JP7372140B2 - Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method - Google Patents

Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method Download PDF

Info

Publication number
JP7372140B2
JP7372140B2 JP2019234698A JP2019234698A JP7372140B2 JP 7372140 B2 JP7372140 B2 JP 7372140B2 JP 2019234698 A JP2019234698 A JP 2019234698A JP 2019234698 A JP2019234698 A JP 2019234698A JP 7372140 B2 JP7372140 B2 JP 7372140B2
Authority
JP
Japan
Prior art keywords
boron nitride
hexagonal boron
powder
nitride powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019234698A
Other languages
Japanese (ja)
Other versions
JP2021102538A (en
Inventor
隆貴 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2019234698A priority Critical patent/JP7372140B2/en
Publication of JP2021102538A publication Critical patent/JP2021102538A/en
Application granted granted Critical
Publication of JP7372140B2 publication Critical patent/JP7372140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)

Description

本開示は、六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法に関する。 The present disclosure relates to a hexagonal boron nitride powder and a method for producing the same, and a cosmetic and a method for producing the same.

窒化ホウ素は、潤滑性、高熱伝導性、及び絶縁性等を有しており、固体潤滑剤、離型剤、樹脂及びゴムの充填材、化粧料(化粧品ともいう)の原料、並びに耐熱性を有する絶縁性焼結体等、幅広い用途に利用されている。 Boron nitride has lubricity, high thermal conductivity, and insulation properties, and is used as a solid lubricant, mold release agent, resin and rubber filler, raw material for cosmetics (also referred to as cosmetics), and has heat resistance. It is used in a wide range of applications, such as insulating sintered bodies.

化粧料に配合される六方晶窒化ホウ素粉末の機能としては、化粧料への滑り性、伸び性、隠ぺい性の向上、及び、光沢性の付与等が挙げられる。特に、六方晶窒化ホウ素粉末は、同様の機能を有するタルク粉末及びマイカ粉末に比べて滑り性に優れているため、優れた滑り性が求められる化粧料に汎用されている。特許文献1では、六方晶窒化ホウ素粉末の滑り性を改善するために、平均粒子径と最大粒子径を所定の数値範囲にすることが提案されている。 Functions of the hexagonal boron nitride powder blended into cosmetics include improving slipperiness, spreadability, and concealment properties of cosmetics, and imparting glossiness to the cosmetics. In particular, hexagonal boron nitride powder has superior slip properties compared to talc powder and mica powder, which have similar functions, and is therefore widely used in cosmetics that require excellent slip properties. In Patent Document 1, in order to improve the slipperiness of hexagonal boron nitride powder, it is proposed to set the average particle diameter and the maximum particle diameter within a predetermined numerical range.

特開2018-165241号公報JP2018-165241A

化粧料に対する顧客の要求レベルの高水準化に対応するため、化粧料に用いられる原料特性もさらなる向上が求められている。例えば、ファンデーション等に用いられる原料は、一層優れた伸び性を有することが必要であると考えられる。伸び性を改善するためには、粉末をある程度嵩高くすることが有効であると考えられる。 In order to meet the increasingly high level of customer demands for cosmetics, there is a need for further improvements in the properties of raw materials used in cosmetics. For example, it is thought that raw materials used for foundations and the like need to have even better elongation properties. In order to improve extensibility, it is considered effective to make the powder bulky to some extent.

本開示では、伸び性に優れる化粧料を製造することが可能な六方晶窒化ホウ素粉末及びその製造方法を提供する。また、本開示では、上述の六方晶窒化ホウ素粉末を用いることによって伸び性に優れる化粧料及びその製造方法を提供する。 The present disclosure provides a hexagonal boron nitride powder and a method for producing the same that can produce cosmetics with excellent extensibility. Further, the present disclosure provides a cosmetic that has excellent extensibility by using the above-described hexagonal boron nitride powder, and a method for producing the same.

本開示の一側面に係る六方晶窒化ホウ素粉末は、六方晶窒化ホウ素の一次粒子が凝集して形成される二次粒子を含み、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上である。 The hexagonal boron nitride powder according to one aspect of the present disclosure includes secondary particles formed by agglomeration of primary particles of hexagonal boron nitride, and has a cumulative volume-based particle diameter measured by a laser diffraction/scattering method. In the distribution, when the particle diameter when the integrated value from small particle diameters reaches 50% of the total is D50, the ratio of D50 to the BET specific surface area is 5 [μg/m] or more.

上記六方晶窒化ホウ素粉末におけるBET比表面積は、主として六方晶窒化ホウ素粉末の一次粒子の粒径に依存する。一方、D50は、主として当該一次粒子が凝集して形成される二次粒子の粒径に依存する。したがって、BET比表面積に対するD50の比は、一次粒子に対する二次粒子の大きさ及び上記六方晶窒化ホウ素粉末全体に対する二次粒子の割合と相関があるといえる。上記六方晶窒化ホウ素粉末は、上記比が5[μg/m]以上であるため、一次粒子が凝集して構成される二次粒子の割合、及び/又は、一次粒子に対する二次粒子のサイズを大きくすることができる。二次粒子は、一次粒子に比べて粒子内の空隙が大きい。したがって、このような二次粒子を含む六方晶窒化ホウ素粉末は嵩高くなり、ふわふわとした外観を有する。このような六方晶窒化ホウ素粉末を塗り伸ばすと、凝集していた二次粒子が破壊されながら塗り伸ばされる。このため、伸び性に優れる。このような六方晶窒化ホウ素粉末は、化粧料の原料用として好適である。 The BET specific surface area of the hexagonal boron nitride powder mainly depends on the particle size of the primary particles of the hexagonal boron nitride powder. On the other hand, D50 mainly depends on the particle size of secondary particles formed by agglomeration of the primary particles. Therefore, it can be said that the ratio of D50 to the BET specific surface area is correlated with the size of the secondary particles relative to the primary particles and the ratio of the secondary particles to the entire hexagonal boron nitride powder. Since the hexagonal boron nitride powder has the above ratio of 5 [μg/m] or more, the ratio of secondary particles composed of agglomerated primary particles and/or the size of secondary particles to primary particles is Can be made larger. Secondary particles have larger voids within the particles than primary particles. Therefore, hexagonal boron nitride powder containing such secondary particles becomes bulky and has a fluffy appearance. When such hexagonal boron nitride powder is spread, the agglomerated secondary particles are destroyed and spread. Therefore, it has excellent elongation properties. Such hexagonal boron nitride powder is suitable for use as a raw material for cosmetics.

上記六方晶窒化ホウ素粉末のBET比表面積は3[m/g]未満であってよい。これによって、一次粒子の粒径が大きくなり、滑り性を十分に高くすることができる。 The BET specific surface area of the hexagonal boron nitride powder may be less than 3 [m 2 /g]. This increases the particle size of the primary particles and makes it possible to sufficiently increase slipperiness.

上記六方晶窒化ホウ素粉末のD50は12μm以上であってよい。このような六方晶窒化ホウ素粉末は、一層優れた伸び性を有する。 The D50 of the hexagonal boron nitride powder may be 12 μm or more. Such hexagonal boron nitride powder has better elongation properties.

上記六方晶窒化ホウ素粉末は、化粧料の原料用であってよい。上記六方晶窒化ホウ素粉末は、伸び性に優れることから、化粧料の原料用に好適である。 The hexagonal boron nitride powder may be used as a raw material for cosmetics. The hexagonal boron nitride powder has excellent elongation properties and is therefore suitable for use as a raw material for cosmetics.

本開示の一側面に係る六方晶窒化ホウ素粉末の製造方法は、六方晶窒化ホウ素と助剤とを含む混合粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1600℃以上且つ1900℃未満で焼成して、混合粉末における六方晶窒化ホウ素よりも高い結晶性を有する六方晶窒化ホウ素を含む焼成物を得る焼成工程と、焼成物を粉砕、洗浄、及び乾燥し、乾燥粉末を得る精製工程と、乾燥粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1900~2100℃でアニールするアニール工程と、を有し、アニール工程では、乾燥粉末を5℃/分以上の昇温速度で昇温し、且つ1900~2100℃に加熱する時間が2時間以下である。 A method for producing hexagonal boron nitride powder according to one aspect of the present disclosure includes heating a mixed powder containing hexagonal boron nitride and an auxiliary agent at 1600° C. or higher in an atmosphere of an inert gas, ammonia gas, or a mixed gas thereof. A firing step of firing at a temperature of less than 1900°C to obtain a fired product containing hexagonal boron nitride having higher crystallinity than hexagonal boron nitride in the mixed powder, and pulverizing, washing, and drying the fired product to obtain a dry powder. and an annealing step of annealing the dry powder at 1,900 to 2,100°C in an atmosphere of inert gas, ammonia gas, or a mixture thereof. In the annealing step, the dry powder is heated at 5°C/min. The time to raise the temperature at the above temperature increase rate and to heat it to 1900 to 2100°C is 2 hours or less.

上記製造方法では、助剤を用いて1700℃以上且つ1900℃未満の温度で焼成することによって、結晶性の高い六方晶窒化ホウ素を含む焼成物を得ることができる。この焼成物を粉砕後、洗浄することによって、残存する助剤等が低減され、その後のアニール時の粒成長を抑制できる。そして、乾燥後、既に結晶化した六方晶窒化ホウ素を含む焼成物を所定条件でアニールをしていることから、六方晶窒化ホウ素の一次粒子の粒成長を抑制しつつ、一次粒子を凝集させて二次粒子の形成を促進することができる。したがって、二次粒子の割合、及び/又は、一次粒子に対する二次粒子のサイズを大きくすることができる。 In the above manufacturing method, a fired product containing highly crystalline hexagonal boron nitride can be obtained by firing at a temperature of 1700° C. or higher and lower than 1900° C. using an auxiliary agent. By washing the fired product after pulverizing it, residual auxiliary agents and the like can be reduced and grain growth during subsequent annealing can be suppressed. After drying, the fired product containing already crystallized hexagonal boron nitride is annealed under predetermined conditions, which allows the primary particles to aggregate while suppressing the grain growth of the hexagonal boron nitride primary particles. Formation of secondary particles can be promoted. Therefore, the ratio of secondary particles and/or the size of secondary particles to primary particles can be increased.

二次粒子は、一次粒子に比べて粒子内の空隙が大きい。したがって、このような二次粒子を含む六方晶窒化ホウ素粉末は嵩高くなり、ふわふわとした外観を有する。このような六方晶窒化ホウ素粉末を塗り伸ばすと、凝集していた二次粒子が破壊されながら塗り伸ばされる。したがって、上記製造方法によれば、伸び性に優れる六方晶窒化ホウ素粉末を製造することができる。この六方晶窒化ホウ素粉末は化粧料の原料用として好適である。 Secondary particles have larger voids within the particles than primary particles. Therefore, hexagonal boron nitride powder containing such secondary particles becomes bulky and has a fluffy appearance. When such hexagonal boron nitride powder is spread, the agglomerated secondary particles are destroyed and spread. Therefore, according to the above manufacturing method, hexagonal boron nitride powder having excellent elongation properties can be manufactured. This hexagonal boron nitride powder is suitable as a raw material for cosmetics.

上記製造方法は、焼成工程の前に、ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、600~1300℃で焼成して、低結晶性の六方晶窒化ホウ素を含む仮焼物を得る仮焼工程を有してよい。そして、焼成工程における混合粉末は仮焼物と助剤とを含んでよい。このように、焼成工程よりも低い温度で仮焼を行うことによって、粒成長が抑制され、伸び性の向上に寄与する二次粒子を形成し易い一次粒子が得られやすくなる。 In the above manufacturing method, before the firing step, raw material powder containing powder of a compound containing boron and powder of a compound containing nitrogen is heated at 600 to 1300°C in an atmosphere of inert gas, ammonia gas, or a mixed gas thereof. The method may include a calcination step of obtaining a calcined product containing hexagonal boron nitride with low crystallinity. The mixed powder in the firing process may include a calcined product and an auxiliary agent. In this way, by performing the calcination at a temperature lower than that of the calcination step, grain growth is suppressed, and primary particles that are likely to form secondary particles that contribute to improved elongation are easily obtained.

上記製造方法のアニール工程で得られる六方晶窒化ホウ素粉末は、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上であってよい。 The hexagonal boron nitride powder obtained in the annealing process of the above manufacturing method has a cumulative distribution of volume-based particle diameters measured by laser diffraction/scattering method, in which the cumulative value from small particle diameters reaches 50% of the total. When the particle diameter is D50, the ratio of D50 to the BET specific surface area may be 5 [μg/m] or more.

本開示の一側面に係る化粧料は、上述の六方晶窒化ホウ素粉末を含む。上述の六方晶窒化ホウ素粉末は、塗り伸ばしたときに優れた伸び性を有する。このため、このような六方晶窒化ホウ素粉末を含む化粧料は、優れた伸び性を有する。 A cosmetic according to one aspect of the present disclosure includes the hexagonal boron nitride powder described above. The hexagonal boron nitride powder described above has excellent elongation properties when spread. Therefore, cosmetics containing such hexagonal boron nitride powder have excellent elongation properties.

本開示の一側面に係る化粧料の製造方法は、上述のいずれかの製造方法で得られる六方晶窒化ホウ素粉末を原料として用いて化粧料を製造する。上述の製造方法で得られる六方晶窒化ホウ素粉末は、塗り伸ばしたときに優れた伸び性を有する。このため、このような六方晶窒化ホウ素粉末を原料として用いて製造された化粧料は、優れた伸び性を有する。 A method for producing a cosmetic according to one aspect of the present disclosure produces a cosmetic using hexagonal boron nitride powder obtained by any of the above-mentioned production methods as a raw material. The hexagonal boron nitride powder obtained by the above production method has excellent elongation properties when spread. Therefore, cosmetics produced using such hexagonal boron nitride powder as a raw material have excellent elongation properties.

本開示によれば、伸び性に優れる化粧料を製造することが可能な六方晶窒化ホウ素粉末及びその製造方法を提供することができる。また、本開示によれば、上述の六方晶窒化ホウ素粉末を用いることによって伸び性に優れる化粧料及びその製造方法を提供することができる。 According to the present disclosure, it is possible to provide a hexagonal boron nitride powder and a method for producing the same that can produce cosmetics with excellent extensibility. Further, according to the present disclosure, it is possible to provide a cosmetic that has excellent extensibility by using the above-described hexagonal boron nitride powder, and a method for producing the same.

以下、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。 Embodiments of the present disclosure will be described below. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents.

六方晶窒化ホウ素の一次粒子が凝集して形成される二次粒子を含み、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたとき、BET比表面積に対するD50の比が5[μg/m]以上である。当該比(D50/BET)は、6[μg/m]以上であってよく、7[μg/m]以上であってもよい。これによって、二次粒子のサイズ及び割合が一層大きくなり、伸び性を一層向上することができる。 Including secondary particles formed by agglomeration of primary particles of hexagonal boron nitride, in the cumulative distribution of volume-based particle diameters measured by laser diffraction/scattering method, the cumulative value from small particle diameters is 50% of the total. %, the ratio of D50 to the BET specific surface area is 5 [μg/m] or more. The ratio (D50/BET) may be 6 [μg/m] or more, or may be 7 [μg/m] or more. As a result, the size and proportion of the secondary particles are further increased, and the extensibility can be further improved.

上記比(D50/BET)は、30[μg/m]未満であってよく、20[μg/m]未満であってもよい。これによって、化粧料の原料として用いたときのざらつき感を低減することができる。 The above ratio (D50/BET) may be less than 30 [μg/m], or may be less than 20 [μg/m]. This can reduce the roughness when used as a raw material for cosmetics.

本開示におけるD50は、市販のレーザー回折式粒子径分布測定装置で測定される。D50は、化粧料の原料として用いたときの滑り性を一層向上する観点から、12μm以上であってよいし、14μm以上であってもよい。D50は、化粧料の原料として用いたときに外観上のぎらつきを低減する観点から、25μm以下であってもよいし、20μm以下であってもよい。D50は、例えば、原料粉末の粒度分布、仮焼温度及び仮焼時間、焼成温度及び焼成時間、アニール温度及びアニール時間、並びに昇温速度等によって調整することができる。 D50 in the present disclosure is measured with a commercially available laser diffraction particle size distribution measuring device. D50 may be 12 μm or more, or 14 μm or more from the viewpoint of further improving slipperiness when used as a raw material for cosmetics. D50 may be 25 μm or less or 20 μm or less from the viewpoint of reducing glare in appearance when used as a raw material for cosmetics. D50 can be adjusted by, for example, the particle size distribution of the raw material powder, the calcination temperature and time, the calcination temperature and time, the annealing temperature and time, the temperature increase rate, and the like.

BET比表面積は、吸着ガスを窒素として、市販の比表面積測定装置を用いて測定される値である。BET比表面積は、3[m/g]未満であってよく、2.5[m/g]未満であってもよい。これによって、伸び性のみならず、滑り性も十分に高くすることができる。BET比表面積は、0.5[m/g]以上であってよく、1[m/g]以上であってもよい。これによって、皮膚及びシワへの付着性を高めることができる。 The BET specific surface area is a value measured using a commercially available specific surface area measuring device using nitrogen as the adsorbed gas. The BET specific surface area may be less than 3 [m 2 /g], and may be less than 2.5 [m 2 /g]. This makes it possible to sufficiently increase not only the extensibility but also the slipperiness. The BET specific surface area may be 0.5 [m 2 /g] or more, or 1 [m 2 /g] or more. This can improve adhesion to the skin and wrinkles.

六方晶窒化ホウ素粉末のかさ密度は、0.47g/cm以下であってよく、0.43cm以下であってよく、0.37cm以下であってもよい。このように低いかさ密度を有することによって、一層ふわふわとした外観を有する六方晶窒化ホウ素粉末とすることができる。かさ密度は、JIS R1628-1997の「ファインセラミックス粉末のかさ密度測定方法」に準拠して測定することができる。 The bulk density of the hexagonal boron nitride powder may be less than or equal to 0.47 g/cm 3 , may be less than or equal to 0.43 cm 3 , and may be less than or equal to 0.37 cm 3 . Having such a low bulk density allows the hexagonal boron nitride powder to have a fluffier appearance. The bulk density can be measured in accordance with JIS R1628-1997 "Method for Measuring Bulk Density of Fine Ceramic Powders."

本実施形態によれば、六方晶窒化ホウ素粉末における二次粒子の割合、及び/又は、一次粒子に対する二次粒子のサイズを大きくすることができる。二次粒子は、一次粒子に比べて粒子内の空隙を大きくすることができる。したがって、このような二次粒子を含む六方晶窒化ホウ素粉末は嵩高くなり、ふわふわとした外観を有する。このような六方晶窒化ホウ素粉末を塗り伸ばすと、凝集していた二次粒子が破壊されながら塗り伸ばされる。このため、伸び性に優れる。このような六方晶窒化ホウ素粉末は、化粧料の原料用として好適である。すなわち、本開示は、六方晶窒化ホウ素を化粧料の原料として使用する使用方法も提供することができる。 According to this embodiment, the proportion of secondary particles in the hexagonal boron nitride powder and/or the size of the secondary particles relative to the primary particles can be increased. Secondary particles can have larger voids within the particles than primary particles. Therefore, hexagonal boron nitride powder containing such secondary particles becomes bulky and has a fluffy appearance. When such hexagonal boron nitride powder is spread, the agglomerated secondary particles are destroyed and spread. Therefore, it has excellent elongation properties. Such hexagonal boron nitride powder is suitable for use as a raw material for cosmetics. That is, the present disclosure can also provide a method of using hexagonal boron nitride as a raw material for cosmetics.

一実施形態に係る化粧料は、上述の六方晶窒化ホウ素粉末を含有する。したがって、この六方晶窒化ホウ素粉末を含有する化粧料は、伸び性に優れる。化粧料としては、例えば、ファンデーション(パウダーファンデーション、リキッドファンデーション、クリームファンデーション)、フェイスパウダー、ポイントメイク、アイシャドー、アイライナー、マニュキュア、口紅、頬紅、及びマスカラ等が挙げられる。これらのうち、ファンデーション及びアイシャドーには、六方晶窒化ホウ素粉末が特に良く適合する。化粧料における六方晶窒化ホウ素粉末の含有量は、例えば0.1~70質量%である。化粧料は公知の方法によって製造することができる。化粧料の製造方法は、例えば、六方晶窒化ホウ素粉末と他の原料とを配合して混合する工程を有する。 A cosmetic according to one embodiment contains the above-described hexagonal boron nitride powder. Therefore, cosmetics containing this hexagonal boron nitride powder have excellent elongation properties. Examples of cosmetics include foundations (powder foundation, liquid foundation, cream foundation), face powder, point makeup, eye shadow, eyeliner, nail polish, lipstick, blush, mascara, and the like. Among these, hexagonal boron nitride powder is particularly well suited for foundations and eye shadows. The content of hexagonal boron nitride powder in the cosmetic is, for example, 0.1 to 70% by mass. Cosmetics can be manufactured by known methods. A method for producing cosmetics includes, for example, a step of blending and mixing hexagonal boron nitride powder and other raw materials.

一実施形態に係る六方晶窒化ホウ素粉末の製造方法は、ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、600~1300℃で焼成して、六方晶窒化ホウ素を含む仮焼物を得る仮焼工程と、六方晶窒化ホウ素と助剤とを含む混合粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1600℃以上且つ1900℃未満で焼成して、混合粉末における六方晶窒化ホウ素よりも高い結晶性を有する六方晶窒化ホウ素を含む焼成物を得る焼成工程と、焼成物を粉砕、洗浄、及び乾燥し、乾燥粉末を得る精製工程と、乾燥粉末を、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、1900~2100℃の温度でアニールするアニール工程と、を含む。 A method for producing hexagonal boron nitride powder according to one embodiment includes raw material powder containing powder of a boron-containing compound and powder of a compound containing nitrogen in an atmosphere of an inert gas, ammonia gas, or a mixed gas thereof. A calcination step in which a calcined product containing hexagonal boron nitride is obtained by firing at 600 to 1300°C, and a mixed powder containing hexagonal boron nitride and an auxiliary agent is heated in an inert gas, ammonia gas, or a mixed gas thereof. A firing step of obtaining a fired product containing hexagonal boron nitride having higher crystallinity than hexagonal boron nitride in the mixed powder by firing in an atmosphere at a temperature of 1600° C. or higher and lower than 1900° C.; pulverizing and washing the fired product; and drying to obtain a dry powder, and an annealing step of annealing the dry powder at a temperature of 1900 to 2100° C. in an inert atmosphere such as nitrogen gas, helium gas, or argon gas.

ホウ素を含む化合物としては、ホウ酸、酸化ホウ素及びホウ砂等が挙げられる。窒素を含む化合物としては、ジシアンジアミド、メラミン、及び尿素が挙げられる。ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末におけるホウ素原子と窒素原子のモル比は、ホウ素原子:窒素原子=2:8~8:2であってよく、3:7~7:3であってもよい。原料粉末は、上記化合物以外の成分を含んでもよい。例えば、仮焼用助剤として炭酸リチウム及び炭酸ナトリウムなどの炭酸塩を含んでよい。また、炭素等の還元性物質を含んでよい。 Examples of compounds containing boron include boric acid, boron oxide, and borax. Compounds containing nitrogen include dicyandiamide , melamine, and urea. The molar ratio of boron atoms to nitrogen atoms in the raw material powder containing powder of a boron-containing compound and powder of a compound containing nitrogen may be boron atoms:nitrogen atoms=2:8 to 8:2, and 3:7. The ratio may be 7:3. The raw material powder may contain components other than the above-mentioned compounds. For example, carbonates such as lithium carbonate and sodium carbonate may be included as calcination aids. Further, it may contain a reducing substance such as carbon.

上述の成分を含有する原料粉末を、例えば電気炉を用いて、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、アンモニア雰囲気中、或いはこれらを混合した混合ガス雰囲気中で仮焼する。仮焼温度は、600~1300℃であってよく、800~1200℃であってよく、900~1100℃であってもよい。仮焼時間は、例えば0.5~5時間であってよく、1~4時間であってもよい。 The raw material powder containing the above-mentioned components is calcined in an inert atmosphere such as nitrogen gas, helium gas, or argon gas, an ammonia atmosphere, or a mixed gas atmosphere of these by using, for example, an electric furnace. . The calcination temperature may be 600 to 1300°C, 800 to 1200°C, or 900 to 1100°C. The calcination time may be, for example, 0.5 to 5 hours, or 1 to 4 hours.

仮焼によって得られる仮焼物は、低結晶性の六方晶窒化ホウ素、及び非晶質の六方晶窒化ホウ素からなる群より選ばれる少なくとも一方を含む。仮焼工程は、後述の焼成工程よりも低温で窒化ホウ素の反応を進行させる。このため、粒成長を抑制し、最終的に得られる窒化ホウ素粉末における一次粒子の粒径を小さくすることができる。 The calcined material obtained by calcining contains at least one selected from the group consisting of low-crystalline hexagonal boron nitride and amorphous hexagonal boron nitride. In the calcination step, the reaction of boron nitride proceeds at a lower temperature than in the calcination step described below. Therefore, grain growth can be suppressed and the particle size of primary particles in the finally obtained boron nitride powder can be reduced.

次に、得られた仮焼物と助剤とを配合して混合し、混合粉末を得る。助剤としては、ホウ酸ナトリウム等のホウ酸塩、並びに、炭酸ナトリウム、炭酸カルシウム及び炭酸リチウム等の炭酸塩が挙げられる。六方晶窒化ホウ素を含む仮焼物100質量部に対する、助剤の配合量は2~20質量部であってよく、2~8質量部であってもよい。このような混合粉末を、例えば電気炉中、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、アンモニア雰囲気中、或いはこれらを含む混合ガス雰囲気中で焼成する。 Next, the obtained calcined product and an auxiliary agent are blended and mixed to obtain a mixed powder. Auxiliary agents include borates such as sodium borate, and carbonates such as sodium carbonate, calcium carbonate, and lithium carbonate. The blending amount of the auxiliary agent may be 2 to 20 parts by mass, or 2 to 8 parts by mass, based on 100 parts by mass of the calcined material containing hexagonal boron nitride. Such a mixed powder is fired, for example, in an electric furnace, in an inert atmosphere such as nitrogen gas, helium gas, or argon gas, in an ammonia atmosphere, or in a mixed gas atmosphere containing these.

焼成工程では、助剤の存在下、窒化ホウ素の生成及び結晶化が進行する。これによって、仮焼物に含まれる窒化ホウ素の結晶性を高めることができる。焼成温度は、1600℃以上且つ1900℃未満である。この焼成温度は、1650~1850℃であってもよく、1650~1750℃であってもよい。焼成時間は、例えば0.5~5時間であってよく、1~4時間であってもよい。 In the firing step, the production and crystallization of boron nitride progress in the presence of an auxiliary agent. Thereby, the crystallinity of boron nitride contained in the calcined product can be improved. The firing temperature is 1600°C or higher and lower than 1900°C. This firing temperature may be 1650 to 1850°C, or 1650 to 1750°C. The firing time may be, for example, 0.5 to 5 hours, or 1 to 4 hours.

焼成温度が低くなり過ぎると、六方晶窒化ホウ素の二次粒子が十分に生成し難くなる傾向にある。二次粒子のサイズ、及び/又は、割合が小さくなると、化粧料の原料に用いた場合に滑り性が低下する傾向にある。焼成時間が短くなり過ぎたときも同様の傾向にある。一方、焼成温度が高くなり過ぎると、六方晶窒化ホウ素の結晶成長及び凝集が進み過ぎて、化粧料の原料に用いた場合にぎらつきが強くなる傾向にある。 If the firing temperature becomes too low, it tends to be difficult to sufficiently generate secondary particles of hexagonal boron nitride. As the size and/or proportion of secondary particles decreases, slipperiness tends to decrease when used as a raw material for cosmetics. A similar tendency occurs when the firing time becomes too short. On the other hand, if the firing temperature is too high, the crystal growth and aggregation of hexagonal boron nitride will proceed too much, and when used as a raw material for cosmetics, there will be a tendency for glare to become stronger.

焼成工程で得られた焼成物は、六方晶窒化ホウ素以外に不純物を含む場合がある。不純物としては、残存する助剤、及び水溶性ホウ素化合物等が挙げられる。精製工程では、このような不純物を、洗浄によって低減する。洗浄後、固液分離して乾燥し、乾燥粉末を得る。洗浄に用いる洗浄液としては、水、酸性物質を含む水溶液、有機溶媒、有機溶媒と水との混合液等が挙げられる。不純物の二次的な混入を避ける観点から、電気伝導度が1mS/m以下の水を使用してよい。酸性物質としては、例えば塩酸、硝酸等の無機酸が挙げられる。有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール及びアセトン等の水溶性の有機溶媒が挙げられる。洗浄方法に特に制限はなく、例えば、焼成物を洗浄液中に浸漬し撹拌して洗浄してよく、焼成物に洗浄液をスプレーして洗浄してもよい。 The fired product obtained in the firing process may contain impurities other than hexagonal boron nitride. Examples of impurities include remaining auxiliary agents and water-soluble boron compounds. In the purification process, such impurities are reduced by washing. After washing, solid-liquid separation is performed and dried to obtain a dry powder. Examples of the cleaning liquid used for cleaning include water, an aqueous solution containing an acidic substance, an organic solvent, and a mixed solution of an organic solvent and water. From the viewpoint of avoiding secondary contamination of impurities, water having an electrical conductivity of 1 mS/m or less may be used. Examples of acidic substances include inorganic acids such as hydrochloric acid and nitric acid. Examples of the organic solvent include water-soluble organic solvents such as methanol, ethanol, propanol, isopropyl alcohol, and acetone. There are no particular restrictions on the cleaning method; for example, the fired product may be immersed in a cleaning solution and stirred for cleaning, or the fired product may be sprayed with a cleaning solution for cleaning.

洗浄終了後、デカンテーション、吸引ろ過機、加圧ろ過機、回転式ろ過機、沈降分離機又はこれらを組み合わせた装置を用いて洗浄液を固液分離してよい。分離した固形分を通常の乾燥機で乾燥して乾燥粉末を得てもよい。乾燥機は、例えば、棚式乾燥機、流動層乾燥機、噴霧乾燥機、回転型乾燥機、ベルト式乾燥機、及びこれらの組み合わせが挙げられる。乾燥後に、粗大粒子を除去するために、例えば篩による分級を行ってもよい。 After the washing is completed, the washing liquid may be separated into solid and liquid using decantation, a suction filter, a pressure filter, a rotary filter, a sedimentation separator, or a combination thereof. The separated solids may be dried in a conventional dryer to obtain a dry powder. Dryers include, for example, tray dryers, fluidized bed dryers, spray dryers, rotary dryers, belt dryers, and combinations thereof. After drying, classification using a sieve may be performed, for example, in order to remove coarse particles.

アニール工程では、乾燥粉末を、例えば電気炉を用いて、窒素ガス、ヘリウムガス、又はアルゴンガス等の不活性雰囲気中、アンモニア雰囲気中、或いはこれらを混合した混合ガス雰囲気中で1900~2100℃に加熱する。このアニール温度は、一次粒子を十分に凝集させる観点から、1950℃以上であってよい。また、アニール温度は、一次粒子の粒成長を抑制する観点から2050℃以下であってよい。アニール工程では、焼成工程と同等の温度に加熱していることから、一次粒子が凝集した二次粒子を十分に形成することができる。 In the annealing step, the dry powder is heated to 1900 to 2100°C in an inert atmosphere such as nitrogen gas, helium gas, or argon gas, in an ammonia atmosphere, or in a mixed gas atmosphere of these, using an electric furnace, for example. Heat. This annealing temperature may be 1950° C. or higher from the viewpoint of sufficiently agglomerating the primary particles. Further, the annealing temperature may be 2050° C. or lower from the viewpoint of suppressing grain growth of primary particles. In the annealing step, since the heating is carried out at a temperature equivalent to that in the firing step, it is possible to sufficiently form secondary particles in which primary particles are aggregated.

一次粒子の粒成長及び過度な凝集を抑制するため、アニール工程において1900~2100℃の温度に加熱する時間は2時間以下であり、1時間以下であってもよい。一方、十分な二次粒子を形成する観点から、アニール工程において1900~2100℃の温度に加熱する時間は0.5時間以上であってよい。 In order to suppress grain growth and excessive agglomeration of primary particles, the time for heating to a temperature of 1900 to 2100° C. in the annealing step is 2 hours or less, and may be 1 hour or less. On the other hand, from the viewpoint of forming sufficient secondary particles, the time for heating to a temperature of 1900 to 2100° C. in the annealing step may be 0.5 hours or more.

アニール工程では、乾燥粉末を5℃/分以上の昇温速度で昇温する。このような昇温速度で昇温することによって、一次粒子の粒成長及び一次粒子の過度な凝集を抑制することができる。なお、昇温速度は、昇温開始時の温度と1900℃の温度差(昇温幅)を、昇温開始時点から1900℃に到達するまでの所要時間で割って求めることができる。上記昇温速度の上限は、例えば15℃/分であってよい。 In the annealing step, the temperature of the dry powder is increased at a rate of 5° C./min or more. By increasing the temperature at such a rate, it is possible to suppress grain growth of primary particles and excessive aggregation of primary particles. The temperature increase rate can be determined by dividing the temperature difference (temperature increase width) between the temperature at the start of temperature increase and 1900°C by the time required from the time the temperature increase starts to reach 1900°C. The upper limit of the temperature increase rate may be, for example, 15° C./min.

このようにして、上述の六方晶窒化ホウ素粉末を得ることができる。上記製造方法には、六方晶窒化ホウ素粉末の実施形態に係る説明を適用することができる。六方晶窒化ホウ素粉末の製造方法は、上述の実施形態に限定されない。例えば、アニール工程は複数回繰り返して行ってもよい。また、アニール工程の後に、超音波振動を与えるホモジナイザ等を用いて、二次粒子を破壊しない程度に六方晶窒化ホウ素粉末を解砕する解砕工程を行ってもよい。 In this way, the above-mentioned hexagonal boron nitride powder can be obtained. The explanation regarding the embodiment of hexagonal boron nitride powder can be applied to the above manufacturing method. The method for producing hexagonal boron nitride powder is not limited to the embodiments described above. For example, the annealing process may be repeated multiple times. Further, after the annealing step, a crushing step may be performed in which the hexagonal boron nitride powder is crushed to such an extent that the secondary particles are not destroyed, using a homogenizer or the like that applies ultrasonic vibration.

以上、本開示の幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。 Although several embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments.

実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。 The contents of the present disclosure will be explained in more detail with reference to Examples and Comparative Examples, but the present disclosure is not limited to the following Examples.

(実施例1)
[六方晶窒化ホウ素粉末の調製]
<仮焼工程>
ホウ酸粉末(純度99.8質量%以上、関東化学社製)100.0g、及びメラミン粉末(純度99.0質量%以上、和光純薬社製)90.0gを、アルミナ製乳鉢を用いて10分間混合し混合原料を得た。乾燥後の混合原料を、六方晶窒化ホウ素製の容器に入れ、電気炉内に配置した。電気炉内に窒素ガスを流通させながら、10℃/分の速度で室温から1000℃に昇温した。1000℃で2時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。このようにして、低結晶性の六方晶窒化ホウ素を含む仮焼物を得た。
(Example 1)
[Preparation of hexagonal boron nitride powder]
<Calcination process>
100.0 g of boric acid powder (purity of 99.8% by mass or more, manufactured by Kanto Kagaku Co., Ltd.) and 90.0 g of melamine powder (purity of 99.0% by mass or more, manufactured by Wako Pure Chemical Industries, Ltd.) were added using an alumina mortar. The mixture was mixed for 10 minutes to obtain a mixed raw material. The mixed raw material after drying was placed in a container made of hexagonal boron nitride and placed in an electric furnace. While flowing nitrogen gas into the electric furnace, the temperature was raised from room temperature to 1000°C at a rate of 10°C/min. After holding at 1000°C for 2 hours, heating was stopped and the mixture was allowed to cool naturally. The electric furnace was opened when the temperature became 100°C or lower. In this way, a calcined product containing hexagonal boron nitride with low crystallinity was obtained.

<焼成工程>
仮焼物100.0gに、助剤として炭酸ナトリウム(純度99.5質量%以上)を3.0g添加し、アルミナ製乳鉢を用いて10分間混合した。混合物を、上述の電気炉内に配置した。電気炉内に窒素ガスを流通させながら、10℃/分の速度で室温から1700℃に昇温した。1700℃の焼成温度で4時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。得られた焼成物を回収し、アルミナ製乳鉢で3分間粉砕して、六方晶窒化ホウ素の粗粉を得た。
<Baking process>
3.0 g of sodium carbonate (purity: 99.5% by mass or more) was added as an auxiliary agent to 100.0 g of the calcined material, and the mixture was mixed for 10 minutes using an alumina mortar. The mixture was placed in the electric furnace described above. While flowing nitrogen gas into the electric furnace, the temperature was raised from room temperature to 1700°C at a rate of 10°C/min. After maintaining the firing temperature at 1700° C. for 4 hours, heating was stopped and the product was allowed to cool naturally. The electric furnace was opened when the temperature became 100°C or less. The obtained fired product was collected and ground in an alumina mortar for 3 minutes to obtain a coarse powder of hexagonal boron nitride.

<精製工程>
六方晶窒化ホウ素の粗粉中に含まれる不純物を除くため、希硝酸500g(硝酸濃度:5質量%)に、粗粉を30g投入し、室温で60分間撹拌した。撹拌後、吸引ろ過によって固液分離し、ろ液が中性になるまで水(電気伝導度1mS/m)を入れ替えて洗浄した。洗浄後、乾燥機を用いて120℃で3時間乾燥して乾燥粉末を得た。得られた乾燥粉末から、超音波振動篩(KFS-1000、興和工業所社製、目開き250μm)を用いて、粗粒を除去した。
<Refining process>
In order to remove impurities contained in the hexagonal boron nitride coarse powder, 30 g of the coarse powder was added to 500 g of dilute nitric acid (nitric acid concentration: 5% by mass) and stirred at room temperature for 60 minutes. After stirring, solid-liquid separation was performed by suction filtration, and water (electrical conductivity: 1 mS/m) was replaced and washed until the filtrate became neutral. After washing, it was dried at 120° C. for 3 hours using a drier to obtain a dry powder. Coarse particles were removed from the obtained dry powder using an ultrasonic vibrating sieve (KFS-1000, manufactured by Kowa Kogyo Co., Ltd., opening 250 μm).

<アニール工程>
粗粒を除去した乾燥粉末を、上述の電気炉内に配置した。電気炉内に窒素ガスを流通させながら、5℃/分の速度で室温から2000℃に昇温した。2000℃で2時間保持した後、加熱を止めて自然冷却した。温度が100℃以下になった時点で電気炉を開放した。
<Annealing process>
The dry powder from which coarse particles had been removed was placed in the electric furnace described above. While flowing nitrogen gas into the electric furnace, the temperature was raised from room temperature to 2000°C at a rate of 5°C/min. After holding at 2000°C for 2 hours, heating was stopped and the mixture was allowed to cool naturally. The electric furnace was opened when the temperature became 100°C or lower.

<解砕工程>
得られた六方晶窒化ホウ素の粗粉30gと水300mlに投入し、ホモジナイザ(SONIC & MATERIALS,INC.製、商品名:VC505)を用いて、500W、20kHzの条件で5分間超音波分散させた。その後、分散液を濾過して固形分を分離して乾燥した。得られた乾燥粉末から、超音波振動篩(株式会社興和工業所製、KFS-1000、興和工業所社製、目開き250μm)を用いて粗粒を除去し、実施例1の六方晶窒化ホウ素粉末を得た。
<Crushing process>
30 g of the obtained coarse powder of hexagonal boron nitride was added to 300 ml of water, and ultrasonically dispersed for 5 minutes at 500 W and 20 kHz using a homogenizer (manufactured by SONIC & MATERIALS, INC., trade name: VC505). . Thereafter, the dispersion was filtered to separate the solid content and dried. From the obtained dry powder, coarse particles were removed using an ultrasonic vibrating sieve (manufactured by Kowa Kogyo Co., Ltd., KFS-1000, made by Kowa Kogyo Co., Ltd., mesh size 250 μm), and the hexagonal boron nitride of Example 1 was obtained. A powder was obtained.

[六方晶窒化ホウ素粉末の評価]
<粒度分布の測定>
実施例1で調製した六方晶窒化ホウ素粉末の体積基準の粒度分布を、レーザー回折式粒子径分布測定装置(日機装株式会社製、装置名:MT3300EX)を用いて測定した。体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径(D50)を求めた。結果は表2に示すとおりであった。
[Evaluation of hexagonal boron nitride powder]
<Measurement of particle size distribution>
The volume-based particle size distribution of the hexagonal boron nitride powder prepared in Example 1 was measured using a laser diffraction particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., device name: MT3300EX). In the volume-based cumulative distribution of particle diameters, the particle diameter (D50) when the integrated value from small particle diameters reached 50% of the total was determined. The results were as shown in Table 2.

<比表面積(N)の測定>
実施例1で作製した六方晶窒化ホウ素粉末のBET比表面積を、比表面積測定装置(ユアサアイオニクス社製、装置名:MONOSORB)を用いて、BET1点法により測定した。吸着ガスとして窒素ガスを、キャリアガスとしてヘリウムガスを用いた。試料1gを300℃、15分間の条件で乾燥脱気してから測定を行った。測定結果は、表2に示すとおりであった。また、表2には、BET比表面積に対するD50の比を、「D50/BET」の欄に示した。
<Measurement of specific surface area (N)>
The BET specific surface area of the hexagonal boron nitride powder produced in Example 1 was measured by the BET one-point method using a specific surface area measuring device (manufactured by Yuasa Ionics, device name: MONOSORB). Nitrogen gas was used as an adsorption gas, and helium gas was used as a carrier gas. The measurement was performed after drying and deaerating 1 g of the sample at 300° C. for 15 minutes. The measurement results were as shown in Table 2. Further, in Table 2, the ratio of D50 to the BET specific surface area is shown in the "D50/BET" column.

<伸び性の評価>
人工皮膚(縦×横=10mm×50mm)の一端に、六方晶窒化ホウ素粉末0.2gを載せた。人工皮膚の表面に六方晶窒化ホウ素粉末を塗り付けるように、ヘラを用いて六方晶窒化ホウ素粉末を縦方向に沿って伸ばした。市販の画像解析ソフトウェア(WinROOF)を用いて画像解析を行って、人工皮膚の全面積に対する、六方晶窒化ホウ素粉末の塗布面積の割合を求めた。この面積割合が大きいほど伸び性が優れている。伸び性の評価基準は、面積割合に応じて表1に示すとおりとした。伸び性の評価結果は表2に示すとおりであった。
<Evaluation of extensibility>
0.2 g of hexagonal boron nitride powder was placed on one end of the artificial skin (length x width = 10 mm x 50 mm). The hexagonal boron nitride powder was stretched in the vertical direction using a spatula so as to spread the hexagonal boron nitride powder onto the surface of the artificial skin. Image analysis was performed using commercially available image analysis software (WinROOF) to determine the ratio of the area of the hexagonal boron nitride powder applied to the total area of the artificial skin. The larger this area ratio is, the better the elongation property is. The evaluation criteria for elongation were as shown in Table 1 according to the area ratio. The elongation evaluation results were as shown in Table 2.

Figure 0007372140000001
Figure 0007372140000001

(実施例2)
アニール工程における2000℃での加熱時間を1時間にしたこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を調製した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
(Example 2)
Hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that the heating time at 2000°C in the annealing step was 1 hour. Then, in the same manner as in Example 1, each measurement and evaluation of the hexagonal boron nitride powder was performed. The results were as shown in Table 2.

(実施例3)
アニール工程における室温から2000℃までの昇温速度を10℃/分にしたこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を調製した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
(Example 3)
Hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that the temperature increase rate from room temperature to 2000°C in the annealing step was 10°C/min. Then, in the same manner as in Example 1, each measurement and evaluation of the hexagonal boron nitride powder was performed. The results were as shown in Table 2.

(実施例4)
乾燥後の混合原料に助剤として炭酸ナトリウム(純度99.5質量%以上)を3.0g添加し、仮焼工程を行わずに焼成工程を行ったこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を製造した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
(Example 4)
Example 1 was carried out in the same manner as in Example 1, except that 3.0 g of sodium carbonate (purity of 99.5% by mass or more) was added as an auxiliary agent to the mixed raw material after drying, and the calcination step was performed without performing the calcination step. A hexagonal boron nitride powder was produced. Then, in the same manner as in Example 1, each measurement and evaluation of the hexagonal boron nitride powder was performed. The results were as shown in Table 2.

(比較例1)
アニール工程を行わず、精製工程で粗粒を除去して得られた乾燥粉末を、比較例1の六方晶窒化ホウ素粉末とした。実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
(Comparative example 1)
A dry powder obtained by removing coarse particles in a purification step without performing an annealing step was used as the hexagonal boron nitride powder of Comparative Example 1. In the same manner as in Example 1, each measurement and evaluation of the hexagonal boron nitride powder was performed. The results were as shown in Table 2.

(比較例2)
アニール工程における室温から2000℃までの昇温速度を2℃/分にしたこと以外は、実施例1と同様にして六方晶窒化ホウ素粉末を調製した。そして、実施例1と同様にして、六方晶窒化ホウ素粉末の各測定及び評価を行った。結果は表2に示すとおりであった。
(Comparative example 2)
Hexagonal boron nitride powder was prepared in the same manner as in Example 1, except that the rate of temperature increase from room temperature to 2000°C in the annealing step was 2°C/min. Then, in the same manner as in Example 1, each measurement and evaluation of the hexagonal boron nitride powder was performed. The results were as shown in Table 2.

Figure 0007372140000002
Figure 0007372140000002

実施例1~4は、いずれも一次粒子が凝集した二次粒子を含有していた。実施例1~4は、比較例1,2よりも、D50/BETの値が大きく、ふわふわ感のある外観を有していた。このため、実施例1~4の方が、比較例1,2よりも、伸び性の向上に寄与する二次粒子を多く含有しており、優れた伸び性を有していた。 Examples 1 to 4 all contained secondary particles that were aggregates of primary particles. Examples 1 to 4 had larger D50/BET values than Comparative Examples 1 and 2, and had a fluffy appearance. Therefore, Examples 1 to 4 contained more secondary particles that contributed to improving elongation than Comparative Examples 1 and 2, and had excellent elongation.

本開示によれば、伸び性に優れる化粧料を製造することが可能な六方晶窒化ホウ素粉末及びその製造方法が提供される。また、上述の六方晶窒化ホウ素粉末を用いることによって伸び性に優れる化粧料及びその製造方法が提供される。 According to the present disclosure, a hexagonal boron nitride powder and a method for producing the same are provided that allow production of cosmetics with excellent extensibility. Further, by using the above-described hexagonal boron nitride powder, a cosmetic with excellent extensibility and a method for producing the same are provided.

Claims (9)

六方晶窒化ホウ素の一次粒子が凝集して形成される二次粒子を含み、
レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上であり、
BET比表面積が2.3~3.5[m /g]であり、
D50が14.8~20.8[μm]である、化粧料の原料用六方晶窒化ホウ素粉末。
Contains secondary particles formed by agglomeration of primary particles of hexagonal boron nitride,
In the cumulative distribution of volume-based particle diameters measured by laser diffraction/scattering method, when the particle diameter when the integrated value from small particle diameters reaches 50% of the total is D50, D50 with respect to the BET specific surface area the ratio is 5 [μg/m] or more,
BET specific surface area is 2.3 to 3.5 [m 2 /g],
A hexagonal boron nitride powder for use as a raw material for cosmetics, having a D50 of 14.8 to 20.8 [μm] .
BET比表面積が3[m/g]未満である、請求項1に記載の化粧料の原料用六方晶窒化ホウ素粉末。 The hexagonal boron nitride powder for use as a raw material for cosmetics according to claim 1, having a BET specific surface area of less than 3 [m 2 /g]. かさ密度が0.47g/cmBulk density is 0.47g/cm 3 以下である、請求項1又は2に記載の化粧料の原料用六方晶窒化ホウ素粉末。The hexagonal boron nitride powder for use as a raw material for cosmetics according to claim 1 or 2, which is as follows. 六方晶窒化ホウ素と助剤とを含む混合粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1600℃以上且つ1900℃未満で焼成して、前記混合粉末における六方晶窒化ホウ素よりも高い結晶性を有する六方晶窒化ホウ素を含む焼成物を得る焼成工程と、
前記焼成物を粉砕、洗浄、及び乾燥し、乾燥粉末を得る精製工程と、
前記乾燥粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、1900~2100℃でアニールするアニール工程と、を有し、
前記アニール工程では、前記乾燥粉末を5℃/分以上の昇温速度で昇温し、且つ1900~2100℃に加熱する時間が2時間以下である、六方晶窒化ホウ素粉末の製造方法。
A mixed powder containing hexagonal boron nitride and an auxiliary agent is fired in an atmosphere of inert gas, ammonia gas, or a mixed gas thereof at a temperature of 1600° C. or more and less than 1900° C. to form a mixture of hexagonal boron nitride in the mixed powder. a firing step for obtaining a fired product containing hexagonal boron nitride having high crystallinity;
a purification step of crushing, washing, and drying the fired product to obtain a dry powder;
an annealing step of annealing the dry powder at 1900 to 2100 ° C. in an atmosphere of inert gas, ammonia gas, or a mixed gas thereof,
A method for producing hexagonal boron nitride powder, wherein in the annealing step, the dry powder is heated at a temperature increase rate of 5° C./min or more, and the time for heating from 1900 to 2100° C. is 2 hours or less.
前記焼成工程の前に、
ホウ素を含む化合物の粉末と窒素を含む化合物の粉末を含有する原料粉末を、不活性ガス、アンモニアガス又はこれらの混合ガスの雰囲気中、600~1300℃で焼成して、六方晶窒化ホウ素を含む仮焼物を得る仮焼工程を有し、
前記焼成工程における前記混合粉末は前記仮焼物と前記助剤とを含む、請求項に記載の六方晶窒化ホウ素粉末の製造方法。
Before the firing step,
Raw material powder containing boron-containing compound powder and nitrogen-containing compound powder is fired at 600 to 1300°C in an atmosphere of inert gas, ammonia gas, or a mixed gas of these to produce a powder containing hexagonal boron nitride. It has a calcination step to obtain a calcined product,
5. The method for producing hexagonal boron nitride powder according to claim 4 , wherein the mixed powder in the firing step includes the calcined product and the auxiliary agent.
前記アニール工程で得られる前記六方晶窒化ホウ素粉末は、レーザー回折・散乱法によって測定される体積基準の粒子径の累積分布において、小粒径からの積算値が全体の50%に達したときの粒子径をD50としたときに、BET比表面積に対するD50の比が5[μg/m]以上である、請求項又はに記載の六方晶窒化ホウ素粉末の製造方法。 The hexagonal boron nitride powder obtained in the annealing step has a cumulative distribution of volume-based particle diameters measured by laser diffraction/scattering method, when the cumulative value from small particle diameters reaches 50% of the total. The method for producing hexagonal boron nitride powder according to claim 4 or 5 , wherein the ratio of D50 to BET specific surface area is 5 [μg/m] or more when the particle size is D50. 前記アニール工程で得られる前記六方晶窒化ホウ素粉末は、BET比表面積が2.3~3.5[m /g]であり、D50が14.8~20.8[μm]である、請求項4又は5に記載の窒化ホウ素粉末の製造方法。 The hexagonal boron nitride powder obtained in the annealing step has a BET specific surface area of 2.3 to 3.5 [m 2 /g] and a D50 of 14.8 to 20.8 [μm]. Item 5. The method for producing boron nitride powder according to item 4 or 5. 請求項1~のいずれか一項の六方晶窒化ホウ素粉末を含む化粧料。 A cosmetic comprising the hexagonal boron nitride powder according to any one of claims 1 to 3 . 請求項4~7のいずれか一項に記載の製造方法で得られる六方晶窒化ホウ素粉末を原料として用いて化粧料を製造する、化粧料の製造方法。 A method for producing a cosmetic, the method comprising producing a cosmetic using the hexagonal boron nitride powder obtained by the production method according to any one of claims 4 to 7 as a raw material.
JP2019234698A 2019-12-25 2019-12-25 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method Active JP7372140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019234698A JP7372140B2 (en) 2019-12-25 2019-12-25 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019234698A JP7372140B2 (en) 2019-12-25 2019-12-25 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021102538A JP2021102538A (en) 2021-07-15
JP7372140B2 true JP7372140B2 (en) 2023-10-31

Family

ID=76754783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019234698A Active JP7372140B2 (en) 2019-12-25 2019-12-25 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7372140B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240021270A (en) * 2021-06-16 2024-02-16 덴카 주식회사 Hexagonal boron nitride powder and manufacturing method thereof, and cosmetics and manufacturing method thereof
CN117545712A (en) * 2021-06-16 2024-02-09 电化株式会社 Hexagonal boron nitride powder, method for producing same, cosmetic, and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035273A (en) 2002-06-28 2004-02-05 Denki Kagaku Kogyo Kk Hexagonal boron nitride powder, its manufacturing method and its use
JP2010037123A (en) 2008-08-04 2010-02-18 Kaneka Corp Method for producing hexagonal boron nitride
JP2016076586A (en) 2014-10-06 2016-05-12 住友ベークライト株式会社 Granulation powder, resin composition for heat radiation, heat radiation sheet, semiconductor device, and heat radiation member
JP2016135729A (en) 2014-02-05 2016-07-28 三菱化学株式会社 Boron nitride aggregated particle, and method for producing the same, composition containing the same, and molding containing the same
WO2018101241A1 (en) 2016-12-01 2018-06-07 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same
JP2018165241A (en) 2017-03-28 2018-10-25 デンカ株式会社 Hexagonal boron nitride powder, method for producing the same, and cosmetics
WO2022264335A1 (en) 2021-06-16 2022-12-22 デンカ株式会社 Hexagonal boron nitride powder and method for producing same, and cosmetic and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316590B2 (en) * 1992-01-08 2002-08-19 川崎製鉄株式会社 Hexagonal boron nitride powder and method for producing the same
JP2922096B2 (en) * 1993-07-30 1999-07-19 川崎製鉄株式会社 Method for producing hexagonal boron nitride powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035273A (en) 2002-06-28 2004-02-05 Denki Kagaku Kogyo Kk Hexagonal boron nitride powder, its manufacturing method and its use
JP2010037123A (en) 2008-08-04 2010-02-18 Kaneka Corp Method for producing hexagonal boron nitride
JP2016135729A (en) 2014-02-05 2016-07-28 三菱化学株式会社 Boron nitride aggregated particle, and method for producing the same, composition containing the same, and molding containing the same
JP2016076586A (en) 2014-10-06 2016-05-12 住友ベークライト株式会社 Granulation powder, resin composition for heat radiation, heat radiation sheet, semiconductor device, and heat radiation member
WO2018101241A1 (en) 2016-12-01 2018-06-07 株式会社トクヤマ Hexagonal boron nitride powder and method for producing same
JP2018165241A (en) 2017-03-28 2018-10-25 デンカ株式会社 Hexagonal boron nitride powder, method for producing the same, and cosmetics
WO2022264335A1 (en) 2021-06-16 2022-12-22 デンカ株式会社 Hexagonal boron nitride powder and method for producing same, and cosmetic and method for producing same

Also Published As

Publication number Publication date
JP2021102538A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP6745293B2 (en) Hexagonal boron nitride powder, method for producing the same, and cosmetics
JP2019043792A (en) Hexagonal crystal boron nitride powder and cosmetic
JP7372140B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
WO2022264335A1 (en) Hexagonal boron nitride powder and method for producing same, and cosmetic and method for producing same
JP7372142B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
KR102662015B1 (en) Boron nitride powder, method for producing boron nitride powder, and cosmetics
JP7431577B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7372139B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics
JPH0741311A (en) Production of hexagonal boron nitride powder
JP7372141B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
KR20190078621A (en) Zinc oxide powder for making zinc oxide sintered body having high strength and low thermal conductivity
JP7360962B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP6279638B2 (en) Hexagonal boron nitride powder, method for producing the same, and cosmetics
JP7429532B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
KR101551616B1 (en) Preparing method for micro-platelet alumina
WO2022264327A1 (en) Hexagonal boron nitride powder and method for producing same, and cosmetics and method for manufacturing same
US20240208817A1 (en) Hexagonal boron nitride powder and method for producing same, and cosmetics and method for manufacturing same
KR20240021889A (en) Hexagonal boron nitride powder and manufacturing method thereof, cosmetics and manufacturing method thereof, and quality evaluation method
TW202304808A (en) Hexagonal boron nitride powder and method for producing same, and cosmetic material and method for producing same
KR20240021269A (en) Hexagonal boron nitride powder and manufacturing method thereof, and cosmetics and manufacturing method thereof
TW202300443A (en) Hexagonal boron nitride powder and method for producing same, and cosmetic material and method for producing same
WO2022264325A1 (en) Hexagonal boron nitride powder and method for producing same, and cosmetic preparation and method for producing same
JP2002356328A (en) Niobium oxide slurry, niobium oxide powders and their producing method
JP7372143B2 (en) Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
WO2022224674A1 (en) Hexagonal boron nitride powder for cosmetics, and cosmetic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231019

R150 Certificate of patent or registration of utility model

Ref document number: 7372140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150