有する樹脂組成物を得ることが可能となる。このため、本発明の六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物は、プリント配線板の絶縁層及び熱インターフェース材として好適に用いることができる。 The hexagonal boron nitride primary particle agglomerates of the present invention provide a resin composition having high thermal conductivity and high insulating properties in a high temperature and high humidity environment without breaking during kneading with a resin to form a resin composition. It becomes possible to obtain. Therefore, the resin composition containing the hexagonal boron nitride primary particle aggregate of the present invention can be suitably used as an insulating layer and a thermal interface material for a printed wiring board.

実施例1で作製した六方晶窒化ホウ素一次粒子凝集体断面の電子顕微鏡写真である。6 is an electron micrograph of a cross section of a hexagonal boron nitride primary particle aggregate produced in Example 1.

本発明では、鱗片状である六方晶窒化ホウ素の一次粒子を「六方晶窒化ホウ素一次粒子」、前記一次粒子同士が焼結により2個以上結合した状態を「六方晶窒化ホウ素一次粒子凝集体」と定義する。焼結による結合は、例えば走査型電子顕微鏡(例えば、JSM−6010LA、日本電子社製)を用いて、六方晶窒化ホウ素一次粒子凝集体断面の一次粒子の結合部分を確認することができる。なお、より観察しやすくするための前処理として、前記六方晶窒化ホウ素一次粒子凝集体を樹脂で包埋した後、その断面をCP(クロスセクションポリッシャー)法により加工し、試料台に固定した後にさらにオスミウムコーティングを行うことが好ましく実施される。 In the present invention, scaly hexagonal boron nitride primary particles are referred to as "hexagonal boron nitride primary particles", and a state in which two or more of the primary particles are bonded to each other by sintering is referred to as "hexagonal boron nitride primary particle agglomerates". Is defined as. For bonding by sintering, for example, a scanning electron microscope (for example, JSM-6010LA, manufactured by JEOL Ltd.) can be used to confirm the bonded portion of the primary particles in the cross section of the hexagonal boron nitride primary particle aggregate. As a pretreatment for easier observation, after embedding the hexagonal boron nitride primary particle agglomerate with a resin, the cross section is processed by a CP (cross section polisher) method and fixed to a sample table. Further osmium coating is preferably performed.

<六方晶窒化ホウ素一次粒子凝集体の製造方法>
本発明に係る、六方晶窒化ホウ素一次粒子凝集体の製造方法としては、ホウ素を含む化合物の粉末及び窒素を含む化合物の粉末(出発原料)を、焼成時における出発原料の六方晶窒化ホウ素への変換を促進する焼成助剤の粉末を含む混合粉末(以下、これらホウ素を含む化合物、窒素を含む化合物、焼結助剤を含む混合粉末を、まとめて混合原料粉末ということもある)を、窒素、ヘリウム、アルゴン、アンモニア等の雰囲気下で焼成する方法が好ましく適用される。
<Manufacturing method of hexagonal boron nitride primary particle aggregate>
As a method for producing a hexagonal boron nitride primary particle aggregate according to the present invention, a powder of a compound containing boron and a powder of a compound containing nitrogen (starting raw material) are used as a starting material for hexagonal boron nitride at the time of firing. A mixed powder containing a powder of a firing aid that promotes conversion (hereinafter, these boron-containing compounds, a nitrogen-containing compound, and a mixed powder containing a sintering aid are collectively referred to as a mixed raw material powder) is referred to as nitrogen. , A method of firing in an atmosphere of helium, argon, ammonia or the like is preferably applied.

ここでホウ素を含む化合物としては、ホウ酸、酸化ホウ素、ホウ砂などを好ましく、特にホウ酸を好ましく用いることができる。また、窒素を含む化合物としては、シアンジアミド、メラミン、尿素などを好ましく、特にメラミンを好ましく選択することができる。また、出発原料中に含まれるホウ素原子と窒素原子のモル比率は、必ずしも5:5に固定する必要はなく、反応性や収率に応じて、ホウ素原子と窒素原子のモル比率を、2:8〜8:2の範囲で、好ましくは3:7〜7:3の範囲で適宜変えることが可能である。 Here, as the compound containing boron, boric acid, boron oxide, borax and the like are preferable, and boric acid can be particularly preferably used. Further, as the nitrogen-containing compound, cyandiamide, melamine, urea and the like are preferable, and melamine can be particularly preferably selected. Further, the molar ratio of boron atom to nitrogen atom contained in the starting material does not necessarily have to be fixed at 5: 5, and the molar ratio of boron atom to nitrogen atom may be changed to 2: 5 depending on the reactivity and yield. It can be appropriately changed in the range of 8 to 8: 2, preferably in the range of 3: 7 to 7: 3.

本発明で使用される焼結助剤は、安価でありしかも焼成の過程で揮発し残存しにくいものが好適である。具体例としては、ホウ酸、アルキル金属のホウ酸塩、ホウ酸と反応してアルカリ金属ホウ酸塩を形成し得るアルカリ金属化合物である。より具体的には、ホウ酸ナトリウム、ホウ酸リチウムなど、ホウ酸と反応してアルカリ金属ホウ酸塩を形成し得るアルカリ金属化合物としては、炭酸ナトリウム、炭酸リチウムなどである。ナトリウムやリチウム以外のアルカリ金属ホウ酸塩では沸点が高く焼成後に金属が残存し、六方晶窒化ホウ素一次粒子凝集体を樹脂へ充填した際の吸湿絶縁性が低下する。 The sintering aid used in the present invention is preferably inexpensive and does not easily volatilize and remain in the firing process. Specific examples include boric acid, an alkyl metal borate, and an alkali metal compound capable of reacting with boric acid to form an alkali metal borate. More specifically, examples of alkali metal compounds such as sodium borate and lithium borate that can react with boric acid to form an alkali metal borate include sodium carbonate and lithium carbonate. Alkali metal borates other than sodium and lithium have a high boiling point, and the metal remains after firing, and the moisture absorption and insulation property when the hexagonal boron nitride primary particle aggregate is filled in the resin is lowered.

焼成はホウ酸とメラミンの混合物を、400℃以上1200℃以下、1時間以上5時間以下の非酸化性雰囲気で一次焼成して非晶質BNとした後に、一次焼成品100質量部に対してアルカリ金属ホウ酸塩を5質量部以上15質量部以下添加し1900℃以上2200℃以下の非酸化性雰囲気下で二次焼成する。一次焼成の温度が400℃未満であると一次焼成品に炭素と酸素が残存することで六方晶窒化ホウ素一次粒子の結晶性が低くなる。1200℃を超えると一次焼成品の炭素や酸素の残存が少ないことで六方晶窒化ホウ素一次粒子の結晶成長が進みすぎるため凝集のほぐれが生じる。また、アルカリ金属ホウ酸塩の添加量が5質量部未満であると六方晶窒化ホウ素一次粒子の結晶化が進行しなく、15質量部を超えると六方晶窒化ホウ素一次粒子の結晶成長が進みすぎるため凝集のほぐれが生じる。二次焼成の温度が1900℃未満であるとアルカリ金属ホウ酸塩が残存し、2200℃を超えると六方晶窒化ホウ素一次粒子の結晶成長が進みすぎるため凝集のほぐれが生じる。焼成温度は一定に保持しても、連続的または不連続的に変化させても良く、焼成時間や昇温冷却の速度にも特に制限はない。さらに焼成する装置類にも特に限定はないが、原料を収納する容器には、例えば六方晶窒化ホウ素製の容器を用いることができ、加熱装置として、例えば電気ヒータを用いた焼成炉を用いることができる。また、出発原料を混合して粉末混合物としてから焼成が終了するまでの間に、本発明の目的を逸脱しない範囲内で、さらに加熱、冷却、加湿、乾燥、及び洗浄の操作を加えることも可能である。 The firing is performed by primary firing a mixture of boric acid and melamine in a non-oxidizing atmosphere of 400 ° C. or higher and 1200 ° C. or lower for 1 hour or longer and 5 hours or lower to obtain an amorphous BN, and then for 100 parts by mass of the primary fired product. Alkali metal borate is added in an amount of 5 parts by mass or more and 15 parts by mass or less, and secondary firing is performed in a non-oxidizing atmosphere of 1900 ° C. or higher and 2200 ° C. or lower. If the temperature of the primary firing is less than 400 ° C., carbon and oxygen remain in the primary firing product, and the crystallinity of the hexagonal boron nitride primary particles becomes low. If the temperature exceeds 1200 ° C., the amount of carbon and oxygen remaining in the primary fired product is small, and the crystal growth of the hexagonal boron nitride primary particles progresses too much, resulting in loosening of aggregation. Further, if the amount of the alkali metal borate added is less than 5 parts by mass, the crystallization of the hexagonal boron nitride primary particles does not proceed, and if it exceeds 15 parts by mass, the crystal growth of the hexagonal boron nitride primary particles proceeds too much. Therefore, the agglomeration is loosened. If the temperature of the secondary firing is less than 1900 ° C., alkali metal borate remains, and if it exceeds 2200 ° C., the crystal growth of the hexagonal boron nitride primary particles progresses too much, resulting in loosening of agglomeration. The firing temperature may be kept constant or may be changed continuously or discontinuously, and the firing time and the rate of heating and cooling are not particularly limited. Further, the firing device is not particularly limited, but a container made of hexagonal boron nitride can be used as the container for storing the raw material, and a firing furnace using an electric heater, for example, can be used as the heating device. Can be done. Further, it is also possible to further add heating, cooling, humidifying, drying, and washing operations within a range that does not deviate from the object of the present invention between the time when the starting materials are mixed to form a powder mixture and the time when firing is completed. Is.

本発明の六方晶窒化ホウ素一次粒子凝集体は特定の凝集体の平均粒子径、圧壊強度、吸湿絶縁性、アルカリ金属含有量、さらに特定の六方晶窒化ホウ素一次粒子の長辺長さの比率、黒鉛化指数を有することにより、従来の技術では達成できなかった、熱伝導率及び吸湿絶縁性に優れた六方晶窒化ホウ素一次粒子凝集体を得ることができるものである。 The hexagonal boron nitride primary particle agglomerates of the present invention include the average particle size, crush strength, moisture absorption insulation, alkali metal content of a specific agglomerate, and the ratio of the long side length of the specific hexagonal boron nitride primary particles. By having a graphitization index, it is possible to obtain a hexagonal boron nitride primary particle agglomerate having excellent thermal conductivity and moisture absorption and insulation properties, which could not be achieved by conventional techniques.

本発明の六方晶窒化ホウ素一次粒子凝集体は、黒鉛化指数が1.8〜2.2であり、長辺長さが1μm未満の割合が25〜50%、1μm以上5μm以下の割合が50〜75%かつ5μmを超える粒子の割合が5%以下であることを特徴とする六方晶窒化ホウ素一次粒子が凝集し、平均粒子径が10〜200μm、アルカリ金属の含有量が10ppm以下、粒子圧壊強度が1MPa以上4MPa以下の六方晶窒化ホウ素一次粒子凝集体である。このように設計された窒化ホウ素粉末はこれまで存在せず、樹脂に充填する際の混練の剪断応力に耐えうる圧壊強度、及びこれらを充填した樹脂組成物の高熱伝導率と高吸湿絶縁性を確保する意味で非常に重要な因子である。 The hexagonal boron nitride primary particle agglomerates of the present invention have a graphitization index of 1.8 to 2.2, a ratio of long side lengths of less than 1 μm is 25 to 50%, and a ratio of 1 μm or more and 5 μm or less is 50. Hexagonal boron nitride primary particles are aggregated, characterized in that the proportion of particles exceeding ~ 75% and 5 μm is 5% or less, the average particle size is 10 to 200 μm, the alkali metal content is 10 ppm or less, and the particle is crushed. It is a hexagonal boron nitride primary particle agglomerate having a strength of 1 MPa or more and 4 MPa or less. Boron nitride powder designed in this way has never existed, and has the crushing strength that can withstand the shear stress of kneading when filling the resin, and the high thermal conductivity and high moisture absorption insulation of the resin composition filled with these. It is a very important factor in terms of securing.

<黒鉛化指数>
黒鉛化指数(GI、Graphitization Indexなどともいう)は、元来黒鉛サンプルの結晶性の程度を示す指標値であり(J.Thomas,et.al,J.Am.Chem.Soc.84,4619(1962))、本発明では、これを六方晶窒化ホウ素に適用した値である。即ち、六方晶窒化ホウ素一次粒子を粉末X線回折法で測定したスペクトル図における、(100)面、(101)面及び(102)面による各回折ピークの積分強度、即ち各回折ピークとそのベースラインに囲まれる面積値(単位は任意)を、それぞれS100、S101、S102を求め、GI=(S100+S101)/S102の式に代入して算出した値である。
完全に結晶化したものでは、GIの値が1.60になるとされているが、高結晶性でかつ粒子が十分に成長した鱗片形状の六方晶窒化ホウ素粉末の場合、粒子が配向しやすいため完全に結晶化したGIはさらに小さくなる。すなわち、GIは鱗片形状の六方晶窒化ホウ素粉末の結晶性の指標であり、この値が小さいほど結晶性が高い。
本発明においては、凝集させる六方晶窒化ホウ素一次粒子のGIは、1.8〜2.2であることが好ましい。GIが2.2より大きいと、六方晶窒化ホウ素一次粒子の結晶性が低いため、高熱伝導率を得ることができない場合がある。また、GIが1.8より小さいと、鱗片形状が発達しすぎているため、凝集構造の維持が難しくなる場合があり、粒子強度が低下する恐れがある。
<Graphitization index>
The graphitization index (also referred to as GI, Grafitation Index, etc.) is originally an index value indicating the degree of crystallinity of a graphite sample (J. Thomas, et. Al, J. Am. Chem. Soc. 84, 4619 (J. Am. Chem. Soc. 84, 4619). 1962)), in the present invention, this is a value applied to hexagonal boron nitride. That is, the integrated intensity of each diffraction peak by the (100) plane, (101) plane, and (102) plane in the spectrum diagram of the hexagonal boron nitride primary particles measured by the powder X-ray diffraction method, that is, each diffraction peak and its base. The area value (unit is arbitrary) surrounded by the line is a value calculated by obtaining S 100 , S 101 , and S 102 , respectively, and substituting them into the equation of GI = (S 100 + S 101 ) / S 102.
It is said that the GI value of a completely crystallized powder is 1.60, but in the case of a scaly hexagonal boron nitride powder with high crystallinity and sufficiently grown particles, the particles are easily oriented. The fully crystallized GI becomes even smaller. That is, GI is an index of crystallinity of scaly hexagonal boron nitride powder, and the smaller this value is, the higher the crystallinity is.
In the present invention, the GI of the hexagonal boron nitride primary particles to be aggregated is preferably 1.8 to 2.2. If the GI is larger than 2.2, the crystallinity of the hexagonal boron nitride primary particles is low, so that high thermal conductivity may not be obtained. On the other hand, if the GI is smaller than 1.8, the scale shape is overdeveloped, so that it may be difficult to maintain the aggregated structure, and the particle strength may decrease.

<一次粒子の長辺長さ>
また本発明の六方晶窒化ホウ素一次粒子凝集体では、長辺長さが1μm未満の割合が25〜50%、1μm以上5μm以下の割合が50〜75%かつ5μmを超える粒子の割合が5%以下であることを特徴とする六方晶窒化ホウ素一次粒子が凝集している凝集体である。なお、この割合は個数割合である。この六方晶窒化ホウ素一次粒子の長辺長さと割合は、六方晶窒化ホウ素一次粒子凝集体を樹脂で包埋した後、その断面をCP(クロスセクションポリッシャー)法により加工し、断面を走査型電子顕微鏡、たとえば「JSM−6010LA」(日本電子社製)にて2000倍の倍率で撮影し、得られた粒子像を画像解析ソフトウェア、例えば「MacView」(Thermermo Electron SpA社)に取り込み、写真から測定する。長辺長さの割合が、前記の割合を外れると、例えば、長辺長さが1μm未満の六方晶窒化ホウ素一次粒子の割合が50%を超えると、樹脂へ充填する際に受ける混練の剪断応力に耐えうる粒子強度を得ることが出来ない。また長辺長さが1μm以上5μm以下の六方晶窒化ホウ素一次粒子の割合が75%を超える、または長辺長さが5μmを超える六方晶窒化ホウ素一次粒子の割合が5%を超えると、凝集構造の維持が難しくなる不具合が生じる。
<Long side length of primary particles>
Further, in the hexagonal boron nitride primary particle aggregate of the present invention, the proportion of particles having a long side length of less than 1 μm is 25 to 50%, the proportion of particles having a long side length of 1 μm or more and 5 μm or less is 50 to 75%, and the proportion of particles exceeding 5 μm is 5%. It is an agglomerate in which hexagonal boron nitride primary particles are agglomerated, which is characterized by the following. In addition, this ratio is the number ratio. The long side length and ratio of the hexagonal boron nitride primary particles are determined by embedding the hexagonal boron nitride primary particle aggregate with a resin, processing the cross section by the CP (cross section polisher) method, and scanning the cross section with scanning electrons. Photographed with a microscope, for example, "JSM-6010LA" (manufactured by JEOL Ltd.) at a magnification of 2000, and the obtained particle image was taken into image analysis software, for example, "MacView" (Thermermo Electron SpA) and measured from the photograph. To do. If the ratio of the long side length deviates from the above ratio, for example, if the ratio of hexagonal boron nitride primary particles having a long side length of less than 1 μm exceeds 50%, the shearing of kneading received when filling the resin It is not possible to obtain particle strength that can withstand stress. If the proportion of hexagonal boron nitride primary particles having a long side length of 1 μm or more and 5 μm or less exceeds 75%, or the proportion of hexagonal boron nitride primary particles having a long side length of more than 5 μm exceeds 5%, aggregation occurs. There is a problem that it becomes difficult to maintain the structure.

<アルカリ金属の含有量>
さらに本発明の六方晶窒化ホウ素一次粒子凝集体では、アルカリ金属の含有量は10ppm以下である。アルカリ金属の含有量が10ppmを超えると、樹脂へ充填した際の吸湿絶縁性が低下する。六方晶窒化ホウ素一次粒子凝集体のアルカリ金属含有量は、蒸留水40mlに六方晶窒化ホウ素一次粒子凝集体1gを加え、圧力容器を用いて120℃、0.2MPaで24時間加熱し、得られた上澄み液を高周波誘導結合プラズマ発光分析装置(例えば「ES−71」(HORIBA社))用いて測定した。
<Alkali metal content>
Further, in the hexagonal boron nitride primary particle aggregate of the present invention, the content of the alkali metal is 10 ppm or less. If the content of the alkali metal exceeds 10 ppm, the hygroscopic insulation property when the resin is filled is lowered. The alkali metal content of the hexagonal boron nitride primary particle aggregate is obtained by adding 1 g of the hexagonal boron nitride primary particle aggregate to 40 ml of distilled water and heating at 120 ° C. and 0.2 MPa for 24 hours using a pressure vessel. The supernatant was measured using a high frequency inductively coupled plasma emission spectrometer (for example, "ES-71" (HORIBA)).

<圧壊強度>
さらに、本発明の六方晶窒化ホウ素一次粒子凝集体の圧壊強度は1〜4MPaである。本発明でいう、窒化ホウ素一次粒子凝集体の圧壊強度は、実際に個々の凝集粒子の圧壊強度の測定値を基にした値である。粒子圧壊強度の測定は、市販されている微小粒子の圧壊強度測定が可能な圧縮試験器を用い、JIS R1639−5に準拠して測定することができる。このとき六方晶窒化ホウ素一次粒子凝集体の粒子径をd(単位はmm)、破壊試験力をP(単位はN)とすると、圧壊強度Cs(単位はMPa)は、Cs=2.48P/πdの式から算出される。なお本発明では、10個の凝集粒子の圧壊強度の平均値を粒子圧壊強度とした。圧壊強度が、1MPa未満だと、例えば樹脂と混練して組成物なす際に、凝集体粒子が破壊されてしまうので、好ましくない。また、4MPa以上だと樹脂と混練した際に、凝集粒子の形状を保ち樹脂組成物の柔軟性が失われ、樹脂組成物と放熱部材の密着性が失われ放熱性が低下する。圧壊強度を1〜4MPaの範囲では、樹脂組成物と混合した際に六方晶窒化ホウ素一次粒子凝集体が一部崩壊して、樹脂組成物の柔軟性を保ちつつ高熱伝導率を示す。
<Crushing strength>
Further, the crushing strength of the hexagonal boron nitride primary particle aggregate of the present invention is 1 to 4 MPa. The crushing strength of the boron nitride primary particle agglomerates referred to in the present invention is a value based on the actual measurement value of the crushing strength of the individual agglomerated particles. The particle crushing strength can be measured in accordance with JIS R1639-5 using a commercially available compression tester capable of measuring the crushing strength of fine particles. At this time, assuming that the particle diameter of the hexagonal boron nitride primary particle aggregate is d (unit is mm) and the fracture test force is P (unit is N), the crushing strength Cs (unit is MPa) is Cs = 2.48P /. It is calculated from the formula of πd 2. In the present invention, the average value of the crushing intensities of 10 agglomerated particles was defined as the particle crushing intensities. If the crushing strength is less than 1 MPa, for example, when the composition is kneaded with a resin, the aggregate particles are destroyed, which is not preferable. On the other hand, if it is 4 MPa or more, when kneaded with the resin, the shape of the agglomerated particles is maintained and the flexibility of the resin composition is lost, the adhesion between the resin composition and the heat radiating member is lost, and the heat radiating property is lowered. When the crushing strength is in the range of 1 to 4 MPa, the hexagonal boron nitride primary particle aggregate partially disintegrates when mixed with the resin composition, and exhibits high thermal conductivity while maintaining the flexibility of the resin composition.

<平均粒子径>
本発明の六方晶窒化ホウ素一次粒子凝集体においては、該凝集体の平均粒子径は10μm以上200μm以下である。一般的には平均粒子径が小さくなると、該凝集体と樹脂界面の総数の増加にともなう接触熱抵抗の増加により熱伝導率が低下していく傾向がある。但し、平均粒子径が大きくなるほど、該凝集体の機械的強度が低下する傾向があり、また樹脂への混練時に受ける剪断応力により凝集体の構造の一部が破壊され、一次粒子へと戻った鱗片形状の六方晶窒化ホウ素が同一方向に配向するため、高熱伝導率を発現しなくなることもある。従って、六方晶窒化ホウ素一次粒子凝集体の平均粒子径は200μm以下である。なお、本発明で言う平均粒子径は、レーザー回折光散乱法による粒度分布測定において、体積基準による 累積粒度分布の累積値50%の粒子径である。粒度分布測定に際しては、該凝集体を分散させる溶媒には水、分散剤としてはヘキサメタリン酸を用いることができる。このとき水の屈折率には1.33を、また、窒化ホウ素粉末の屈折率については1.80の数値を用いることができる。また、一回当たりの測定時間にも特に制限はないが、通常5秒以上120秒以下であり、15秒以上60秒以下程度に設定するのが一般的で好ましい。
<Average particle size>
In the hexagonal boron nitride primary particle agglomerates of the present invention, the average particle size of the agglomerates is 10 μm or more and 200 μm or less. Generally, as the average particle size becomes smaller, the thermal conductivity tends to decrease due to an increase in contact thermal resistance as the total number of aggregate-resin interfaces increases. However, as the average particle size increases, the mechanical strength of the agglomerates tends to decrease, and a part of the structure of the agglomerates is destroyed by the shear stress received during kneading with the resin, and the particles return to the primary particles. Since the scaly hexagonal boron nitride is oriented in the same direction, high thermal conductivity may not be exhibited. Therefore, the average particle size of the hexagonal boron nitride primary particle aggregate is 200 μm or less. The average particle size referred to in the present invention is a particle size of 50% of the cumulative value of the cumulative particle size distribution based on the volume in the particle size distribution measurement by the laser diffraction light scattering method. When measuring the particle size distribution, water can be used as the solvent for dispersing the aggregates, and hexametaphosphate can be used as the dispersant. At this time, 1.33 can be used for the refractive index of water, and 1.80 can be used for the refractive index of the boron nitride powder. The measurement time per measurement is not particularly limited, but is usually 5 seconds or more and 120 seconds or less, and is generally set to about 15 seconds or more and 60 seconds or less.

<六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物>
次に本発明の第2の実施形態である、六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物について説明する。該樹脂組成物中に含まれる該凝集体の割合は20体積%以上80体積%以下であることが好ましい。なお、このときに本発明の六方晶窒化ホウ素一次粒子凝集体より平均粒子径の小さい各種セラミックミックス粉末(以下、各種セラミックス粉末と称する)、例えば窒化アルミニウム、六方晶窒化ホウ素、窒化ホウ素、窒化ケイ素、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、水酸化マグネシウム、二酸化ケイ素、炭化ケイ素の粉末を本発明の目的を損なわない範囲において、1種類以上適宜添加しても良い。
<Resin composition containing hexagonal boron nitride primary particle aggregates>
Next, a resin composition containing hexagonal boron nitride primary particle aggregates, which is the second embodiment of the present invention, will be described. The proportion of the agglomerates contained in the resin composition is preferably 20% by volume or more and 80% by volume or less. At this time, various ceramic mix powders (hereinafter referred to as various ceramic powders) having an average particle diameter smaller than that of the hexagonal boron nitride primary particle aggregate of the present invention, such as aluminum nitride, hexagonal boron nitride, boron nitride, and silicon nitride, are used. , Aluminum oxide, zinc oxide, magnesium oxide, magnesium hydroxide, silicon dioxide, and silicon carbide may be appropriately added in an amount of one or more as long as the object of the present invention is not impaired.

<樹脂>
本発明の第2の実施形態である、六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物に用いることのできる樹脂の種類には、特に限定はないが、例えばエポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、ポリアセタール、ナイロン樹脂等を好ましく挙げることができる。これら樹脂、特に熱硬化性樹脂には適宜、硬化剤、無機フィラー、シランカップリング剤、さらに濡れ性やレベリング性の向上及び粘度低下を促進して加熱加圧成形時の欠陥の発生を低減する添加剤を含有することができる。この添加剤としては、例えば、消泡剤、表面調整剤、湿潤分散剤等がある。また、エポキシ樹脂は、耐熱性と銅箔回路への接着強度が優れていることから、プリント配線板の絶縁層として好適である。さらにシリコーン樹脂及びシリコーンゴムは耐熱性、柔軟性及びヒートシンク等への密着性が優れていることから熱インターフェース材として好適である。
<Resin>
The type of resin that can be used in the resin composition containing the hexagonal boron nitride primary particle aggregate according to the second embodiment of the present invention is not particularly limited, but for example, epoxy resin, silicone resin, and silicone rubber. , Acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide and other polyimides, polybutylene terephthalate, polyethylene terephthalate and other polyesters, polyphenylene ether, polyphenylene sulfide, total fragrance Group polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber-styrene) resin, polyglycolic acid resin , Polyphthalamide, polyacetal, nylon resin and the like can be preferably mentioned. These resins, especially thermosetting resins, are appropriately cured with a curing agent, an inorganic filler, a silane coupling agent, and further improve wettability and leveling property and reduce viscosity to reduce the occurrence of defects during heat and pressure molding. Additives can be included. Examples of this additive include a defoaming agent, a surface conditioner, a wet dispersant and the like. Further, the epoxy resin is suitable as an insulating layer of a printed wiring board because it has excellent heat resistance and adhesive strength to a copper foil circuit. Further, silicone resin and silicone rubber are suitable as thermal interface materials because they are excellent in heat resistance, flexibility, and adhesion to heat sinks and the like.

本発明の六方晶窒化ホウ素一次粒子凝集体と樹脂とを混合して樹脂組成物となす場合には、両者を混合しやすくするため、必要に応じて有機溶剤を加えても良い。有機溶剤としては、例えば、エタノール及びイソプロパノール等のアルコール類、2−メトキシエタノール、1−メトキシエタノール、2−エトキシエタノール、1−エトキシ−2−プロパノール、2−ブトキシエタノール、2−(2−メトキシエトキシ)エタノール、2−(2−エトキシエトキシ)エタノール及び2−(2−ブトキシエトキシ)エタノール等のエーテルアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン及びジイソブチルケトン等のケトン類、トルエン及びキシレン等の芳香族炭化水素類が挙げられる。なお、これらの有機溶剤は、単独で使用しても、2種以上を混合して使用してもよい。 When the hexagonal boron nitride primary particle aggregate of the present invention and the resin are mixed to form a resin composition, an organic solvent may be added if necessary in order to facilitate mixing of the two. Examples of the organic solvent include alcohols such as ethanol and isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2- (2-methoxyethoxy). ) Ether alcohols such as ethanol, 2- (2-ethoxyethoxy) ethanol and 2- (2-butoxyethoxy) ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone. And ketones such as diisobutylketone, and aromatic hydrocarbons such as toluene and xylene. These organic solvents may be used alone or in combination of two or more.

本発明の第3の実施形態であるプリント配線板の絶縁層及び熱インターフェース材は、第2の実施形態である六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物を成形加工した、さらに必要に応じて他の素材等と組み合わせてなした、プリント配線板の絶縁層及び熱インターフェース材である。 The insulating layer and thermal interface material of the printed wiring board according to the third embodiment of the present invention are further required by molding a resin composition containing the hexagonal boron nitride primary particle agglomerates according to the second embodiment. It is an insulating layer and a thermal interface material of a printed wiring board, which are made in combination with other materials according to the situation.

<実施例1〜10、比較例1〜9:六方晶窒化ホウ素一次粒子凝集体の作製>
以下、本発明を実施例、比較例を挙げてさらに具体的に説明する。
実施例1を以下の用にして作製した。ホウ酸260kgとメラミン240kgを加湿混合し、電気加熱ロータリーキルンにて窒素雰囲気で、一次焼成として1000℃で2時間焼成した。得られた一次焼成品100kgにホウ酸ナトリウムを10kg添加、混合し、プッシャー炉にて窒素雰囲気で二次焼成として2100℃で4時間焼成して二次焼成品を得た。その後、解砕して、六方晶窒化ホウ素一次粒子凝集体を得た。さらに同様の操作で、表1に示す条件に従い19種類の粉末A〜Sを製造した。
<Examples 1 to 10, Comparative Examples 1 to 9: Preparation of hexagonal boron nitride primary particle agglomerates>
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Example 1 was prepared as follows. 260 kg of boric acid and 240 kg of melamine were humidified and mixed, and fired in a nitrogen atmosphere in an electrically heated rotary kiln at 1000 ° C. for 2 hours as primary firing. 10 kg of sodium borate was added to 100 kg of the obtained primary fired product, mixed, and fired in a nitrogen atmosphere in a nitrogen atmosphere at 2100 ° C. for 4 hours to obtain a secondary fired product. Then, it was crushed to obtain a hexagonal boron nitride primary particle agglomerate. Further, in the same operation, 19 kinds of powders A to S were produced according to the conditions shown in Table 1.

Figure 0006875854
Figure 0006875854


<樹脂への充填>
六方晶窒化ホウ素一次粒子凝集体をプリント配線板の絶縁層及び熱インターフェース材として実用特性を評価するため、エポキシ樹脂(三菱化学社製、エピコート807)と硬化剤(日本合成化工社製、アクメックスH−84B)に対して六方晶窒化ホウ素一次粒子凝集体が60体積%となるように混合し、PET製シート上に厚みが1.0mmになるように塗布した後、500Paの減圧脱泡を10分間行った。その後、温度150℃、圧力160kg/cm条件で60分間のプレス加熱加圧を行って厚さ0.5mmのシートとした。該シートを用いて評価を実施した。
<Filling in resin>
Epoxy resin (manufactured by Mitsubishi Chemical Corporation, Epicoat 807) and curing agent (manufactured by Nippon Synthetic Chem Industry Co., Ltd., Acmex) to evaluate the practical characteristics of hexagonal boron nitride primary particle aggregates as an insulating layer and thermal interface material for printed wiring boards. Hexagonal boron nitride primary particle aggregates are mixed with H-84B) so as to be 60% by volume, coated on a PET sheet so as to have a thickness of 1.0 mm, and then defoamed under reduced pressure at 500 Pa. It was done for 10 minutes. Then, press heating and pressurization was performed for 60 minutes under two conditions of a temperature of 150 ° C. and a pressure of 160 kg / cm to obtain a sheet having a thickness of 0.5 mm. Evaluation was carried out using the sheet.

<熱伝導率>
熱伝導率(H(W/(m・K)とする)は、熱拡散率(A(m/秒)とする)、密度(B(kg/m)とする)及び比熱容量(C(J/(kg・K)とする)から、H=A×B×Cとして算出した。熱拡散率は、測定用試料としてシートを幅10mm×10mm×厚み0.5mmに加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザ(NETZSCH社製、LFA447NanoFlash)を用いた。密度はアルキメデス法を用いて求めた。比熱容量は、DSC測定装置(リガク社製、ThermoPlus Evo DSC8230)を用いて求めた。
<Thermal conductivity>
Thermal conductivity (H (W / (m · K)) is thermal diffusivity (A (m 2 / sec)), density (B (kg / m 3 )) and specific heat capacity (C). Calculated from (J / (kg · K)) as H = A × B × C. The thermal diffusivity was obtained by processing a sheet as a measurement sample into a width of 10 mm × 10 mm × thickness of 0.5 mm and using a laser flash. The measuring device was a xenon flash analyzer (LFA447NanoFlash, manufactured by NETZSCH). The density was determined by the Archimedes method. The specific heat capacity was determined by using a DSC measuring device (ThermoPlus Evo DSC8230, manufactured by Rigaku). I asked for it.

<吸湿絶縁性>
吸湿絶縁性は、該シートの初期絶縁抵抗を測定した後、該シートを85℃、85%RHの恒温恒湿器(ヤマト科学社製、IX110)で吸湿させ、絶縁抵抗が初期絶縁抵抗の85%未満になるまでの経過時間で示す。絶縁抵抗は、該シートをアルミニウム板と銅ニッケルメッキ板55×70mm板との間に挟み、M5のネジを使用してトルク7kgf・cmで取り付けたものを、絶縁抵抗試験器(菊水電子工業製、TOS7200)を用いて印加電圧500Vで測定した。
<Hygroscopic insulation>
For hygroscopic insulation, after measuring the initial insulation resistance of the sheet, the sheet is moistened with a constant temperature and humidity controller (manufactured by Yamato Scientific Co., Ltd., IX110) at 85 ° C. and 85% RH, and the insulation resistance is 85, which is the initial insulation resistance. Shown as the elapsed time until it becomes less than%. The insulation resistance is an insulation resistance tester (manufactured by Kikusui Electronics Co., Ltd.) in which the sheet is sandwiched between an aluminum plate and a copper nickel-plated plate 55 × 70 mm and attached with a torque of 7 kgf · cm using M5 screws. , TOS7200) was used for measurement at an applied voltage of 500 V.

Figure 0006875854
Figure 0006875854

表2の結果から、本発明の六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物を用いたシートは、8(W/m・K)以上の熱伝導率と、100(時間)以上の吸湿絶縁性を両立したものであることがわかる。また、比較例の六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物を用いたシートは8(W/m・K)以上の熱伝導率と、100(時間)以上の吸湿絶縁性を両立することができないことが分かる。その原因は以下に説明する通りである。 From the results in Table 2, the sheet using the resin composition containing the hexagonal boron nitride primary particle aggregate of the present invention has a thermal conductivity of 8 (W / m · K) or more and a moisture absorption of 100 (hours) or more. It can be seen that the insulation is compatible. Further, the sheet using the resin composition containing the hexagonal boron nitride primary particle aggregate of the comparative example has both a thermal conductivity of 8 (W / m · K) or more and a moisture absorption insulation property of 100 (hours) or more. It turns out that it cannot be done. The cause is as explained below.

比較例1は一次焼成温度が低すぎ、一次焼成品の炭素と酸素が残存したことで六方晶窒化ホウ素一次粒子の結晶性が低くなった。このため、高熱伝導率を得ることができない。
比較例2は一次焼成温度が高すぎ、一次焼成品の炭素や酸素の残存が少ないことで六方晶窒化ホウ素一次粒子の結晶性が高くなった。鱗片形状が発達しすぎて、凝集構造の維持が難しくなり、高熱伝導率を得ることができない。
比較例3は一次焼成時間が短すぎ、炭素と酸素が残存したことで六方晶窒化ホウ素一次粒子の結晶性が低くなった。このため、高熱伝導率を得ることができない。
比較例4は一次焼成時間が長すぎ、炭素や酸素の残存が少ないことで六方晶窒化ホウ素一次粒子の結晶性が高くなった。鱗片形状が発達しすぎて、凝集構造の維持が難しくなり、高熱伝導率を得ることができない。
比較例5はアルカリ金属ホウ酸塩の添加量が少なすぎ、焼結助剤が少ないため六方晶窒化ホウ素一次粒子凝集体の平均粒径が小さく、高熱伝導率を得ることができない。
比較例6はアルカリ金属ホウ酸塩の添加量が多すぎ、焼結助剤として働くことで六方晶窒化ホウ素一次粒子凝集体の平均粒径が大きくなり高熱伝導率を得ることができない。
比較例7はホウ酸カルシウムの沸点が高く、二次焼成後にカルシウムが残存して吸湿絶縁性が低下した。
比較例8は二次焼成温度が低すぎ、アルカリ金属ホウ酸塩が完全に揮発しなかった。そのため、アルカリ金属ホウ酸塩が六方晶窒化ホウ素一次粒子の結晶化を促進させすぎ、凝集構造の維持が難しくなり粒子圧壊強度が低下、高熱伝導率を得ることができない。また、アルカリ金属ホウ酸塩が残存しているため吸湿絶縁性が低下した。
比較例9は二次焼成温度が高すぎ、方晶窒化ホウ素一次粒子の結晶性が高くなった。鱗片形状が発達しすぎて、凝集構造の維持が難しくなり粒子圧壊強度が低下、高熱伝導率を得ることができない。
In Comparative Example 1, the primary firing temperature was too low, and the carbon and oxygen of the primary fired product remained, so that the crystallinity of the hexagonal boron nitride primary particles became low. Therefore, high thermal conductivity cannot be obtained.
In Comparative Example 2, the primary firing temperature was too high, and the residual amount of carbon and oxygen in the primary firing product was small, so that the crystallinity of the hexagonal boron nitride primary particles was high. The scaly shape develops too much, making it difficult to maintain the aggregated structure and making it impossible to obtain high thermal conductivity.
In Comparative Example 3, the primary firing time was too short, and carbon and oxygen remained, so that the crystallinity of the hexagonal boron nitride primary particles became low. Therefore, high thermal conductivity cannot be obtained.
In Comparative Example 4, the primary firing time was too long, and the residual amount of carbon and oxygen was small, so that the crystallinity of the hexagonal boron nitride primary particles was high. The scaly shape develops too much, making it difficult to maintain the aggregated structure and making it impossible to obtain high thermal conductivity.
In Comparative Example 5, since the amount of the alkali metal borate added is too small and the amount of the sintering aid is small, the average particle size of the hexagonal boron nitride primary particle aggregate is small, and high thermal conductivity cannot be obtained.
In Comparative Example 6, the amount of the alkali metal borate added was too large, and by acting as a sintering aid, the average particle size of the hexagonal boron nitride primary particle aggregate became large, and high thermal conductivity could not be obtained.
In Comparative Example 7, the boiling point of calcium borate was high, and calcium remained after the secondary firing, resulting in a decrease in hygroscopic insulation.
In Comparative Example 8, the secondary firing temperature was too low, and the alkali metal borate did not completely volatilize. Therefore, the alkali metal borate promotes the crystallization of hexagonal boron nitride primary particles too much, it becomes difficult to maintain the aggregated structure, the particle crushing strength is lowered, and high thermal conductivity cannot be obtained. In addition, the hygroscopic insulation was lowered because the alkali metal borate remained.
In Comparative Example 9, the secondary firing temperature was too high, and the crystallinity of the square boron nitride primary particles became high. The scaly shape develops too much, it becomes difficult to maintain the aggregated structure, the particle crushing strength decreases, and high thermal conductivity cannot be obtained.

本発明の六方晶窒化ホウ素一次粒子凝集体は、高い熱伝導性と吸湿絶縁性を両立し、これを含む樹脂組成物を用いた電気絶縁部材は、プリント配線板の絶縁層及び熱インターフェース材として好ましく用いることができる。
The hexagonal boron nitride primary particle agglomerate of the present invention has both high thermal conductivity and moisture absorption and insulation properties, and an electrically insulating member using a resin composition containing the same can be used as an insulating layer and a thermal interface material for a printed wiring board. It can be preferably used.

Claims (6)

以下の(1)及び(2)を満たす六方晶窒化ホウ素一次粒子が凝集し、平均粒子径が10μm以上200μm以下、かつ凝集体の圧壊強度が1MPa以上4MPa以下で、アルカリ金属の含有率が10ppm以下である六方晶窒化ホウ素一次粒子凝集体。
(1)粉末X線回折法により算出した黒鉛化指数が1.8以上2.2以下である。
(2)長辺長さが1μm未満の割合が25〜50%、1μm以上5μm以下の割合が50〜75%かつ5μmを超える粒子の割合が5%以下である。
Hexagonal boron nitride primary particles satisfying the following (1) and (2) are aggregated, the average particle diameter is 10 μm or more and 200 μm or less, the crushing strength of the aggregate is 1 MPa or more and 4 MPa or less, and the alkali metal content is 10 ppm. The following hexagonal boron nitride primary particle aggregates.
(1) The graphitization index calculated by the powder X-ray diffraction method is 1.8 or more and 2.2 or less.
(2) The proportion of particles having a long side length of less than 1 μm is 25 to 50%, the proportion of particles having a long side length of 1 μm or more and 5 μm or less is 50 to 75%, and the proportion of particles exceeding 5 μm is 5% or less.
アルカリ金属がナトリウムまたはリチウムである、請求項1記載の六方晶窒化ホウ素一次粒子凝集体。 The hexagonal boron nitride primary particle agglomerate according to claim 1, wherein the alkali metal is sodium or lithium. ホウ酸メラミンを、400℃以上1200℃以下、1時間以上5時間以下の窒素雰囲気下で一次焼成して一次焼成品を得た後、前記一次焼成品100質量部に対して、アルカリ金属ホウ酸塩を5質量部以上15質量部以下添加し、さらに1900℃以上2200℃以下の窒素雰囲気下で二次焼成する、請求項1または2記載の六方晶窒化ホウ素一次粒子凝集体の製造方法。 After primary firing of melamine borate at 400 ° C. or higher and 1200 ° C. or lower in a nitrogen atmosphere of 1 hour or longer and 5 hours or lower to obtain a primary fired product, alkali metal boric acid is added to 100 parts by mass of the primary fired product. The method for producing a hexagonal boron nitride primary particle aggregate according to claim 1 or 2, wherein 5 parts by mass or more and 15 parts by mass or less of salt is added, and further secondary firing is performed in a nitrogen atmosphere of 1900 ° C. or higher and 2200 ° C. or lower. 請求項1または2記載の六方晶窒化ホウ素一次粒子凝集体を含む樹脂組成物。 A resin composition containing the hexagonal boron nitride primary particle aggregate according to claim 1 or 2. 請求項4の樹脂組成物を含むプリント配線板の絶縁層。 An insulating layer of a printed wiring board containing the resin composition of claim 4. 請求項4の樹脂組成物を含む熱インターフェース材。

A thermal interface material containing the resin composition of claim 4.

JP2016255585A 2016-12-28 2016-12-28 Hexagonal Boron Nitride Primary Particle Aggregates and Their Applications Active JP6875854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016255585A JP6875854B2 (en) 2016-12-28 2016-12-28 Hexagonal Boron Nitride Primary Particle Aggregates and Their Applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016255585A JP6875854B2 (en) 2016-12-28 2016-12-28 Hexagonal Boron Nitride Primary Particle Aggregates and Their Applications

Publications (2)

Publication Number Publication Date
JP2018104253A JP2018104253A (en) 2018-07-05
JP6875854B2 true JP6875854B2 (en) 2021-05-26

Family

ID=62785545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016255585A Active JP6875854B2 (en) 2016-12-28 2016-12-28 Hexagonal Boron Nitride Primary Particle Aggregates and Their Applications

Country Status (1)

Country Link
JP (1) JP6875854B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210114506A (en) * 2019-01-29 2021-09-23 덴카 주식회사 Boron nitride powder and resin composition
CN110255516B (en) * 2019-07-30 2020-10-09 河北工业大学 Synthesis method of active boron nitride nanotube
JP6768129B1 (en) * 2019-08-23 2020-10-14 デンカ株式会社 Heat dissipation sheet and manufacturing method of heat dissipation sheet
JP6993455B2 (en) * 2020-03-27 2022-01-13 株式会社トクヤマ Method for manufacturing hexagonal boron nitride powder
WO2022050415A1 (en) * 2020-09-07 2022-03-10 デンカ株式会社 Insulating resin composition, insulating resin cured body, layered body, and circuit substrate
JP2022111748A (en) * 2021-01-20 2022-08-01 国立大学法人信州大学 Method for producing boron nitride
JP7303950B2 (en) * 2021-03-25 2023-07-05 デンカ株式会社 Boron nitride powder and resin composition
KR20240049585A (en) * 2021-09-27 2024-04-16 제이에프이미네라르 가부시키가이샤 Hexagonal boron nitride powder for filler
EP4269486A1 (en) * 2021-12-22 2023-11-01 Korea Institute of Ceramic Engineering and Technology Heat dissipation material, composition including same, and preparation method therefor

Also Published As

Publication number Publication date
JP2018104253A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6875854B2 (en) Hexagonal Boron Nitride Primary Particle Aggregates and Their Applications
US10377676B2 (en) Resin-impregnated boron nitride sintered body and use for same
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
JP6296568B2 (en) Boron nitride powder and resin composition containing the same
KR102619752B1 (en) Boron nitride powder, manufacturing method thereof, and heat dissipation member using it
TWI633813B (en) Boron nitride-resin composite circuit substrate, boron nitride-resin composite heat release plate integrated circuit substrate
TWI598291B (en) Hexagonal boron nitride powder, a method for producing the same, a resin composition and a resin sheet
JP6125273B2 (en) Boron nitride molded body, production method and use thereof
CN112334408A (en) Bulk boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat-dissipating member
JP6704271B2 (en) Hexagonal boron nitride primary particle aggregate, resin composition and use thereof
TW202010707A (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipation material using same
JP6262522B2 (en) Resin-impregnated boron nitride sintered body and use thereof
JP7273587B2 (en) Boron nitride powder and resin composition
JP2013254880A (en) Heat-conductive insulator sheet, metal based board and circuit board, and manufacturing method thereof
KR20140009107A (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP2019073409A (en) Method for producing bulk boron nitride powder and heat radiation member using the same
JP6125282B2 (en) Boron nitride composite powder and thermosetting resin composition using the same
JP2015096456A (en) Heat radiation member and its use
CN114829467B (en) Resin sheet and method for producing same
WO2021200719A1 (en) Boron nitride sintered body, composite body, and manufacturing methods therefor, and heat dissipation member
JP2023144294A (en) Boron nitride powder, and method for producing the same
JP2020164364A (en) Boron nitride powder and resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210423

R150 Certificate of patent or registration of utility model

Ref document number: 6875854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6875854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250