JP7204732B2 - Hexagonal boron nitride powder, method for producing hexagonal boron nitride powder for cosmetics, and cosmetics - Google Patents
Hexagonal boron nitride powder, method for producing hexagonal boron nitride powder for cosmetics, and cosmetics Download PDFInfo
- Publication number
- JP7204732B2 JP7204732B2 JP2020504066A JP2020504066A JP7204732B2 JP 7204732 B2 JP7204732 B2 JP 7204732B2 JP 2020504066 A JP2020504066 A JP 2020504066A JP 2020504066 A JP2020504066 A JP 2020504066A JP 7204732 B2 JP7204732 B2 JP 7204732B2
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- nitride powder
- hexagonal boron
- powder
- hexagonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims description 263
- 239000002537 cosmetic Substances 0.000 title claims description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 229910052582 BN Inorganic materials 0.000 claims description 212
- 239000000843 powder Substances 0.000 claims description 123
- 239000002245 particle Substances 0.000 claims description 99
- 239000011164 primary particle Substances 0.000 claims description 48
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 40
- 229910052796 boron Inorganic materials 0.000 claims description 37
- 238000010304 firing Methods 0.000 claims description 37
- 239000002994 raw material Substances 0.000 claims description 32
- 238000010298 pulverizing process Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 20
- 238000005245 sintering Methods 0.000 claims description 19
- 238000005406 washing Methods 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 14
- 239000003960 organic solvent Substances 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 230000002378 acidificating effect Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 description 26
- 238000000926 separation method Methods 0.000 description 15
- 239000011812 mixed powder Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- 238000005259 measurement Methods 0.000 description 13
- 230000035807 sensation Effects 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 238000009826 distribution Methods 0.000 description 10
- 239000007858 starting material Substances 0.000 description 9
- 238000001035 drying Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 150000001639 boron compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 230000007794 irritation Effects 0.000 description 3
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002649 leather substitute Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- -1 nitrogen-containing compound Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/064—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/21—Attrition-index or crushing strength of granulates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Cosmetics (AREA)
Description
本開示は、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、及び窒化ホウ素粉末を含有する化粧料に関する。 TECHNICAL FIELD The present disclosure relates to boron nitride powder, a method for producing boron nitride powder, and a cosmetic containing boron nitride powder.
六方晶窒化ホウ素は黒鉛と類似の層状構造を有し、滑り性、熱伝導性、絶縁性、化学的安定性、耐熱衝撃性などの特性に優れる。六方晶窒化ホウ素は、これらの特性を活かして、化粧料原料(化粧品原料ともいう)、固体潤滑剤や離型剤、樹脂やゴムの充填材、耐熱性を有する絶縁性焼結体などに応用されている。 Hexagonal boron nitride has a layered structure similar to that of graphite, and is excellent in properties such as lubricity, thermal conductivity, insulation, chemical stability, and thermal shock resistance. Taking advantage of these properties, hexagonal boron nitride is applied to cosmetic raw materials (also called cosmetic raw materials), solid lubricants and release agents, fillers for resins and rubbers, heat-resistant insulating sintered bodies, etc. It is
例えば、特許文献1には、化粧料用の窒化ホウ素粉末が提案されている。化粧料に、六方晶窒化ホウ素粉末を配合する目的は、例えば、滑り性、伸び性、及び光沢性等を付与することである。特に、滑り性の改良は化粧料にとって重要な因子である。六方晶窒化ホウ素粉末の滑り性は、同様の機能を有するタルク粉末及びマイカ粉末に比べて優れている。 For example, Patent Document 1 proposes a boron nitride powder for cosmetics. The purpose of adding hexagonal boron nitride powder to cosmetics is to impart, for example, slipperiness, spreadability, glossiness, and the like. In particular, improvement of slipperiness is an important factor for cosmetics. The lubricity of hexagonal boron nitride powder is superior to that of talc and mica powders, which have similar functions.
しかし、化粧料にとって、滑り性が高いほど触感が良いとは一義的にいえない。例えば、「しっとり」や「ぬめり」といった触感を有する化粧料に窒化ホウ素粉末を配合し滑り性を向上させた場合、滑り性を高めすぎると、「しっとり」や「ぬめり」といった触感が失われてしまう。化粧料としては、適度な滑り性を保ちつつ、触感を兼ね備えることである。しかし、適度な滑り性と、触感とを同時に満足させる化粧料を製造するために有用な窒化ホウ素粉末は見いだされていない。 However, for cosmetics, it cannot be unambiguously said that the higher the smoothness, the better the tactile sensation. For example, when boron nitride powder is blended into a cosmetic that has a "moist" or "slimy" feel to improve the slipperiness, if the slipperiness is increased too much, the "moist" or "slimy" feel is lost. put away. As a cosmetic, it is necessary to have a tactile feel while maintaining appropriate slipperiness. However, no boron nitride powder has been found that is useful for producing a cosmetic composition that satisfies both moderate slipperiness and tactile sensation.
化粧料の滑り性を数値化する方法として、MIU(平均摩擦係数)がある。MIUは、値が小さいほど化粧料が滑り性に優れることを示す。また、化粧料のざらつきを数値化する方法として、MMD(平均摩擦係数の変動)がある。MMDは、値が小さいほど化粧料のざらつきが小さいことを示す。 MIU (mean coefficient of friction) is a method for quantifying slipperiness of cosmetics. MIU indicates that the smaller the value, the more excellent the slipperiness of the cosmetic. Moreover, there is MMD (variation in mean friction coefficient) as a method of quantifying the roughness of cosmetics. MMD indicates that the smaller the value, the smaller the roughness of the cosmetic.
同じ物質であっても、粒子径等の形状が異なれば、触感が異なることが知られている(例えば、非特許文献1)。そこで、化粧料の触感を調整する方法として、窒化ホウ素を粉砕処理等し粒子径を調整した窒化ホウ素粉末を化粧料原料に用いることで、化粧料の滑り性やざらつきを制御する方法が考えられる。しかし、窒化ホウ素は、粉砕されることによって発生する新たな粒子表面から、肌に刺激性のある溶出ホウ素(水に対して可溶なホウ素化合物)が発生するという問題がある。 It is known that even if the substance is the same, if the shape such as the particle size is different, the tactile sensation will be different (for example, Non-Patent Document 1). Therefore, as a method for adjusting the texture of cosmetics, a method of controlling the slipperiness and roughness of cosmetics by using boron nitride powder obtained by adjusting the particle size by pulverizing boron nitride as a cosmetic raw material is conceivable. . However, boron nitride has the problem that eluted boron (a boron compound soluble in water), which is irritating to the skin, is generated from new particle surfaces generated by pulverization.
化粧料の原料については、安全性、衛生性の観点から、医薬部外品原料規格2006にその規格が定められている。上記規格では、窒化ホウ素について、所定の手順で窒化ホウ素を水に接触させた際に、許容できる溶出ホウ素量を、窒化ホウ素1gに対して20μg以下(すなわち、1gあたり20ppm以下)と規定している。溶出ホウ素量が上記範囲を超えるような窒化ホウ素を化粧料原料とした場合、得られる化粧料は肌への刺激性が高く、望ましくない。上述のように、単に、窒化ホウ素を粉砕処理等することによって粒子径を調整する方法は、溶出ホウ素量の増加を招き得る。そのため、得られる窒化ホウ素粉末が化粧料原料として望ましくない場合がある。 From the viewpoint of safety and sanitation, the standards of raw materials for cosmetics are stipulated in the Standards for Quasi-drug Raw Materials 2006. In the above standards, when boron nitride is brought into contact with water in a predetermined procedure, the permissible amount of eluted boron is defined as 20 μg or less per 1 g of boron nitride (i.e., 20 ppm or less per 1 g). there is When boron nitride with an eluted boron amount exceeding the above range is used as a cosmetic raw material, the obtained cosmetic is highly irritating to the skin, which is undesirable. As described above, the method of adjusting the particle size simply by pulverizing boron nitride can lead to an increase in the amount of eluted boron. Therefore, the obtained boron nitride powder may not be desirable as a raw material for cosmetics.
溶出ホウ素は、窒化ホウ素を製造する際に残存した原料、及び焼結助剤に含まれていたり、溶出ホウ素量測定中における、窒化ホウ素の加水分解によって発生したりする。溶出ホウ素を低減する手段が様々に開示されてきた。特許文献2には、六方晶窒化ホウ素を低級アルコールやアセトン等の水可溶性有機溶媒若しくはその水溶液、または界面活性剤水溶液中で攪拌洗浄し、低温かつ低酸素雰囲気下で乾燥する方法が開示されている。 The eluted boron is contained in raw materials and sintering aids remaining when boron nitride is produced, or is generated by hydrolysis of boron nitride during measurement of the amount of eluted boron. Various means of reducing leached boron have been disclosed. Patent Document 2 discloses a method in which hexagonal boron nitride is stirred and washed in a water-soluble organic solvent such as a lower alcohol or acetone, an aqueous solution thereof, or an aqueous surfactant solution, and dried in a low-temperature, low-oxygen atmosphere. there is
滑り性を適度に維持しつつ、「しっとり」や「ぬめり」といった触感に優れる化粧料を提供するための、窒化ホウ素粉末があれば有用である。 It would be useful to have a boron nitride powder that can provide a cosmetic that has excellent tactile sensations such as "moisturizing" and "slimy" while maintaining appropriate slipperiness.
本開示は、化粧料原料に適する窒化ホウ素粉末、及び当該窒化ホウ素粉末を製造する方法を提供することを目的とする。本開示はまた、適度な滑り性を有しつつ、肌への刺激性が低減された化粧料を提供することを目的とする。 An object of the present disclosure is to provide a boron nitride powder suitable for cosmetic raw materials and a method for producing the boron nitride powder. Another object of the present disclosure is to provide a cosmetic that has moderate slipperiness and reduced irritation to the skin.
本開示の一側面は、一次粒子及び一次粒子の凝集粒子の少なくとも一方の粒子を含み、溶出ホウ素量が1gあたり20ppm以下であり、平均粒子径が2.5~7.0μmであり、36μm以上の粒子径を有する上記粒子の含有量が10.0体積%以下である、窒化ホウ素粉末を提供する。 One aspect of the present disclosure includes particles of at least one of primary particles and agglomerated particles of primary particles, the amount of eluted boron is 20 ppm or less per 1 g, the average particle diameter is 2.5 to 7.0 μm, and is 36 μm or more A boron nitride powder is provided in which the content of the particles having a particle diameter of is 10.0% by volume or less.
上記窒化ホウ素粉末は、凝集粒子及び粒子径の比較的大きな一次粒子の含有量が低く、また、平均粒子径が所定の範囲であり、溶出ホウ素量も低いことから、化粧料原料として有用である。 The boron nitride powder has a low content of agglomerated particles and relatively large primary particles, has an average particle size within a predetermined range, and has a low eluted boron content, and is therefore useful as a raw material for cosmetics. .
上記窒化ホウ素粉末は、比表面積が3.0~12.0m2/gであってもよい。The boron nitride powder may have a specific surface area of 3.0 to 12.0 m 2 /g.
上記窒化ホウ素粉末は、摩擦感テスターで測定される平均摩擦係数が0.7~1.2であってもよい。 The boron nitride powder may have an average friction coefficient of 0.7 to 1.2 as measured by a friction tester.
上記窒化ホウ素粉末は、摩擦感テスターで測定される平均摩擦係数の変動が0.015以下であってもよい。 The boron nitride powder may have an average friction coefficient variation of 0.015 or less as measured by a friction tester.
上記窒化ホウ素粉末は、窒化ホウ素の一次粒子におけるアスペクト比が8~23であってもよい。 The boron nitride powder may have an aspect ratio of 8 to 23 in primary particles of boron nitride.
本開示の一側面は、第一の窒化ホウ素及び焼結助剤を含有する原料粉末を1600~1900℃の条件で焼成することによって上記第一の窒化ホウ素よりも結晶化度の高い第二の窒化ホウ素を得る工程と、上記第二の窒化ホウ素を粉砕して粉砕物を得る工程と、有機溶媒、酸性物質を含有する水溶液、及び有機溶媒を含有する水溶液からなる群から選択される少なくとも1種によって、上記粉砕物を洗浄して窒化ホウ素粉末を得る工程と、を有し、上記焼結助剤の含有量が、上記原料粉末中の上記第一の窒化ホウ素100質量部に対して、0.9~20質量部である、窒化ホウ素粉末の製造方法を提供する。 One aspect of the present disclosure is that the raw material powder containing the first boron nitride and a sintering aid is fired under conditions of 1600 to 1900 ° C. to obtain a second boron nitride having a higher crystallinity than the first boron nitride. At least one selected from the group consisting of a step of obtaining boron nitride, a step of pulverizing the second boron nitride to obtain a pulverized product, and an organic solvent, an aqueous solution containing an acidic substance, and an aqueous solution containing an organic solvent. and obtaining a boron nitride powder by washing the pulverized material depending on the seed, wherein the content of the sintering aid is Provided is a method for producing boron nitride powder, which is 0.9 to 20 parts by mass.
上記製造方法は、結晶化度の高い第二の窒化ホウ素を粉砕した後に、所定の溶液によって洗浄する工程を有することから、溶出ホウ素量が低減された窒化ホウ素粉末を製造することができる。かかる窒化ホウ素粉末は化粧料原料として有用である。 Since the above production method has a step of washing with a predetermined solution after pulverizing the second boron nitride having a high degree of crystallinity, it is possible to produce a boron nitride powder with a reduced amount of eluted boron. Such boron nitride powder is useful as a raw material for cosmetics.
上記製造方法において、上記窒化ホウ素粉末の溶出ホウ素量が1gあたり20ppm以下であってよい。 In the above production method, the amount of eluted boron in the boron nitride powder may be 20 ppm or less per 1 g.
上記製造方法において、上記窒化ホウ素粉末は、一次粒子及び一次粒子の凝集粒子の少なくとも一方の粒子を含み、平均粒子径が2.5~7.0μmであり、かつ36μm以上の粒子径を有する上記粒子の含有量が10.0体積%以下であってよい。 In the above production method, the boron nitride powder contains at least one of primary particles and agglomerated primary particles, has an average particle size of 2.5 to 7.0 μm, and has a particle size of 36 μm or more. The content of particles may be 10.0% by volume or less.
上記製造方法において、前記窒化ホウ素粉末は、比表面積が3.0~12.0m2/gであってよい。In the above manufacturing method, the boron nitride powder may have a specific surface area of 3.0 to 12.0 m 2 /g.
本開示の一側面は、上述の窒化ホウ素粉末を含有する、化粧料を提供する。 One aspect of the present disclosure provides a cosmetic containing the boron nitride powder described above.
上記化粧料は、上述の窒化ホウ素粉末を含有することから、適度な滑り性を有しつつ、皮膚刺激性が低減されている。 Since the cosmetic contains the above-described boron nitride powder, it has moderate slipperiness and reduced skin irritation.
本発明者らは、ある粒径領域を有する窒化ホウ素粉末が相応の滑り性を保ちつつ、「しっとり」や「ぬめり」といった触感を有することを見出した。すなわち、本開示の一側面は、36μm以上の一次粒子、又は凝集粒子の含有量が10.0体積%以下、比表面積が3.0~12.0m2/g、平均粒子径が2.5~7.0μm、溶出ホウ素量が20ppm以下であることを特徴とする六方晶窒化ホウ素粉末を提供する。また本開示の一側面は、摩擦感テスターで測定されたMIU(平均摩擦係数)の値が0.7~1.2、MMD(平均摩擦係数の変動)の値が0.015以下であることを特徴とする六方晶窒化ホウ素粉末を提供する。更にまた本開示の一側面は、アスペクト比が8~23であることを特徴とする六方晶窒化ホウ素粉末を提供する。The inventors of the present invention have found that boron nitride powder having a certain particle size range has tactile sensations such as "moist" and "slimy" while maintaining suitable slipperiness. That is, one aspect of the present disclosure is that the content of primary particles or aggregated particles of 36 μm or more is 10.0% by volume or less, the specific surface area is 3.0 to 12.0 m 2 /g, and the average particle diameter is 2.5 Provided is a hexagonal boron nitride powder characterized by having a particle diameter of up to 7.0 μm and an eluted boron amount of 20 ppm or less. In addition, one aspect of the present disclosure is that the value of MIU (average coefficient of friction) measured with a friction tester is 0.7 to 1.2, and the value of MMD (variation of average coefficient of friction) is 0.015 or less. A hexagonal boron nitride powder characterized by: Furthermore, one aspect of the present disclosure provides a hexagonal boron nitride powder characterized by an aspect ratio of 8-23.
本開示によれば、化粧料原料に適する窒化ホウ素粉末、及び当該窒化ホウ素粉末を製造する方法を提供することができる。本開示によればまた、適度な滑り性を有しつつ、肌への刺激性が低減された化粧料を提供することができる。 According to the present disclosure, it is possible to provide a boron nitride powder suitable for cosmetic raw materials and a method for producing the boron nitride powder. According to the present disclosure, it is also possible to provide a cosmetic that has moderate slipperiness and reduced irritation to the skin.
本開示によれば、「しっとり」や「ぬめり」といった触感を呈し、化粧料原料として有用な窒化ホウ素を提供することができる。本開示によれば、更に該窒化ホウ素粉末を含有する優れた化粧料を提供することができる。 According to the present disclosure, it is possible to provide boron nitride that exhibits a tactile sensation such as "moist" or "slimy" and is useful as a raw material for cosmetics. According to the present disclosure, it is possible to provide an excellent cosmetic containing the boron nitride powder.
以下、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。 Embodiments of the present disclosure will be described below. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents.
本開示の窒化ホウ素粉末は、溶出ホウ素量が1gあたり20ppm以下であり、化粧料原料として有用である。すなわち、溶出ホウ素量が1gあたり20ppm以下である窒化ホウ素粉末は、化粧料用窒化ホウ素粉末ということもできる。窒化ホウ素の結晶構造は、立方晶、六方晶等があるが、滑り性に優れる観点から、好ましくは六方晶である。 The boron nitride powder of the present disclosure has an eluted boron amount of 20 ppm or less per 1 g, and is useful as a cosmetic raw material. That is, a boron nitride powder having an eluted boron amount of 20 ppm or less per 1 g can be called a cosmetic boron nitride powder. Boron nitride has a cubic crystal structure, a hexagonal crystal structure, and the like, and the hexagonal crystal structure is preferable from the viewpoint of excellent slipperiness.
<窒化ホウ素粉末>
窒化ホウ素粉末の一実施形態は、一次粒子及び一次粒子の凝集粒子の少なくとも一方の粒子を含み、溶出ホウ素量が1gあたり20ppm以下であり、平均粒子径が2.5~7.0μmであり、36μm以上の粒子径を有する前記粒子の含有量が10.0体積%以下である。<Boron nitride powder>
An embodiment of the boron nitride powder contains at least one of primary particles and agglomerated particles of the primary particles, the amount of eluted boron is 20 ppm or less per 1 g, the average particle size is 2.5 to 7.0 μm, The content of the particles having a particle diameter of 36 μm or more is 10.0% by volume or less.
本開示に係る窒化ホウ素粉末は、例えば、36μm以上の一次粒子、又は凝集粒子の含有量が10.0体積%以下、比表面積が3.0~12.0m2/g、平均粒子径が2.5~7μmであり、摩擦感テスターで測定されたMIUの値が0.7~1.2、MMDの値が0.015以下であってもよい。The boron nitride powder according to the present disclosure has, for example, a content of primary particles of 36 μm or more or aggregated particles of 10.0% by volume or less, a specific surface area of 3.0 to 12.0 m 2 /g, and an average particle diameter of 2 0.5 to 7 μm, an MIU value of 0.7 to 1.2, and an MMD value of 0.015 or less as measured by a friction tester.
以下に、本開示に係る六方晶窒化ホウ素粉末を実施するためのより詳しい説明を示す。 A more detailed description for implementing the hexagonal boron nitride powder according to the present disclosure is provided below.
<溶出ホウ素量>
窒化ホウ素粉末の溶出ホウ素量は、窒化ホウ素粉末1gあたり20ppm以下である。窒化ホウ素粉末の溶出ホウ素量は、窒化ホウ素粉末1gあたり、例えば、18ppm以下であってよく、15ppm以下であってよく、又は10ppm以下であってよい。窒化ホウ素粉末の溶出ホウ素量を低減することで、皮膚への刺激を低減することができ、化粧料原料としてより有用である。本明細書において「溶出ホウ素量」とは、医薬部外品原料規格2006に準拠して測定される値を意味する。<Amount of eluted boron>
The amount of eluted boron in the boron nitride powder is 20 ppm or less per 1 g of the boron nitride powder. The eluted boron amount of the boron nitride powder may be, for example, 18 ppm or less, 15 ppm or less, or 10 ppm or less per 1 g of the boron nitride powder. By reducing the amount of eluted boron in the boron nitride powder, irritation to the skin can be reduced, making it more useful as a cosmetic raw material. As used herein, the term "dissolved boron amount" means a value measured in accordance with the Standards for Quasi-drug Ingredients 2006.
<平均粒子径>
窒化ホウ素粉末の平均粒子径は2.5~7.0μmである。窒化ホウ素粉末の平均粒子径は、好ましくは3.0~6.0μmであり、更に好ましくは4.0~5.0μmである。窒化ホウ素粉末の平均粒子径が2.5μm未満では滑り性が不十分となる。窒化ホウ素粉末の平均粒子径が7.0μmを超えると滑り性が高すぎるため、化粧料の「しっとり」や「ぬめり」といった触感が損なわれ得る。窒化ホウ素粉末の平均粒子径が7.0μmを超えると、窒化ホウ素粉末の外観上のぎらつきが強くなるため、化粧料原料としては好ましくなくなる。<Average particle size>
The average particle size of the boron nitride powder is 2.5-7.0 μm. The average particle size of the boron nitride powder is preferably 3.0-6.0 μm, more preferably 4.0-5.0 μm. If the average particle size of the boron nitride powder is less than 2.5 µm, the lubricating property is insufficient. When the average particle size of the boron nitride powder exceeds 7.0 µm, the slipperiness is too high, and the "moist" and "slimy" feel of the cosmetic may be impaired. When the average particle size of the boron nitride powder exceeds 7.0 μm, the appearance of the boron nitride powder becomes more glaring, which is not preferable as a raw material for cosmetics.
本明細書における「平均粒子径」は、レーザー回折散乱法による粒度分布測定に基づいて測定される値を意味し、体積基準の累積粒度分布における累積値が50%の粒子径である。一般に平均粒子径は測定方法により変わる可能性があり、本明細書では、200mLの水に、60mgの窒化ホウ素粉末及び2mLのヘキサメタリン酸水溶液(濃度:20質量%)を加え、ホモジナイザーによって、300Wの出力で180秒間分散処理させて分散液を調製し、当該分散液を測定対象として、粒度分布測定器によって計測した値である。 The "average particle size" as used herein means a value measured based on particle size distribution measurement by a laser diffraction scattering method, and is a particle size with a cumulative value of 50% in a volume-based cumulative particle size distribution. In general, the average particle size may vary depending on the measurement method. In this specification, 60 mg of boron nitride powder and 2 mL of hexametaphosphoric acid aqueous solution (concentration: 20% by mass) are added to 200 mL of water, and a homogenizer is used at 300 W. It is a value measured by a particle size distribution measuring device, using a dispersion liquid prepared by dispersing for 180 seconds at an output and using the dispersion liquid as a measurement object.
<36μm以上の一次粒子、又は凝集粒子の含有量>
窒化ホウ素粉末は、一次粒子及び一次粒子の凝集粒子の少なくとも一方の粒子を含み、36μm以上の粒子径を有する上記粒子(例えば、粒子径が36μm以上の一次粒子、粒子径が36μm以上の凝集粒子等)の含有量が10.0体積%以下である。窒化ホウ素粉末における、36μm以上の粒子径を有する上記粒子の含有量は10.0体積%以下であることで、窒化ホウ素粉末が優れた滑り性を有し、当該窒化ホウ素粉末を含有する化粧料のざらつきを十分に低減することができる。窒化ホウ素粉末における、36μm以上の粒子径を有する上記粒子の含有量は、例えば、6.0体積%以下、5.0体積%以下、4.0体積%以下、3.0体積%以下、1.5体積%以下、1.0体積%以下、又は0.5体積%以下であってよい。窒化ホウ素粉末における、36μm以上の粒子径を有する上記粒子の含有量が上記範囲内であることによって、窒化ホウ素粉末の「しっとり」や「ぬめり」といった触感を向上させることができる。なお、製造のしやすさ等を考慮すると、上記含有量は0.001体積%以上、又は0.01体積%以上であってよい。<Content of primary particles or aggregated particles of 36 µm or more>
The boron nitride powder contains at least one of primary particles and aggregated particles of the primary particles, and has a particle size of 36 μm or more (e.g., primary particles with a particle size of 36 μm or more, aggregated particles with a particle size of 36 μm or more etc.) is 10.0% by volume or less. The content of the particles having a particle diameter of 36 μm or more in the boron nitride powder is 10.0% by volume or less, so that the boron nitride powder has excellent slipperiness. Cosmetics containing the boron nitride powder roughness can be sufficiently reduced. The content of the particles having a particle diameter of 36 μm or more in the boron nitride powder is, for example, 6.0% by volume or less, 5.0% by volume or less, 4.0% by volume or less, 3.0% by volume or less, 1 0.5% by volume or less, 1.0% by volume or less, or 0.5% by volume or less. When the content of the particles having a particle diameter of 36 μm or more in the boron nitride powder is within the above range, the tactile sensation such as “moist” and “slimy” of the boron nitride powder can be improved. In consideration of ease of manufacture, the above content may be 0.001% by volume or more, or 0.01% by volume or more.
化粧料における皮膚への必要な加圧力範囲において、滑り性を保ちつつ、「しっとり」や「ぬめり」といった触感に優れる六方晶窒化ホウ素粉末を合成する方法について鋭意検討した結果、六方晶窒化ホウ素の粉末に含まれる36μm以上の一次粒子、又は凝集粒子の含有量が10.0体積%以下とすることで、触感に優れる六方晶窒化ホウ素粉末とすることができることを見出した。六方晶窒化ホウ素の粉末に含まれる36μm以上の一次粒子、又は凝集粒子の含有量は、10.0体積%以下であり、好ましくは5.0体積%以下、更に好ましくは1.0体積%以下である。六方晶窒化ホウ素粉末における36μm以上の一次粒子、又は凝集粒子の含有量が10.0体積%を超えると、六方晶窒化ホウ素粉末を塗布する際の滑り性にばらつきがあり、塗布された六方晶窒化ホウ素粉末の膜に凹凸が発生し得る。すなわち、六方晶窒化ホウ素粉末における36μm以上の一次粒子、又は凝集粒子の含有量が10.0体積%を超えると、MMDが増加し、結果的に「ざらつき」が増し、化粧料原料として相応しくない。 As a result of intensive studies on a method for synthesizing hexagonal boron nitride powder that has excellent tactile sensations such as "moist" and "slimy" while maintaining slipperiness in the range of pressure applied to the skin in cosmetics, we found that hexagonal boron nitride powder It was found that a hexagonal boron nitride powder having excellent tactile sensation can be obtained by setting the content of primary particles of 36 μm or more or aggregated particles contained in the powder to 10.0% by volume or less. The content of primary particles of 36 μm or more or aggregated particles contained in the hexagonal boron nitride powder is 10.0% by volume or less, preferably 5.0% by volume or less, and more preferably 1.0% by volume or less. is. When the content of primary particles of 36 μm or more in the hexagonal boron nitride powder, or the content of aggregated particles exceeds 10.0% by volume, there is variation in slipperiness when applying the hexagonal boron nitride powder, and the applied hexagonal crystal Asperities may occur in the film of boron nitride powder. That is, if the content of primary particles of 36 μm or more or aggregated particles in the hexagonal boron nitride powder exceeds 10.0% by volume, the MMD increases, resulting in increased "roughness", which is not suitable as a cosmetic raw material. .
本開示において、36μm以上の粒子径を有する上記粒子、並びに、36μm以上の一次粒子、又は凝集粒子の含有量は、レーザー回折散乱法による粒度分布測定に基づいて測定される値を意味する。例えば、粒子径が36μm以上の一次粒子の含有量は、体積基準の累積粒度分布において粒子径が36μmを超える一次粒子の体積割合である。具体的には、200mLの水に、60mgの窒化ホウ素粉末及び2mLのヘキサメタリン酸水溶液(濃度:20質量%)を加えて混合液を調製し、当該混合液を測定対象として、粒度分布測定器によって、累積粒度分布を計測し、含有量を決定することができる。なお、上記混合液は、超音波分散処理等を実施せずに粒度分布測定に供する。ここで、超音波分散処理を実施しない理由は、超音波分散処理を行うと、窒化ホウ素粉末に含まれる粗粉が超音波によって粉砕されてしまうため、窒化ホウ素粉末中の36μm以上の粒子径を有する上記粒子の含有量、窒化ホウ素粉末中の36μm以上の一次粒子、又は凝集粒子の含有量を正確に測定できなくなるためである。 In the present disclosure, the content of particles having a particle diameter of 36 μm or more, primary particles of 36 μm or more, or agglomerated particles means values measured based on particle size distribution measurement by a laser diffraction scattering method. For example, the content of primary particles with a particle size of 36 μm or more is the volume ratio of primary particles with a particle size of more than 36 μm in the volume-based cumulative particle size distribution. Specifically, to 200 mL of water, 60 mg of boron nitride powder and 2 mL of hexametaphosphoric acid aqueous solution (concentration: 20% by mass) are added to prepare a mixed liquid, and the mixed liquid is measured by a particle size distribution analyzer. , the cumulative particle size distribution can be measured to determine the content. The mixed solution is subjected to particle size distribution measurement without being subjected to ultrasonic dispersion treatment or the like. Here, the reason why ultrasonic dispersion treatment is not performed is that when ultrasonic dispersion treatment is performed, coarse powder contained in the boron nitride powder is pulverized by ultrasonic waves. This is because it becomes impossible to accurately measure the content of the above-mentioned particles having the above-mentioned particles, the content of primary particles of 36 μm or more in the boron nitride powder, or the content of agglomerated particles.
<比表面積>
窒化ホウ素の比表面積は、好ましくは3.0~12.0m2/gであり、より好ましくは4.0~10.0m2/gである。窒化ホウ素の比表面積を3.0m2/g以上とすることによって、隠ぺい力(カバー力)に優れる。窒化ホウ素の比表面積を3.0m2/g以上とすることによって、滑り性を適度なものとし、「しっとり」や「ぬめり」といった触感の低下を抑制することができる。また窒化ホウ素の比表面積を3.0m2/g以上とすることによって、窒化ホウ素粉末の外観上のぎらつきを抑制し、化粧料原料としてより好適なものとすることができる。窒化ホウ素の比表面積を12.0m2/g以下とすることによって、塗りのび性(伸展性)及び隠ぺい力の低下を抑制することができ、また溶出ホウ素量の増加を抑制することができる。<Specific surface area>
The specific surface area of boron nitride is preferably 3.0 to 12.0 m 2 /g, more preferably 4.0 to 10.0 m 2 /g. By setting the specific surface area of boron nitride to 3.0 m 2 /g or more, excellent hiding power (covering power) is obtained. By setting the specific surface area of boron nitride to 3.0 m 2 /g or more, it is possible to make the slipperiness moderate and suppress the deterioration of the tactile sensations such as "moist" and "slimy". Further, by setting the specific surface area of boron nitride to 3.0 m 2 /g or more, glare in the appearance of the boron nitride powder can be suppressed, making it more suitable as a raw material for cosmetics. By setting the specific surface area of boron nitride to 12.0 m 2 /g or less, it is possible to suppress deterioration of coating spreadability (extendability) and hiding power, and to suppress an increase in the amount of eluted boron.
本明細書における「比表面積」は、一般に市販されているガス吸着現象を利用した測定装置を用い、BET1点法によって算出される値を意味する。 The term "specific surface area" as used herein means a value calculated by the BET one-point method using a commercially available measuring device utilizing gas adsorption phenomenon.
<アスペクト比>
六方晶窒化ホウ素の一次粒子は、いわゆる「鱗片形状」の粒子である。六方晶窒化ホウ素の一次粒子のアスペクト比は、好ましくは8~23であり、より好ましくは8~20である。六方晶窒化ホウ素の一次粒子のアスペクト比を8以上とすることによって、六方晶窒化ホウ素の一次粒子の厚さを十分に薄いものとし、滑り性をより向上させることができ、かつ隠ぺい力(カバー力)にも優れたものとすることができる。六方晶窒化ホウ素の一次粒子のアスペクト比を23以下とすることによって、六方晶窒化ホウ素の一次粒子の厚さを適度なものとし、一次粒子が割れたり、欠けたりすることを抑制することができ、溶出ホウ素量の増加をより抑制することができる。<Aspect ratio>
The primary particles of hexagonal boron nitride are so-called "scale-shaped" particles. The aspect ratio of the primary particles of hexagonal boron nitride is preferably 8-23, more preferably 8-20. By setting the aspect ratio of the primary particles of hexagonal boron nitride to 8 or more, the thickness of the primary particles of hexagonal boron nitride can be made sufficiently thin, the slip property can be further improved, and the hiding power (cover force) can also be excellent. By setting the aspect ratio of the primary particles of hexagonal boron nitride to 23 or less, the thickness of the primary particles of hexagonal boron nitride can be made appropriate, and cracking or chipping of the primary particles can be suppressed. , the increase in the amount of eluted boron can be further suppressed.
一次粒子のアスペクト比は、粒子の最も長い箇所(長径)と短い箇所(短径)の比率((長径)/(短径))で表わされる。六方晶窒化ホウ素の一次粒子はいわゆる「鱗片形状」の粒子であるから、鱗片粒子の厚さが最も短い箇所(短径)となる。本明細書における「アスペクト比」は、六方晶窒化ホウ素の一次粒子の断面写真画像から粒子長径と粒子厚みとを実測して算出して得られる値を意味する。すなわち、六方晶窒化ホウ素の一次粒子のアスペクト比は、六方晶窒化ホウ素の一次粒子の(長径)/(厚さ)比で表される。 The aspect ratio of a primary particle is represented by the ratio ((major axis)/(minor axis)) of the longest portion (major axis) and the shortest portion (minor axis) of the particle. Since the primary particles of hexagonal boron nitride are so-called "scale-shaped" particles, the thickness of the scale particles is the shortest (minor axis). The term "aspect ratio" as used herein means a value obtained by actually measuring and calculating the major diameter and thickness of a particle from a cross-sectional photographic image of a primary particle of hexagonal boron nitride. That is, the aspect ratio of the primary particles of hexagonal boron nitride is represented by the ratio of (length)/(thickness) of the primary particles of hexagonal boron nitride.
六方晶窒化ホウ素のような「鱗片形状」の粒子においてアスペクト比を測定する際、例えば、電子顕微鏡によって撮影された粒子画像をそのまま解析する方法では誤差が生じ易く(例えば、一次粒子が傾いていると誤差が生じる)、正確な測定が困難である。そこで、本明細書における六方晶窒化ホウ素のアスペクト比の測定は以下に示す方法に準拠して行う。3gの窒化ホウ素粉末をプレス成型機(例えば、株式会社リガク製、商品名:BRE-32)を用いて、5MPaの圧力で円盤状(直径:30mmφ)に成型し、得られた成型体を樹脂(例えば、GATAN社製、商品名:G2エポキシ)を用いて包埋後に、圧力をかけた方向と並行方向に断面ミリング加工を行うことで、窒化ホウ素粒子の断面が露出した試料を調製する。プレス成型によって窒化ホウ素の一次粒子が一方向に配向するため、一次粒子の傾きによる測定誤差を抑えられる。この断面を走査型電子顕微鏡(例えば、日本電子株式会社製、商品名:JSM-6010LA)によって撮影し、得られた粒子像を画像解析ソフトウェア(例えば、株式会社マウンテック製、商品名:Mac-View)に取り込む。次いで、得られた写真から矩形粒子の長辺(粒子長径に相当)と短辺(粒子厚み、粒子短径に相当)を測定し長径短径比(長径/短径)を算出した。測定は、任意に選択した100個の一次粒子に対して行う。得られた長径短径比に基づいて累積分布を作成し、累積分布の95%に相当する長径短径比を求め、これをアスペクト比とする。 When measuring the aspect ratio of "scale-shaped" particles such as hexagonal boron nitride, for example, a method of directly analyzing a particle image taken by an electron microscope is prone to errors (e.g., the primary particles are tilted error occurs), making accurate measurement difficult. Therefore, the aspect ratio of hexagonal boron nitride in this specification is measured according to the method described below. 3 g of boron nitride powder is molded into a disk shape (diameter: 30 mmφ) at a pressure of 5 MPa using a press molding machine (for example, manufactured by Rigaku Co., Ltd., product name: BRE-32), and the resulting molded body is molded into a resin. (eg, GATAN, trade name: G2 epoxy), and then milling the cross section in the direction parallel to the direction in which the pressure is applied to prepare a sample in which the cross section of the boron nitride particles is exposed. Since the primary particles of boron nitride are oriented in one direction by press molding, measurement errors due to inclination of the primary particles can be suppressed. This cross section is photographed with a scanning electron microscope (for example, manufactured by JEOL Ltd., trade name: JSM-6010LA), and the obtained particle image is analyzed by image analysis software (for example, Mountec Co., trade name: Mac-View). ). Next, the long side (corresponding to the particle long diameter) and the short side (corresponding to the particle thickness and particle short diameter) of the rectangular particles were measured from the obtained photograph, and the ratio of the long diameter to the short diameter (long diameter/short diameter) was calculated. Measurements are performed on 100 arbitrarily selected primary particles. A cumulative distribution is created based on the obtained ratios of the major diameters and the minor diameters, and the ratio of the major diameters and the minor diameters corresponding to 95% of the cumulative distribution is obtained and taken as the aspect ratio.
<MIU(平均摩擦係数)、MMD(平均摩擦係数の変動)>
化粧料の滑り性を数値化する方法として、MIU(平均摩擦係数)がある。MIUは、値が小さいほど化粧料が滑り性に優れることを示す。また、化粧料のざらつきを数値化する方法として、MMD(平均摩擦係数の変動)がある。MMDは、値が小さいほど化粧料のざらつきが小さいことを示す。<MIU (average friction coefficient), MMD (change in average friction coefficient)>
MIU (mean coefficient of friction) is a method for quantifying slipperiness of cosmetics. MIU indicates that the smaller the value, the more excellent the slipperiness of the cosmetic. Moreover, there is MMD (variation in mean friction coefficient) as a method of quantifying the roughness of cosmetics. MMD indicates that the smaller the value, the smaller the roughness of the cosmetic.
窒化ホウ素粉末のMIUは、好ましくは0.7~1.2であり、より好ましくは0.8~1.1である。窒化ホウ素粉末のMIUが1.2以下とすることで、窒化ホウ素の滑り性をより向上させることができる。窒化ホウ素粉末のMIUが0.7以上とすることで、窒化ホウ素の「しっとり」や「ぬめり」といった触感を向上させることができる。 The MIU of the boron nitride powder is preferably 0.7-1.2, more preferably 0.8-1.1. By setting the MIU of the boron nitride powder to 1.2 or less, it is possible to further improve the lubricity of the boron nitride. By setting the MIU of the boron nitride powder to 0.7 or more, it is possible to improve the tactile sensation of boron nitride such as “moist” and “slimy”.
窒化ホウ素粉末のMMDは、好ましくは0.015以下であり、より好ましくは0.010以下である。窒化ホウ素粉末のMMDを0.015以下とすることで、得られる化粧料のざらつきを抑制することができ、得られる化粧料の使用感を向上させることができる。なお、製造のしやすさ等を考慮すると、窒化ホウ素粉末のMMDは0.00001以上、又は0.0001以上であってよい。 The MMD of the boron nitride powder is preferably 0.015 or less, more preferably 0.010 or less. By setting the MMD of the boron nitride powder to 0.015 or less, it is possible to suppress the roughness of the obtained cosmetic and improve the usability of the obtained cosmetic. In consideration of ease of manufacture, etc., the MMD of the boron nitride powder may be 0.00001 or more, or 0.0001 or more.
上記窒化ホウ素粉末は、MIU(平均摩擦係数)の値が0.7~1.2、MMD(平均摩擦係数の変動)の値が0.015以下であってもよい。 The boron nitride powder may have an MIU (mean friction coefficient) value of 0.7 to 1.2 and an MMD (mean friction coefficient variation) value of 0.015 or less.
本明細書における「MIU(平均摩擦係数)」及び「MMD(平均摩擦係数の変動)」は、摩擦感テスター(カトーテック株式会社製、商品名:KES-SE)を用いて測定した無次限数である。具体的には、肌に見立てた人工皮革(出光テクノファイン株式会社製、商品名:サプラーレ PBZ13001 BK)上に、0.8gの窒化ホウ素粉末を載せて、その上に上記摩擦感テスターのセンサー部(10mm角シリコン)を当て、MIU及びMMDを計測することができる。摩擦感テスターの測定条件は、感度:H、試験台移動速度:1mm/秒、静荷重:25gfを設定する。計測は、5回行い、得られた3~5回目の平均値を、窒化ホウ素粉末のMIU、及びMMDとする。 "MIU (average coefficient of friction)" and "MMD (variation of average coefficient of friction)" in the present specification are measured using a friction tester (manufactured by Kato Tech Co., Ltd., trade name: KES-SE). is a number. Specifically, 0.8 g of boron nitride powder is placed on artificial leather (manufactured by Idemitsu Techno Fine Co., Ltd., trade name: Suprale PBZ13001 BK) that looks like skin, and the sensor part of the friction tester is placed on it. (10 mm square silicon) can be applied to measure MIU and MMD. The measurement conditions of the friction tester are sensitivity: H, test table moving speed: 1 mm/sec, and static load: 25 gf. The measurement is performed 5 times, and the average values obtained for the 3rd to 5th times are used as the MIU and MMD of the boron nitride powder.
<窒化ホウ素粉末の製造方法>
窒化ホウ素粉末の製造方法の一実施形態は、第一の窒化ホウ素及び焼結助剤を含有する原料粉末を1600~1900℃の条件で焼成することによって上記第一の窒化ホウ素よりも結晶化度の高い第二の窒化ホウ素を得る工程(以下、焼成工程ともいう)と、上記第二の窒化ホウ素を粉砕して粉砕物を得る工程(以下、粉砕工程ともいう)と、有機溶媒、酸性物質を含有する水溶液、及び有機溶媒を含有する水溶液からなる群から選択される少なくとも1種によって、上記粉砕物を洗浄して窒化ホウ素粉末を得る工程(以下、洗浄工程ともいう)と、を有する。上記焼結助剤の含有量が、上記原料粉末中の上記第一の窒化ホウ素100質量部に対して、0.9~20質量部である、窒化ホウ素粉末の製造方法である。<Method for producing boron nitride powder>
In one embodiment of the method for producing a boron nitride powder, the raw material powder containing the first boron nitride and a sintering aid is fired under conditions of 1600 to 1900 ° C. The degree of crystallinity is higher than that of the first boron nitride. A step of obtaining a high second boron nitride (hereinafter also referred to as a firing step), a step of pulverizing the second boron nitride to obtain a pulverized product (hereinafter also referred to as a pulverizing step), an organic solvent, an acidic substance and a step of obtaining boron nitride powder by washing the pulverized material with at least one selected from the group consisting of an aqueous solution containing and an aqueous solution containing an organic solvent (hereinafter also referred to as a washing step). In the method for producing boron nitride powder, the content of the sintering aid is 0.9 to 20 parts by mass with respect to 100 parts by mass of the first boron nitride in the raw material powder.
本明細書において、結晶化度が低いことは「低結晶性」ともいう。すなわち、上記第一の窒化ホウ素は、低結晶性窒化ホウ素ということもできる。本明細書における「結晶化度」は、広角X線散乱法によって測定される値を意味する。より具体的には、第一の窒化ホウ素又は第二の窒化ホウ素を対象として、広角X線散乱測定を行い、測定結果からデータ解析用ソフトを用いて1次元プロファイル(回折データ)を作成する。そして、解説データをもとに、下記式から結晶化度(%)を算出した。 In this specification, low crystallinity is also referred to as "low crystallinity". That is, the first boron nitride can also be said to be low-crystalline boron nitride. "Crystallinity" as used herein means a value measured by a wide-angle X-ray scattering method. More specifically, wide-angle X-ray scattering measurement is performed on the first boron nitride or the second boron nitride, and a one-dimensional profile (diffraction data) is created from the measurement results using data analysis software. Based on the descriptive data, the degree of crystallinity (%) was calculated from the following formula.
結晶化度(%)=[結晶領域を示すピーク面積/(結晶領域を示すピーク面積+非晶領域を示すピーク面積)]×100 Crystallinity (%) = [Peak area indicating crystalline region/(Peak area indicating crystalline region + Peak area indicating amorphous region)] × 100
焼成工程における温度は、1600~1900℃であるが、好ましくは1700~1900℃であり、より好ましくは1700~1800℃である。焼成工程における温度を1600℃以上とすることで、第一の窒化ホウ素における結晶化度を向上させ、より結晶化度の高い第二の窒化ホウ素を調製することができる。第二の窒化ホウ素の結晶化度を高めることで、得られる窒化ホウ素粉末の滑り性がより向上すると共に、溶出ホウ素量の増加を抑制することができるため、化粧料原料により好適なものにできる。焼成工程における温度を1900℃以下とすることで、第二の窒化ホウ素の結晶化度を適度なものとすることができ、得られる窒化ホウ素粉末の外観のぎらつきを抑制し、化粧料原料により好適なものにできる。 The temperature in the firing step is 1600-1900°C, preferably 1700-1900°C, more preferably 1700-1800°C. By setting the temperature in the firing step to 1600° C. or higher, the degree of crystallinity in the first boron nitride can be improved, and the second boron nitride having a higher degree of crystallinity can be prepared. By increasing the degree of crystallinity of the second boron nitride, the obtained boron nitride powder has improved lubricating properties and an increase in the amount of eluted boron can be suppressed, making it more suitable as a cosmetic raw material. . By setting the temperature in the firing step to 1900° C. or less, the degree of crystallinity of the second boron nitride can be moderated, the appearance of the obtained boron nitride powder can be suppressed, and the appearance of the obtained boron nitride powder can be suppressed. can be made suitable.
焼成工程は、不活性ガス雰囲気、又はアンモニアガス雰囲気の下で行ってもよい。不活性ガス雰囲気は、例えば、窒素、ヘリウム、及びアルゴン等を挙げることができる。 The firing step may be performed under an inert gas atmosphere or an ammonia gas atmosphere. Examples of inert gas atmospheres include nitrogen, helium, and argon.
上記製造方法において、上記窒化ホウ素粉末の溶出ホウ素量が1gあたり20ppm以下であってよい。上記製造方法において、上記窒化ホウ素粉末は、一次粒子及び一次粒子の凝集粒子の少なくとも一方の粒子を含み、平均粒子径が2.5~7.0μmであり、かつ36μm以上の粒子径を有する上記粒子の含有量が10.0体積%以下であってよい。上記製造方法において、前記窒化ホウ素粉末は、比表面積が3.0~12.0m2/gであってよい。In the above production method, the amount of eluted boron in the boron nitride powder may be 20 ppm or less per 1 g. In the above production method, the boron nitride powder contains at least one of primary particles and agglomerated primary particles, has an average particle size of 2.5 to 7.0 μm, and has a particle size of 36 μm or more. The content of particles may be 10.0% by volume or less. In the above manufacturing method, the boron nitride powder may have a specific surface area of 3.0 to 12.0 m 2 /g.
六方晶窒化ホウ素粉末の製造方法の一実施形態としては、例えば、低結晶性六方晶窒化ホウ素の粉末と0.9~20質量部の焼結助剤粉末を含む混合粉末を最高温度1600~1900℃の焼成条件で焼成することにより六方晶窒化ホウ素を得る工程と、得られた上記六方晶窒化ホウ素をジェットミル又はグローミルで粉砕し、酸性物質を含む水溶液、有機溶媒、有機溶媒と水との混合液の少なくともいずれか一つで洗浄する工程を含み、上述の六方晶窒化ホウ素粉末を製造する、製造方法が挙げられる。 As an embodiment of the method for producing hexagonal boron nitride powder, for example, a mixed powder containing low-crystalline hexagonal boron nitride powder and 0.9 to 20 parts by mass of sintering aid powder is heated to a maximum temperature of 1600 to 1900. A step of obtaining hexagonal boron nitride by firing under firing conditions of ° C., pulverizing the obtained hexagonal boron nitride with a jet mill or a glow mill, and mixing an aqueous solution containing an acidic substance, an organic solvent, and an organic solvent and water. A manufacturing method including the step of washing with at least one of the mixed liquids to manufacture the hexagonal boron nitride powder described above can be mentioned.
上記窒化ホウ素粉末の製造方法は、上記第一の窒化ホウ素を含有する原料粉末の焼成工程に代えて、第一の窒化ホウ素を調製する工程及び第二の窒化ホウ素を調製する工程を有してもよい。また上記六方晶ホウ素粉末の製造方法は、低結晶性六方晶窒化ホウ素粉末の焼成によって六方晶窒化ホウ素を得る工程に代えて、低結晶性六方晶窒化ホウ素を調製する工程及び六方晶窒化ホウ素を得る工程を有してもよい。 The method for producing the boron nitride powder includes a step of preparing a first boron nitride and a step of preparing a second boron nitride instead of the step of firing the raw material powder containing the first boron nitride. good too. Further, in the method for producing the hexagonal boron nitride, instead of the step of obtaining hexagonal boron nitride by firing the low-crystalline hexagonal boron nitride powder, the step of preparing low-crystalline hexagonal boron nitride and the production of hexagonal boron nitride You may have a process of obtaining.
窒化ホウ素粉末の製造方法の例としては、ホウ素を含む化合物の粉末及び窒素を含む化合物の粉末(以下、ホウ素を含む化合物と窒素を含む化合物とを併せて「出発原料」ということもある)と、アルカリ金属化合物及び/又はアルカリ土類金属などの焼成時における出発原料の六方晶窒化ホウ素への変換を促進する焼結助剤の粉末と、を含有する混合粉末を、窒素、ヘリウム、アルゴン等の不活性雰囲気下、及び/又はアンモニア雰囲気下で600~1300℃の条件(第一焼成条件)で焼成して低結晶性六方晶窒化ホウ素を得る工程と、得られた低結晶性六方晶窒化ホウ素を更に、窒素、ヘリウム、アルゴン等の不活性雰囲気下、及び/又はアンモニア雰囲気下で1500~2200℃の条件(第二焼成条件)で焼成して六方晶窒化ホウ素を得る工程と、得られた六方晶窒化ホウ素を洗浄液で洗浄することによる不純物除去処理を加えてから乾燥する工程と、を含む製造方法が挙げられる。上記混合粉末は、本開示の目的を逸脱しない範囲において、必要に応じて、出発原料及び焼結助剤以外のその他の成分を含有してもよい。その他の成分としては、例えば、単体及び化合物等が挙げられる。ここで、焼結助剤は、混合粉末に配合してもよいし、低結晶性六方晶窒化ホウ素に配合してもよい。 Examples of the method for producing boron nitride powder include a powder of a compound containing boron and a powder of a compound containing nitrogen (hereinafter, the compound containing boron and the compound containing nitrogen are sometimes collectively referred to as "starting materials") and , a sintering aid powder that promotes the conversion of starting materials such as alkali metal compounds and / or alkaline earth metals into hexagonal boron nitride during firing, and a mixed powder containing nitrogen, helium, argon, etc. and/or in an ammonia atmosphere at 600 to 1300 ° C. (first firing conditions) to obtain low-crystalline hexagonal boron nitride, and the obtained low-crystalline hexagonal nitride Boron is further fired in an inert atmosphere such as nitrogen, helium, argon, etc. and/or in an ammonia atmosphere at 1500 to 2200 ° C. (second firing conditions) to obtain hexagonal boron nitride; and a step of removing impurities by washing the hexagonal boron nitride with a cleaning solution and then drying. The above-mentioned mixed powder may contain other components than the starting material and the sintering aid, if necessary, without departing from the purpose of the present disclosure. Other components include, for example, simple substances and compounds. Here, the sintering aid may be blended with the mixed powder, or may be blended with the low-crystalline hexagonal boron nitride.
ホウ素を含む化合物としては、例えば、ホウ酸、酸化ホウ素、及びホウ砂等を含むことが好ましく、ホウ酸を含むことがより好ましい。窒素を含む化合物としては、例えば、シアンジアミド、メラミン、尿素等を含むことが好ましく、メラミンを含むことがより好ましい。 The compound containing boron preferably includes, for example, boric acid, boron oxide, borax, etc., and more preferably includes boric acid. The nitrogen-containing compound preferably includes, for example, cyandiamide, melamine, urea, etc., and more preferably includes melamine.
出発原料中に含まれるホウ素原子と窒素原子のモル比率は、必ずしも5:5に固定する必要はない。ホウ素原子と窒素原子のモル比率を、反応性や収率に応じて、好ましくは2:8~8:2の範囲で、さらに好ましくは3:7~7:3の範囲で適宜変えることが可能である。なお、第一の窒化ホウ素、又は低結晶性六方晶窒化ホウ素を製造するための出発原料として用いる各種化合物等は一種類に限定する必要はなく、複数種類の化合物等を同時に使用することもできる。 The molar ratio of boron atoms and nitrogen atoms contained in the starting material need not necessarily be fixed at 5:5. The molar ratio of boron atoms and nitrogen atoms can be appropriately changed, preferably in the range of 2:8 to 8:2, more preferably in the range of 3:7 to 7:3, depending on the reactivity and yield. is. The various compounds used as starting materials for producing the first boron nitride or low-crystalline hexagonal boron nitride need not be limited to one type, and multiple types of compounds can be used at the same time. .
焼結助剤としては、好ましくは、リチウム、ナトリウム、及びカリウム等のアルカリ金属の酸化物又は炭酸塩、並びに、カルシウム、及びストロンチウム等のアルカリ土類金属の酸化物又は炭酸塩などを挙げることができる。焼結助剤の含有量は、混合粉末中の窒化ホウ素100質量部、第一の窒化ホウ素100質量部又は低結晶性六方晶窒化ホウ素100重量部に対して、好ましくは0.9質量部以上20.0質量部以下である。なお、焼結助剤として用いる各種化合物等は一種類に限定する必要はなく、複数種類の化合物等を同時に使用することもできる。 Preferred sintering aids include oxides or carbonates of alkali metals such as lithium, sodium and potassium, and oxides or carbonates of alkaline earth metals such as calcium and strontium. can. The content of the sintering aid is preferably 0.9 parts by mass or more with respect to 100 parts by mass of boron nitride, 100 parts by mass of the first boron nitride, or 100 parts by mass of low-crystalline hexagonal boron nitride in the mixed powder. It is 20.0 mass parts or less. In addition, it is not necessary to limit the various compounds used as sintering aids to one type, and a plurality of types of compounds may be used at the same time.
上述の原料粉末は、第一の窒化ホウ素及び焼結助剤の他にその他の成分を含有してもよい。また、上述の混合粉末は、出発原料及び焼結助剤以外のその他の成分を含んでもよい。上記その他の成分としては、例えば、単体及び化合物等が挙げられる。上記単体及び上記化合物は、より具体的には、炭素等の還元性物質を挙げることができる。 The raw material powder described above may contain other components in addition to the first boron nitride and the sintering aid. Moreover, the mixed powder described above may contain components other than the starting material and the sintering aid. Examples of the other components include simple substances and compounds. More specifically, the simple substance and the compound include reducing substances such as carbon.
上記混合粉末を焼成するときの最高温度は、第一焼成条件では、好ましくは600℃~1300℃の範囲の温度であり、より好ましくは800~1200℃の範囲である。第一焼成条件における最高温度を600℃以上とすることで、混合粉末から低結晶六方晶窒化ホウ素への変換を促進することができ、混合粉末における、未反応の出発原料(例えば、ホウ素を含む化合物等)の量を低減することができる。第一焼成条件における最高温度を600℃以上とすることで、粒成長及び結晶化が促進され、得られる窒化ホウ素粉末の滑り性をより向上させることができ、化粧料原料により好適なものにできる。第一焼成条件における最高温度を1300℃以下とすることで、六方晶窒化ホウ素を形成させることに寄与するB2O3等の酸化物及び焼結助剤等が減少することを抑制し、粒成長及び結晶化を促進することができ、得られる窒化ホウ素粉末の滑り性を向上させることができる。第一焼成条件における最高温度を1300℃以下とすることで、窒化ホウ素粉末の溶出ホウ素量の増加を抑制することができ、化粧料原料により好適なものにできる。The maximum temperature for firing the mixed powder is preferably in the range of 600° C. to 1300° C., more preferably in the range of 800° C. to 1200° C. under the first firing conditions. By setting the maximum temperature in the first firing condition to 600 ° C. or higher, it is possible to promote conversion from the mixed powder to low-crystalline hexagonal boron nitride, and unreacted starting materials in the mixed powder (for example, containing boron compound, etc.) can be reduced. By setting the maximum temperature in the first firing conditions to 600°C or higher, grain growth and crystallization are promoted, and the resulting boron nitride powder can be further improved in slipperiness, making it more suitable as a raw material for cosmetics. . By setting the maximum temperature in the first firing condition to 1300 ° C. or less, it is possible to suppress the reduction of oxides such as B 2 O 3 and sintering aids that contribute to the formation of hexagonal boron nitride, and grains It can promote growth and crystallization, and can improve the lubricity of the resulting boron nitride powder. By setting the maximum temperature under the first firing conditions to 1300° C. or less, it is possible to suppress an increase in the amount of eluted boron in the boron nitride powder, making it more suitable as a cosmetic raw material.
上記低結晶性六方晶窒化ホウ素を焼成するときの最高温度は、第二焼成条件では、好ましくは1600~1900℃の範囲の温度であり、より好ましくは1700~1800℃の範囲の温度である。焼成温度の最高値が1600℃未満であると、低結晶性六方晶窒化ホウ素から六方晶窒化ホウ素への変換が進み難くなるため粒成長や結晶化が抑制され、滑り性の低下、溶出ホウ素量の増加のため化粧料用原料として相応しくない。焼成温度の最高値が1900℃を超えると、六方晶窒化ホウ素の結晶成長が進みすぎ、化粧料原材料として使用した場合に外観のぎらつきが強まるため、実用上好ましくない。 The maximum temperature when firing the low-crystalline hexagonal boron nitride is preferably in the range of 1600 to 1900°C, more preferably in the range of 1700 to 1800°C under the second firing conditions. If the maximum firing temperature is less than 1600° C., the conversion from low-crystalline hexagonal boron nitride to hexagonal boron nitride will be difficult to proceed, and grain growth and crystallization will be suppressed, resulting in a decrease in slipperiness and an amount of eluted boron. It is not suitable as a raw material for cosmetics because of the increase in If the maximum baking temperature exceeds 1900° C., the crystal growth of hexagonal boron nitride proceeds too much, and when used as a raw material for cosmetics, the appearance becomes more glaring, which is not practically preferable.
六方晶窒化ホウ素粉末の焼成温度は一定に保持しても、連続的または不連続的に変化させてもよい。昇温時の昇温速度及び冷却時の冷却速度にも制限はない。 The firing temperature of the hexagonal boron nitride powder may be kept constant or may be changed continuously or discontinuously. There is no limit to the heating rate during heating and the cooling rate during cooling.
第一焼成条件の下では、焼成時間が短すぎると、低結晶六方晶窒化ホウ素への変換が進み難くなり、出発原料(例えば、ホウ素を含む化合物等)の残留量が増加して、結果として、粒成長や結晶化が抑制され得る。そのため、上記混合粉末を焼成する時間(焼成時間)は、好ましくは0.5時間以上であり、より好ましくは1時間以上である。 Under the first firing conditions, if the firing time is too short, the conversion to low-crystal hexagonal boron nitride will be difficult to proceed, and the residual amount of the starting materials (for example, compounds containing boron, etc.) will increase, resulting in , grain growth and crystallization can be suppressed. Therefore, the time for firing the mixed powder (firing time) is preferably 0.5 hours or longer, and more preferably 1 hour or longer.
第二焼成条件の下では、焼成時間が短すぎると焼成が不十分となり、粒成長や結晶化が抑制され得る。そのため、上記低結晶性六方晶窒化ホウ素を焼成する時間は、好ましくは2時間以上であり、より好ましくは4時間以上である。 Under the second firing conditions, if the firing time is too short, the firing will be insufficient, and grain growth and crystallization can be suppressed. Therefore, the time for firing the low-crystalline hexagonal boron nitride is preferably 2 hours or longer, more preferably 4 hours or longer.
上記混合粉末及び低結晶六方晶窒化ホウ素等を収納する容器及び焼成する装置類(例えば、加熱装置等)については特に制限はない。上記容器には、例えば、六方晶窒化ホウ素製の容器を用いることができる。上記加熱装置には、例えば、電気ヒータを用いた焼成炉を用いることができる。 There are no particular restrictions on the container for storing the mixed powder, the low-crystalline hexagonal boron nitride, etc., and the equipment for firing (for example, a heating device, etc.). For the container, for example, a container made of hexagonal boron nitride can be used. As the heating device, for example, a firing furnace using an electric heater can be used.
上述の六方晶ホウ素粉末の製造方法は、混合粉末の調製から混合粉末の焼成が終了するまでの間に、本開示の目的を逸脱しない範囲内で、加熱、冷却、加湿、乾燥、及び洗浄の操作を加える工程を更に有してもよい。 The method for producing the hexagonal boron powder described above includes heating, cooling, humidification, drying, and washing within the scope of the purpose of the present disclosure, from the preparation of the mixed powder to the end of the firing of the mixed powder. You may further have the process of adding operation.
上記第二の窒化ホウ素、及び上記六方晶窒化ホウ素は、一般的にはブロック状の固形物の状態で取り出されるため、これを粉砕する。粉砕することによって、平均粒子径等を調整することができる。例えば、上記第二の窒化ホウ素又は上記六方晶窒化ホウ素を粉砕することによって、36μm以上の一次粒子、又は凝集粒子の含有量を10.0体積%以下に低減させ、平均粒子径が2.5~7.0μmである六方晶窒化ホウ素粉末を得ることができる。粉砕機の一例を挙げれば、グローミル、ジェットミルがある。粉砕機、粉砕条件によっては得られた六方晶窒化ホウ素が微細化してしまい、上述の溶出ホウ素量が20ppmを超えてしまう恐れがある。例えば、上記第二の窒化ホウ素又は上記六方晶窒化ホウ素を粉砕する際に、ジェットミルを用いる場合には、フィード量を多くし、粉砕圧を適度に低い条件とすることができる。上述のような条件設定によって、得られる窒化ホウ素の粉末の平均粒子径を適度なものとし、溶出ホウ素量の上昇を抑制することもできる。また、上述の窒化ホウ素粉末の製造方法等においては、後述する洗浄工程によって溶出ホウ素量の低減が可能である。 Since the second boron nitride and the hexagonal boron nitride are generally taken out in the form of block-shaped solids, they are pulverized. By pulverizing, the average particle size and the like can be adjusted. For example, by pulverizing the second boron nitride or the hexagonal boron nitride, the content of primary particles of 36 μm or more or aggregated particles is reduced to 10.0% by volume or less, and the average particle diameter is 2.5 A hexagonal boron nitride powder that is ˜7.0 μm can be obtained. Examples of pulverizers include glow mills and jet mills. Depending on the pulverizer and the pulverization conditions, the obtained hexagonal boron nitride may become fine, and the amount of eluted boron may exceed 20 ppm. For example, when a jet mill is used to pulverize the second boron nitride or the hexagonal boron nitride, the feed amount can be increased and the pulverization pressure can be set to a moderately low condition. By setting the conditions as described above, the average particle size of the obtained boron nitride powder can be made appropriate, and an increase in the amount of eluted boron can be suppressed. In addition, in the above-described method for producing boron nitride powder, etc., the amount of eluted boron can be reduced by the washing step described later.
粉砕した六方晶窒化ホウ素の粉末中には、六方晶窒化ホウ素以外の不純物や水可溶性ホウ素化合物(以降、まとめて「不純物等」という)が含まれている可能性がある。そのため、洗浄液を用いた洗浄によって不純物等を除去してから固液分離して乾燥し、最終的に本開示の六方晶窒化ホウ素粉末を得ることができる。 The pulverized hexagonal boron nitride powder may contain impurities other than hexagonal boron nitride and water-soluble boron compounds (hereinafter collectively referred to as “impurities, etc.”). Therefore, the hexagonal boron nitride powder of the present disclosure can be finally obtained by removing impurities and the like by washing with a washing liquid, followed by solid-liquid separation and drying.
ここでいう洗浄液とは、酸性物質を含む水溶液、有機溶媒、有機溶媒と水との混合液のいずれかであることが望ましい。酸性物質としては、例えば、塩酸、及び硝酸等の無機酸を挙げることができる。有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール及びアセトン等の水溶性の有機溶媒を好ましく使用することができる。 The cleaning liquid used herein is desirably an aqueous solution containing an acidic substance, an organic solvent, or a mixed liquid of an organic solvent and water. Examples of acidic substances include inorganic acids such as hydrochloric acid and nitric acid. As the organic solvent, for example, water-soluble organic solvents such as methanol, ethanol, propanol, isopropyl alcohol and acetone can be preferably used.
洗浄後の固液分離の希釈液には、不純物の二次的な混入を避ける観点から、電気伝導度が1mS/m以下の水を使用することができる。固液分離の希釈液の使用量は、コスト、及び廃液処理の観点から少ない方がよいが、少なすぎると六方晶窒化ホウ素粉末中に不純物等が残存するため、窒化ホウ素1kgに対しての希釈液量は、例えば、好ましくは300倍以下であり、より好ましくは250倍以下であり、更に好ましくは200倍以下である。 Water having an electric conductivity of 1 mS/m or less can be used as a diluent for solid-liquid separation after washing from the viewpoint of avoiding secondary contamination of impurities. The amount of the diluent used for solid-liquid separation should be small from the viewpoint of cost and waste liquid treatment, but if it is too small, impurities etc. will remain in the hexagonal boron nitride powder, so dilution per 1 kg of boron nitride The liquid volume is, for example, preferably 300 times or less, more preferably 250 times or less, and still more preferably 200 times or less.
洗浄終了後、固液分離してから乾燥する場合、固液分離の方法にも特に限定はなく、例えば、デカンテーション、吸引ろ過機、加圧ろ過機、回転式ろ過機、沈降分離機又はそれらの組み合わせた装置を用いることができる。 When drying is performed after solid-liquid separation after washing, the method of solid-liquid separation is not particularly limited. can be used.
固液分離後の六方晶窒化ホウ素粉末の乾燥方法にも特に制限はない。使用できる乾燥装置の一例を示せば、棚式乾燥機、流動層乾燥機、噴霧乾燥機、回転型乾燥機、ベルト式乾燥機又はそれらの組み合わせである。乾燥機内の雰囲気温度は、好ましくは30~300℃であり、より好ましくは30~200℃である。 There is no particular limitation on the drying method of the hexagonal boron nitride powder after solid-liquid separation. Examples of drying equipment that can be used are tray dryers, fluid bed dryers, spray dryers, rotary dryers, belt dryers, or combinations thereof. The ambient temperature in the dryer is preferably 30 to 300°C, more preferably 30 to 200°C.
洗浄、固液分離、及び乾燥は、それぞれ1回ずつ実施してもよいし、同じ方法又は異なる方法を組み合わせて複数回ずつ実施しても構わない。 Washing, solid-liquid separation, and drying may each be performed once, or may be performed multiple times by combining the same method or different methods.
<窒化ホウ素粉末を含有する化粧料、六方晶窒化ホウ素粉末を含有する化粧料>
上述の窒化ホウ素粉末及び六方晶窒化ホウ素粉末は、化粧料用に好適であり、化粧料原料に用いることができる。化粧料の一実施形態は、上述の窒化ホウ素粉末を含有する。<Cosmetics Containing Boron Nitride Powder, Cosmetics Containing Hexagonal Boron Nitride Powder>
The above-described boron nitride powder and hexagonal boron nitride powder are suitable for cosmetics and can be used as raw materials for cosmetics. One embodiment of the cosmetic contains the boron nitride powder described above.
本開示は別の一側面において、上述の六方晶窒化ホウ素粉末を含有する化粧料である。化粧料の一例を示せば、ファンデーション(パウダーファンデーション、リキッドファンデーション、クリームファンデーション)、フェイスパウダー、ポイントメイク、アイシャドー、アイライナー、マニュキュア、口紅、頬紅、及びマスカラ等が挙げられる。本開示の化粧料は、上述の化粧料中でも、ファンデーション、及びアイシャドーに特に良く適合する。 Another aspect of the present disclosure is a cosmetic containing the hexagonal boron nitride powder described above. Examples of cosmetics include foundation (powder foundation, liquid foundation, cream foundation), face powder, point makeup, eye shadow, eyeliner, nail polish, lipstick, blush, and mascara. The cosmetic of the present disclosure is particularly well suited for foundation and eye shadow among the above cosmetics.
化粧料における上述の窒化ホウ素粉末の含有量は、例えば、化粧料全量を基準として、0.1~70質量%であってよい。上述の六方晶窒化ホウ素粉末の化粧料への好適な配合割合量は、0.1~70質量%である。 The content of the boron nitride powder in the cosmetic may be, for example, 0.1 to 70% by mass based on the total amount of the cosmetic. A suitable blending ratio of the hexagonal boron nitride powder described above to the cosmetic is 0.1 to 70% by mass.
以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。 Although several embodiments have been described above, the present disclosure is not limited to the above embodiments. Also, the descriptions of the above-described embodiments can be applied to each other.
以下、本開示を実施例、及び比較例を挙げて更に具体的に説明する。また、実施例のまとめを表1に、比較例を表2に示す。ただし、本開示は、下記の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically with reference to examples and comparative examples. Table 1 shows a summary of the examples, and Table 2 shows the comparative examples. However, the present disclosure is not limited to the following examples.
<実施例1>
出発原料として、ホウ酸粉末(関東化学株式会社製、純度:99.8質量%以上)200g、及びメラミン粉末(富士フイルム和光純薬株式会社製、純度:99.0質量%以上)180gをそれぞれ秤量し、アルミナ製乳鉢を用いて10分間混合した。作製した粉末混合物(混合粉末)を恒温恒湿機(ADVANTEC社製、商品名:AGX-225)に入れ、温度:80℃、相対湿度:95%で1時間加湿し、その後、120℃で1時間乾燥した。<Example 1>
As starting materials, 200 g of boric acid powder (manufactured by Kanto Chemical Co., Ltd., purity: 99.8% by mass or more) and 180 g of melamine powder (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity: 99.0% by mass or more) were used. It was weighed and mixed for 10 minutes using an alumina mortar. Put the prepared powder mixture (mixed powder) in a thermo-hygrostat (manufactured by ADVANTEC, trade name: AGX-225), humidify at temperature: 80 ° C., relative humidity: 95% for 1 hour, then at 120 ° C. for 1 hour. Time dried.
上記乾燥後の粉末混合物を六方晶窒化ホウ素製の容器(内容積:1.4L)に入れ、当該容器を、炉室内容積が16Lである電気炉(東海高熱工業株式会社製、商品名:TV-200)内に配置した。そして、炉室内へ窒素ガスを16L/分(25℃における体積)の流量で供給しながら、10℃/分の昇温速度で室温から昇温し、1000℃で2時間保持した。その後、加熱を止めて自然冷却させ、炉室内の温度が100℃以下まで下がった時点で電気炉を開放して、低結晶性窒化ホウ素(粉砕前)を回収した。 The powder mixture after drying is placed in a hexagonal boron nitride container (inner volume: 1.4 L), and the container is placed in an electric furnace with a furnace interior volume of 16 L (manufactured by Tokai Konetsu Kogyo Co., Ltd., product name: TV -200). Then, while supplying nitrogen gas into the furnace chamber at a flow rate of 16 L/min (volume at 25° C.), the temperature was raised from room temperature at a rate of 10° C./min and held at 1000° C. for 2 hours. After that, the heating was stopped and the mixture was allowed to cool naturally. When the temperature in the furnace chamber dropped to 100° C. or less, the electric furnace was opened to collect the low-crystalline boron nitride (before pulverization).
得られた低結晶性六方晶窒化ホウ素の粉末100質量部に対して、炭酸ナトリウム(富士フイルム和光純薬株式会社製、純度:99.5質量%以上)10質量部を配合してアルミナ製乳鉢を用いて10分間混合し、さらに上述の電気炉内に配置した。そして、炉室内への窒素ガスを16L/分(25℃における体積)の流量で供給しながら、10℃/分の昇温速度で昇温し、焼成温度の最高値である1750℃まで到達させてから4時間温度を保持した(焼成工程)。その後、加熱を止めて自然冷却させ、温度が100℃以下まで下がった時点で電気炉を開放して、六方晶窒化ホウ素(粉砕前)を回収した。 10 parts by mass of sodium carbonate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 99.5% by mass or more) is blended with 100 parts by mass of the obtained low-crystalline hexagonal boron nitride powder, and an alumina mortar is added. was mixed for 10 minutes and then placed in the electric furnace described above. Then, while supplying nitrogen gas into the furnace chamber at a flow rate of 16 L/min (volume at 25°C), the temperature was raised at a rate of 10°C/min to reach the maximum firing temperature of 1750°C. After that, the temperature was maintained for 4 hours (firing step). After that, the heating was stopped and the mixture was allowed to cool naturally. When the temperature dropped to 100° C. or less, the electric furnace was opened to recover the hexagonal boron nitride (before pulverization).
得られた六方晶窒化ホウ素(粉砕前)をジェットミル(株式会社セイシン企業製、商品名:STJ-200)で粉砕し、六方晶窒化ホウ素の粉末を得た。ジェットミルは、10kg/時間のフィード量で六方晶窒化ホウ素をミル内に供給し、0.7MPaの粉砕圧で処理を行い、バグフィルターから粉砕した六方晶窒化ホウ素粉末を回収した。 The obtained hexagonal boron nitride (before pulverization) was pulverized with a jet mill (manufactured by Seishin Enterprise Co., Ltd., trade name: STJ-200) to obtain hexagonal boron nitride powder. In the jet mill, hexagonal boron nitride was supplied into the mill at a feed rate of 10 kg/hour, the treatment was performed at a pulverization pressure of 0.7 MPa, and pulverized hexagonal boron nitride powder was recovered from the bag filter.
上述のように粉砕して得られた六方晶窒化ホウ素の粉末中に含まれる不純物等を除くため、六方晶窒化ホウ素40kgに対して、67質量%希硝酸を20L、水を390Lの割合で混合し、室温で60分間、攪拌し洗浄した。その後、連続加圧ろ過装置(株式会社広島メタル&マシナリー製、商品名:RF-2.5)によって固液分離し、完全に固液分離が完了する前に、六方晶窒化ホウ素1kgに対して275倍の水を更に加えて希釈した。その後、固液分離を完了させた。固液分離した後の粉末は、乾燥機によって、170℃で12時間乾燥し、実施例1の六方晶窒化ホウ素粉末(窒化ホウ素粉末)を得た。 In order to remove impurities contained in the hexagonal boron nitride powder obtained by pulverization as described above, 20 L of 67% by mass diluted nitric acid and 390 L of water are mixed with 40 kg of hexagonal boron nitride. and washed with agitation for 60 minutes at room temperature. After that, solid-liquid separation is performed by a continuous pressure filtration device (manufactured by Hiroshima Metal & Machinery Co., Ltd., product name: RF-2.5), and before the solid-liquid separation is completely completed, per 1 kg of hexagonal boron nitride An additional 275 times of water was added for dilution. Solid-liquid separation was then completed. The powder after solid-liquid separation was dried at 170° C. for 12 hours in a dryer to obtain hexagonal boron nitride powder (boron nitride powder) of Example 1.
<実施例2~5、比較例1>
ジェットミルのフィード量及び粉砕圧を、表1及び表2に記載のフィード量及び粉砕圧に変更したこと以外は実施例1と同様にして、実施例2~5、及び比較例1の六方晶窒化ホウ素粉末を作製した。<Examples 2 to 5, Comparative Example 1>
Hexagonal crystals of Examples 2 to 5 and Comparative Example 1 were prepared in the same manner as in Example 1 except that the feed amount and pulverization pressure of the jet mill were changed to the feed amounts and pulverization pressures shown in Tables 1 and 2. A boron nitride powder was produced.
<実施例6~7、比較例2~3>
低結晶性六方晶窒化ホウ素100質量部に対する焼結助剤の質量割合を表1及び表2に記載の割合に変更(焼結助剤の含有量を変更)したこと以外は実施例1と同様にして、実施例6~7、及び比較例2~3の六方晶窒化ホウ素粉末を作製した。<Examples 6-7, Comparative Examples 2-3>
Same as Example 1 except that the mass ratio of the sintering aid to 100 parts by mass of the low-crystalline hexagonal boron nitride was changed to the ratio shown in Tables 1 and 2 (the content of the sintering aid was changed). Then, hexagonal boron nitride powders of Examples 6-7 and Comparative Examples 2-3 were produced.
<実施例8~9、比較例4~5>
焼成温度の最高値を1750℃から、表1及び表2に記載の温度に変更したこと以外は実施例1と同様にして、実施例8~9、及び比較例4~5の六方晶窒化ホウ素粉末を作製した。<Examples 8-9, Comparative Examples 4-5>
Hexagonal boron nitride of Examples 8 and 9 and Comparative Examples 4 and 5 in the same manner as in Example 1 except that the maximum firing temperature was changed from 1750 ° C. to the temperatures shown in Tables 1 and 2. A powder was produced.
<実施例10~11、比較例6~7>
粉砕条件又は洗浄条件を表1及び表2に記載の条件に変更したこと以外は実施例1と同様にして、実施例10~11、及び比較例6~7の六方晶窒化ホウ素粉末を作製した。<Examples 10-11, Comparative Examples 6-7>
Hexagonal boron nitride powders of Examples 10 to 11 and Comparative Examples 6 to 7 were prepared in the same manner as in Example 1 except that the grinding conditions or washing conditions were changed to the conditions shown in Tables 1 and 2. .
実施例10では、粉砕して得られた六方晶窒化ホウ素40kgに対して、エタノールを10L、水を390Lの割合で混合し、室温で60分間、攪拌し洗浄した後、連続加圧ろ過装置によって固液分離し、六方晶窒化ホウ素1kgに対し275倍の水で希釈し、さらに洗浄した。洗浄し、固液分離した後の粉末を70℃で12時間乾燥して、六方晶窒化ホウ素粉末を得た。 In Example 10, 40 kg of hexagonal boron nitride obtained by pulverization was mixed with 10 L of ethanol and 390 L of water. It was subjected to solid-liquid separation, diluted with 275 times as much water as 1 kg of hexagonal boron nitride, and washed. The powder after washing and solid-liquid separation was dried at 70° C. for 12 hours to obtain hexagonal boron nitride powder.
実施例11では、粉砕装置としてグローミル(株式会社セイシン企業製、商品名:STJ-200)を用いて、間隙:5μm、回転数:1200rpmの条件で、六方晶窒化ホウ素(粉砕前)を粉砕し、実施例1と同様にして洗浄、及び乾燥して六方晶窒化ホウ素粉末を得た。 In Example 11, Glow Mill (manufactured by Seishin Enterprise Co., Ltd., trade name: STJ-200) was used as a pulverizer under conditions of a gap of 5 μm and a rotation speed of 1200 rpm to pulverize hexagonal boron nitride (before pulverization). , washed and dried in the same manner as in Example 1 to obtain a hexagonal boron nitride powder.
比較例7では、六方晶窒化ホウ素(粉砕前)40kgに対して、水を390Lの割合で混合し、室温で60分間、攪拌し洗浄した。その後、連続加圧ろ過装置によって固液分離し、六方晶窒化ホウ素1kgに対して、275倍の水を加えて希釈し、さらに洗浄した。洗浄し、固液分離した後の粉末を70℃で12時間乾燥して、六方晶窒化ホウ素粉末を得た。 In Comparative Example 7, 40 kg of hexagonal boron nitride (before pulverization) was mixed with 390 L of water, and the mixture was stirred and washed at room temperature for 60 minutes. After that, solid-liquid separation was performed by a continuous pressurized filtration device, and 275 times as much water was added to 1 kg of hexagonal boron nitride to dilute and further washed. The powder after washing and solid-liquid separation was dried at 70° C. for 12 hours to obtain hexagonal boron nitride powder.
<六方晶窒化ホウ素粉末(窒化ホウ素粉末)の平均粒子径、36μm以上の粒子の含有量、比表面積、及び一次粒子のアスペクト比の測定>
実施例1~11及び比較例1~7で得られた六方晶窒化ホウ素粉末について、平均粒子径、36μm以上の粒子の含有量(表1及び表2では「36μm以上の粒子量」と記載)、比表面積、及び一次粒子のアスペクト比(表1及び表2では「アスペクト比」と記載)の測定を行った。<Measurement of Average Particle Size of Hexagonal Boron Nitride Powder (Boron Nitride Powder), Content of Particles of 36 μm or More, Specific Surface Area, and Aspect Ratio of Primary Particles>
Regarding the hexagonal boron nitride powders obtained in Examples 1 to 11 and Comparative Examples 1 to 7, the content of particles having an average particle diameter of 36 μm or more (described in Tables 1 and 2 as “amount of particles of 36 μm or more”) , specific surface area, and aspect ratio of primary particles (described as “aspect ratio” in Tables 1 and 2) were measured.
<六方晶窒化ホウ素粉末(窒化ホウ素粉末)の評価>
実施例1~11及び比較例1~7で得られた六方晶窒化ホウ素粉末について、溶出ホウ素量、MIU(平均摩擦係数)及びMMD(平均摩擦係数の変動)の評価を行った。結果を表1及び表2に示す。<Evaluation of hexagonal boron nitride powder (boron nitride powder)>
The hexagonal boron nitride powders obtained in Examples 1 to 11 and Comparative Examples 1 to 7 were evaluated for the amount of eluted boron, MIU (average friction coefficient) and MMD (variation in average friction coefficient). The results are shown in Tables 1 and 2.
本開示によれば、従来に比べて化粧料として必要な加圧力範囲において「しっとり」や「ぬめり」といった触感に優れた六方晶窒化ホウ素粉末、及び該六方晶窒化ホウ素粉末を含む化粧料を提供し得る。本開示の窒化ホウ素粉末は、ファンデーション、アイシャドー等の化粧料の原料として好適に用いられる。 According to the present disclosure, there is provided a hexagonal boron nitride powder that is superior in tactile sensation such as “moist” and “slimy” in the range of pressure required as a cosmetic compared to the past, and a cosmetic containing the hexagonal boron nitride powder. can. The boron nitride powder of the present disclosure is suitably used as a raw material for cosmetics such as foundations and eye shadows.
Claims (8)
溶出ホウ素量が1gあたり20ppm以下であり、
前記一次粒子のアスペクト比が8~23であり、
平均粒子径が2.5~7.0μmであり、
36μm以上の粒子径を有する前記粒子の含有量が10.0体積%以下である、六方晶窒化ホウ素粉末。 At least one particle of primary particles and aggregated particles of primary particles,
The amount of eluted boron is 20 ppm or less per 1 g,
The primary particles have an aspect ratio of 8 to 23,
an average particle size of 2.5 to 7.0 μm,
A hexagonal boron nitride powder, wherein the content of the particles having a particle diameter of 36 μm or more is 10.0% by volume or less.
前記第二の窒化ホウ素を粉砕して粉砕物を得る工程と、
有機溶媒、酸性物質を含有する水溶液、及び有機溶媒を含有する水溶液からなる群から選択される少なくとも1種によって、前記粉砕物を洗浄して六方晶窒化ホウ素粉末を得る工程と、を有し、
前記焼結助剤の含有量が、前記原料粉末中の前記第一の窒化ホウ素100質量部に対して、0.9~20質量部であり、
前記六方晶窒化ホウ素粉末は、一次粒子及び一次粒子の凝集粒子の少なくとも一方の粒子を含み、平均粒子径が2.5~7.0μmであり、かつ36μm以上の粒子径を有する前記粒子の含有量が10.0体積%以下である、化粧料用の六方晶窒化ホウ素粉末の製造方法。 obtaining a second boron nitride having a higher degree of crystallinity than the first boron nitride by firing a raw material powder containing the first boron nitride and a sintering aid under conditions of 1600 to 1900° C.;
pulverizing the second boron nitride to obtain a pulverized product;
obtaining hexagonal boron nitride powder by washing the pulverized material with at least one selected from the group consisting of an organic solvent, an aqueous solution containing an acidic substance, and an aqueous solution containing an organic solvent;
The content of the sintering aid is 0.9 to 20 parts by mass with respect to 100 parts by mass of the first boron nitride in the raw material powder,
The hexagonal boron nitride powder contains at least one of primary particles and agglomerated primary particles, has an average particle size of 2.5 to 7.0 μm, and contains the particles having a particle size of 36 μm or more. A method for producing hexagonal boron nitride powder for cosmetics , wherein the amount is 10.0% by volume or less .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018042537 | 2018-03-09 | ||
JP2018042537 | 2018-03-09 | ||
PCT/JP2019/009450 WO2019172440A1 (en) | 2018-03-09 | 2019-03-08 | Boron nitride powder, method for producing boron nitride powder, and cosmetic |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019172440A1 JPWO2019172440A1 (en) | 2021-03-11 |
JP7204732B2 true JP7204732B2 (en) | 2023-01-16 |
Family
ID=67845719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020504066A Active JP7204732B2 (en) | 2018-03-09 | 2019-03-08 | Hexagonal boron nitride powder, method for producing hexagonal boron nitride powder for cosmetics, and cosmetics |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7204732B2 (en) |
KR (1) | KR102662015B1 (en) |
WO (1) | WO2019172440A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022059578A1 (en) * | 2020-09-18 | 2022-03-24 | ||
EP4349774A1 (en) | 2021-06-02 | 2024-04-10 | Tokuyama Corporation | Hexagonal boron nitride powder |
EP4455077A1 (en) | 2021-12-21 | 2024-10-30 | Tokuyama Corporation | Hexagonal boron nitride powder and method for producing same |
JPWO2023182380A1 (en) * | 2022-03-25 | 2023-09-28 | ||
CN118900821A (en) | 2022-04-26 | 2024-11-05 | 株式会社德山 | Hexagonal boron nitride powder and method for producing same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014049956A1 (en) | 2012-09-28 | 2014-04-03 | 水島合金鉄株式会社 | Highly water-repellent and highly oil-absorbent boron nitride powder, production method therefor, and cosmetic |
JP2017165609A (en) | 2016-03-15 | 2017-09-21 | デンカ株式会社 | Primary particle aggregate of hexagonal boron nitride, resin composition and application of the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0764704B2 (en) | 1986-07-29 | 1995-07-12 | 株式会社資生堂 | Cosmetics |
JPH0653564B2 (en) * | 1987-04-30 | 1994-07-20 | 川崎製鉄株式会社 | Method for purifying hexagonal boron nitride |
JPH09263402A (en) * | 1996-03-29 | 1997-10-07 | Mitsui Toatsu Chem Inc | Production of hexagonal boron nitride powder |
JPH09295801A (en) * | 1996-04-26 | 1997-11-18 | Mitsui Toatsu Chem Inc | Production of hexagonal boron nitride powder |
JP6297848B2 (en) | 2014-01-30 | 2018-03-20 | 水島合金鉄株式会社 | Hexagonal boron nitride powder for cosmetics and cosmetics |
-
2019
- 2019-03-08 WO PCT/JP2019/009450 patent/WO2019172440A1/en active Application Filing
- 2019-03-08 JP JP2020504066A patent/JP7204732B2/en active Active
- 2019-03-08 KR KR1020207016122A patent/KR102662015B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014049956A1 (en) | 2012-09-28 | 2014-04-03 | 水島合金鉄株式会社 | Highly water-repellent and highly oil-absorbent boron nitride powder, production method therefor, and cosmetic |
JP2017165609A (en) | 2016-03-15 | 2017-09-21 | デンカ株式会社 | Primary particle aggregate of hexagonal boron nitride, resin composition and application of the same |
Also Published As
Publication number | Publication date |
---|---|
KR102662015B1 (en) | 2024-04-29 |
KR20200127972A (en) | 2020-11-11 |
JPWO2019172440A1 (en) | 2021-03-11 |
WO2019172440A1 (en) | 2019-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7204732B2 (en) | Hexagonal boron nitride powder, method for producing hexagonal boron nitride powder for cosmetics, and cosmetics | |
JP6745293B2 (en) | Hexagonal boron nitride powder, method for producing the same, and cosmetics | |
JP6734239B2 (en) | Hexagonal boron nitride powder and cosmetics | |
JP7002196B2 (en) | Hexagonal boron nitride powder and cosmetics | |
JP5637075B2 (en) | Method for producing nanocomposite material | |
US20240197582A1 (en) | Hexagonal boron nitride powder for cosmetics, and cosmetic | |
JP7372142B2 (en) | Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method | |
JP6279638B2 (en) | Hexagonal boron nitride powder, method for producing the same, and cosmetics | |
WO2022264335A1 (en) | Hexagonal boron nitride powder and method for producing same, and cosmetic and method for producing same | |
JP2021116205A (en) | Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same | |
JP7431577B2 (en) | Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method | |
JP2004182554A (en) | Zirconia powder | |
JP7372140B2 (en) | Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method | |
JP7429532B2 (en) | Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method | |
KR20240021269A (en) | Hexagonal boron nitride powder and manufacturing method thereof, and cosmetics and manufacturing method thereof | |
JP2021102539A (en) | Hexagonal boron nitride powder and method for producing the same, and cosmetic and method for producing the same | |
WO2022264327A1 (en) | Hexagonal boron nitride powder and method for producing same, and cosmetics and method for manufacturing same | |
US20240279061A1 (en) | Hexagonal boron nitride powder and method for producing same, and cosmetic preparation and method for producing same | |
JP2006298711A (en) | ZrO2 SINTERED COMPACT AND ITS MANUFACTURING METHOD, MEMBER OF CRUSHER, AND CRUSHER | |
JP7418668B1 (en) | Hexagonal boron nitride powder and its manufacturing method | |
JP7372143B2 (en) | Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method | |
EP4455077A1 (en) | Hexagonal boron nitride powder and method for producing same | |
Yokota et al. | Influence of starting particle size of alumina powder prepared by grinding on the size of platelike grain in the respective sintered bodies | |
Tan et al. | Effect of ZnO addition on the purity and densification of forsterite ceramic | |
JP2023148684A (en) | Hexagonal boron nitride powder and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220913 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7204732 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |