JPH01261273A - Production of sintered silicon nitride - Google Patents

Production of sintered silicon nitride

Info

Publication number
JPH01261273A
JPH01261273A JP63086654A JP8665488A JPH01261273A JP H01261273 A JPH01261273 A JP H01261273A JP 63086654 A JP63086654 A JP 63086654A JP 8665488 A JP8665488 A JP 8665488A JP H01261273 A JPH01261273 A JP H01261273A
Authority
JP
Japan
Prior art keywords
binder
silicon nitride
powder
temperature
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63086654A
Other languages
Japanese (ja)
Inventor
Isao Imai
功 今井
Sho Sano
佐野 省
Toshiji Ishii
敏次 石井
Kouichi Sueyoshi
耕一 末芳
Kenji Sugiura
杉浦 謙次
Kenichi Shimada
島田 謙一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP63086654A priority Critical patent/JPH01261273A/en
Publication of JPH01261273A publication Critical patent/JPH01261273A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain sintered silicon nitride of high density and strength with reduced fluctuation in properties, by mixing a powder of Si3N4 with a specific sintering auxiliary and a binder, forming the mixture, removing the binder under special conditions, sintering and cooling. CONSTITUTION:100pts.wt. of Si3N4 powder of 0.4-1.5wt.% carbon content and more than 90% alpha-form content are combined with 0.3-30pts.wt. of at least one sintering auxiliary selected from yttria, alumina and aluminum nitride, mixed and crushed by the wet process to obtain a starting powder of 0.5-1.5mum particle sizes. The mixed powder is mixed with 0.2-8wt.% of a binder such as PVA, granulated, formed into a desired shape. The formed product is heated to 500-900 deg.C at a rate of less than 300/d( deg.C/h) (d is the thickness of the formed product in mm) and kept for over 0.6.d.a (min) (a is the amount of the binder added in wt.%) to decompose the binder, then sintered in a nitrogen atmosphere at 1,700-1,850 deg.C, then cooled down at a rate of less than 60 deg.C/h.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高密度かつ高強度の窒化ケイ素質焼結体の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a high-density and high-strength silicon nitride sintered body.

〔従来の技術〕[Conventional technology]

窒化ケイ素質焼結体は、窒化ケイ素粉末と焼結助剤とを
混合粉砕し、この混合粉にバインダーを添加し、常法に
従って成形し、脱バインダーした後、焼成することによ
り製造されている。
Silicon nitride sintered bodies are manufactured by mixing and pulverizing silicon nitride powder and a sintering aid, adding a binder to this mixed powder, shaping it according to a conventional method, removing the binder, and then firing it. .

上述した方法により高強度の窒化ケイ素質焼結体を得よ
うとする場合、脱バインダー時に成形体に欠陥を生じさ
せないことが重要となる。このため従来は、予め示差熱
天秤によりバインダーの加熱減量曲線を求め、温度変化
に対して重量が徐々に減少するような加熱スケジュール
を決定していた。この場合、例えば昇温速度は成形体の
厚みに応じて変化させ、通常、薄物では速い速度で、厚
物では遅い速度でそれぞれ昇温している。
When attempting to obtain a high-strength silicon nitride sintered body by the above-described method, it is important that no defects occur in the molded body during binder removal. For this reason, conventionally, a heating loss curve of the binder was determined in advance using a differential thermal balance, and a heating schedule was determined so that the weight gradually decreased with respect to temperature changes. In this case, for example, the temperature increase rate is changed depending on the thickness of the molded article, and normally, the temperature is increased at a faster rate for thin articles and at a slower rate for thick articles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、実際問題として、脱バインダー工程では成形体
内部は温度上昇に伴って強還元状態となっている。この
ため、バインダーの熱分解によってカーボンの析出が生
じたり、熱分析のモデル的な結果と比較するとバインダ
ーの熱分解温度が大y〈異なる場合がある。したがって
、事前に設定した加熱スケジュールに従って脱/<イン
ダーした後の成形体を焼成しても、析出カーボン及び未
分解の有機物によって焼結が阻害され、高密度、高強度
で、しかもこれらの特性のバラツキが少なし1焼結体を
得ることが困難であった。
However, as a practical matter, in the binder removal process, the inside of the molded body is in a strongly reduced state as the temperature rises. For this reason, carbon precipitation may occur due to thermal decomposition of the binder, or the thermal decomposition temperature of the binder may differ by a large amount when compared with the model results of thermal analysis. Therefore, even if the molded body is fired after de/<indering according to a preset heating schedule, sintering is inhibited by the precipitated carbon and undecomposed organic matter, resulting in high density, high strength, and the like. It was difficult to obtain a single sintered body with little variation.

本発明は上記問題点を解決するためになされたものであ
り、高密度、高強度で、特性バラツキの少ない窒化ケイ
素質焼・結体を製造し得る方法を提供することを目的と
する。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a silicon nitride sintered body having high density, high strength, and little variation in properties.

〔問題点を解決するための手段と作用〕本発明の窒化ケ
イ素質焼結体の製造方法は、窒化ケイ素粉末と、イツト
リア、アルミナ及び窒化アルミニウムから選ばれる少な
くとも1種の焼結助剤とを混合粉砕し、バインダーを添
加した後、成形して乾燥し、更に脱バインダーした後、
焼成して窒化ケイ素質焼結体を製造するにあたり、成形
体の厚さをd(mm)、バインダーの添加量をa(重量
%)として、上記脱バインダー時に、成形体を300/
 d (℃/ h)以下の昇温速度で昇温し、500〜
900℃で0.8sd@a(分)以上保持してバインダ
ーを加熱分解除去した後、60(°C/h)以下の降温
速度で冷却することを特徴とするものである。
[Means and effects for solving the problems] The method for producing a silicon nitride sintered body of the present invention includes silicon nitride powder and at least one sintering aid selected from yttoria, alumina, and aluminum nitride. After mixing and pulverizing, adding a binder, shaping and drying, and removing the binder,
When producing a silicon nitride sintered body by firing, the thickness of the molded body is d (mm), the amount of binder added is a (wt%), and when the binder is removed, the molded body is
d (℃/h) or less at a temperature increase rate of 500~
It is characterized in that the binder is thermally decomposed and removed by holding it at 900° C. for 0.8 sd@a (minutes) or more, and then cooling at a temperature decreasing rate of 60 (° C./h) or less.

本発明は、窒化ケイ素質成形体の厚さと脱バインダ一方
法との関係に明確な基準を設け、これを実施することに
より、焼結体の密度及び強度の向上を達成し、かつこれ
らのバラツキを極力抑えようとするものである。
The present invention establishes a clear standard for the relationship between the thickness of a silicon nitride molded body and a method for removing binder, and by implementing this standard, it is possible to improve the density and strength of the sintered body, and to eliminate variations in these. The aim is to suppress this as much as possible.

本発明において、窒化ケイ素粉末としては例えばシリカ
還元法により製造された炭素含有量が0.4〜1.5w
t%で、α化率が60%以上のものが用いられる。また
、焼結助剤としてはイツトリア、アルミナ、窒化アルミ
ニウムのうちから選ばれる少なくとも1種が用いられる
。これら焼結助剤は、窒化ケイ素粉末100重量部に対
して0.3〜30重量部添加され、例えばイツトリア0
.1〜10重量部、アルミナ0.1〜10重量部、窒化
アルミニウム0.1〜10重量部の範囲で配合される。
In the present invention, the silicon nitride powder has a carbon content of 0.4 to 1.5 w, produced by a silica reduction method, for example.
A material having a pregelatinization rate of 60% or more at t% is used. Further, as the sintering aid, at least one selected from yttoria, alumina, and aluminum nitride is used. These sintering aids are added in an amount of 0.3 to 30 parts by weight per 100 parts by weight of silicon nitride powder.
.. The content is 1 to 10 parts by weight, 0.1 to 10 parts by weight of alumina, and 0.1 to 10 parts by weight of aluminum nitride.

これら窒化ケイ素粉末及び焼結助剤は混合粉砕されるが
、この工程は湿式で行うことが望ましい、混合粉砕後の
原料混合粉の平均粒径は0.5〜1.5 p−rnであ
ることが望ましい。これは混合粉の平均粒径が0.5用
m未満では表面が優先的に焼結し内部の焼結が困難とな
るため緻密化を達成することが困難となり、−実平均粒
径が1.57zmを超えると焼結体中の粒子が大きくな
り充分な強度が得られないためである。
These silicon nitride powders and sintering aids are mixed and pulverized, but it is desirable to carry out this process wetly.The average particle size of the raw material mixed powder after mixing and pulverization is 0.5 to 1.5 p-rn. This is desirable. This is because if the average particle size of the mixed powder is less than 0.5 mm, the surface will preferentially sinter, making it difficult to sinter the inside, making it difficult to achieve densification. This is because if it exceeds .57zm, the particles in the sintered body become too large and sufficient strength cannot be obtained.

本発明において、使用されるバインダーは特に限定され
るものではなく、例えばPVB(ポリビニルブチラール
) 、 PVA(ポリビニルアルコール)、アクリル樹
脂等が挙げられる。また、バインダーは原料粉末を粉砕
した後、成形する前に添加することが望ましい、バイン
ダーの添加量は原料粉末に対して0.2〜8重量%であ
ることが望ましい、これは、0.2重量%未満では充分
な成形強度が得られず、一方8重量%を超えると焼結体
中に欠陥が残りやすいためである。より望ましいバイン
ダーの添加量は0.5〜5重量%である。
In the present invention, the binder used is not particularly limited, and examples include PVB (polyvinyl butyral), PVA (polyvinyl alcohol), and acrylic resin. In addition, it is desirable to add the binder after pulverizing the raw material powder and before molding.The amount of the binder added is preferably 0.2 to 8% by weight based on the raw material powder, which is 0.2% by weight. This is because if it is less than 8% by weight, sufficient molding strength cannot be obtained, whereas if it exceeds 8% by weight, defects tend to remain in the sintered body. A more desirable amount of binder added is 0.5 to 5% by weight.

上記のように原料粉末にバインダーが添加されて造粒さ
れた後1所定形状に成形され、脱バインダーが行われる
After a binder is added to the raw material powder and granulated as described above, it is molded into a predetermined shape and the binder is removed.

本発明において、脱バインダー時の条件を上記のように
規定したのは以下のような理由しこよる。
In the present invention, the conditions for removing the binder are defined as described above for the following reasons.

昇温速度を300/ d (’O/ h )以下とした
のは、昇温速度が300/ dを超えると、バインダー
の熱分解により発生するガスが成形体内から速やかに抜
けず、その結果成形体内部のガス圧増加により成形体に
ミクロな欠陥等を生じさせるためである。
The temperature increase rate was set to 300/d ('O/h) or less because if the temperature increase rate exceeds 300/d, the gas generated by thermal decomposition of the binder cannot be released from the molded body quickly, resulting in poor molding. This is because the increase in gas pressure inside the body causes micro defects in the molded body.

保持温度を500〜900℃としたのは、保持温度が5
00℃未満ではバインダーの熱分解が不充分であり、−
力保持温度が900℃を超えると窒化ケイ素の酸化によ
り表面酸素(シリカとして存在する)が増加し、焼結体
強度の低下を招くためである。
The holding temperature was set at 500 to 900°C because the holding temperature was 500°C to 900°C.
Below 00°C, the thermal decomposition of the binder is insufficient, and -
This is because if the force holding temperature exceeds 900° C., surface oxygen (present as silica) increases due to oxidation of silicon nitride, leading to a decrease in the strength of the sintered body.

上記保持温度における保持時間を0.6・dea(分)
以上としたのは、保持時間が0.6・d・a(分)未満
ではバインダーの熱分解が不充分となるためである。
Holding time at the above holding temperature 0.6・dea (min)
The reason for this is that if the holding time is less than 0.6·d·a (minute), thermal decomposition of the binder will be insufficient.

降温速度を60(℃/h)以下としたのは、降温速度が
60(”C/h)を超えると成形体内部の温度勾配が大
きくなり、熱膨張の差により内部応力が発生し、成形体
内部にミクロな欠陥等を生じさせるためである。
The temperature drop rate was set to 60 (°C/h) or less because if the temperature fall rate exceeds 60 (°C/h), the temperature gradient inside the molded object becomes large, and internal stress is generated due to the difference in thermal expansion, causing molding This is to cause microscopic defects etc. inside the body.

上記のように脱バインダーが行われた後、成形体は例え
ば窒素雰囲気中で焼成される。焼成温度は1700〜1
850℃であることが望ましい。
After the binder is removed as described above, the molded body is fired, for example, in a nitrogen atmosphere. Firing temperature is 1700~1
The temperature is preferably 850°C.

このような本発明方法によれば、成形体の厚さに応じて
適当な脱バインダー条件が設定されるので、高密度、高
強度で、特性バラツキの少ない窒化ケイ素質焼結体を製
造することができる。
According to the method of the present invention, appropriate debinding conditions are set according to the thickness of the compact, so it is possible to produce a silicon nitride sintered body with high density, high strength, and little variation in properties. I can do it.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1〜3及び比較例1〜5 Si02粉末 1重量部に対して、カーボンブラック粉
末2重量部及びSi3N4粉末0.5重量部を混合し、
窒素気流中、1450℃で5時間還元窒化処理した後、
空気中、750℃で10時間加熱して残存する炭素を除
去した。この結果、粒径 1.2#Lmのα型窒化ケイ
素粉末(α相96%以上)が得られた。
Examples 1 to 3 and Comparative Examples 1 to 5 2 parts by weight of carbon black powder and 0.5 parts by weight of Si3N4 powder were mixed with 1 part by weight of Si02 powder,
After reducing and nitriding at 1450°C for 5 hours in a nitrogen stream,
The remaining carbon was removed by heating at 750° C. for 10 hours in air. As a result, α-type silicon nitride powder (96% or more of α phase) with a particle size of 1.2 #Lm was obtained.

この窒化ケイ素粉末100重量部に対し、焼結助剤とし
てイツトリア、アルミナ及び窒化アルミニウムを合計1
2重量部配合してボールミルに入れ。
To 100 parts by weight of this silicon nitride powder, a total of 1 part of itria, alumina and aluminum nitride were added as sintering aids.
Mix 2 parts by weight and place in a ball mill.

メタノール中で混合粉砕した。The mixture was mixed and ground in methanol.

つづいて、この混合粉にバインダーとしてポリビニルブ
チラールを第1表に示す添加量だけ添加した後、成形体
厚さが同表に示す厚さとなるように各20個ずつ金型成
形した後、同表に示す各条件で脱バインダーを行なった
Next, polyvinyl butyral was added as a binder to this mixed powder in the amount shown in Table 1, and 20 pieces of each molded product were molded with a mold so that the thickness was as shown in the table. Binder removal was carried out under the conditions shown below.

このようにして得られた成形体を1760℃で 1時間
常圧焼結して窒化ケイ素質焼結体を得た。
The molded body thus obtained was sintered under normal pressure at 1760° C. for 1 hour to obtain a silicon nitride sintered body.

得られた各焼結体について、カサ密度(その標準偏差)
及び抗折試験による曲げ強さ(その標準偏差)を調べた
結果を同表に併記する。なお1曲げ強さはJIS R1
601に従い室温で3点曲げにより測定した。
For each obtained sintered body, the bulk density (its standard deviation)
The results of bending strength (its standard deviation) by bending test are also listed in the same table. Note that the bending strength is JIS R1.
601 by three-point bending at room temperature.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明方法に従って脱バインダーを
行った場合には高密度、高強度で特性バラツキの少ない
窒化ケイ素質焼結体を製造することができる。
As detailed above, when the binder is removed according to the method of the present invention, it is possible to produce a silicon nitride sintered body with high density, high strength, and little variation in properties.

出願人代理人 弁理士 鈴江武彦Applicant's agent: Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 窒化ケイ素粉末と、イットリア、アルミナ及び窒化アル
ミニウムから選ばれる少なくとも1種の焼結助剤とを混
合粉砕し、バインダーを添加した後、成形して乾燥し、
更に脱バインダーした後、焼成して窒化ケイ素質焼結体
を製造するにあたり、成形体の厚さをd(mm)、バイ
ンダーの添加量をa(重量%)として、上記脱バインダ
ー時に成形体を300/d(℃/h)以下の昇温速度で
昇温し、500〜900℃で0.6・d・a(分)以上
保持してバインダーを加熱分解除去した後、60(℃/
h)以下の降温速度で冷却することを特徴とする窒化ケ
イ素質焼結体の製造方法。
Silicon nitride powder and at least one sintering aid selected from yttria, alumina, and aluminum nitride are mixed and ground, a binder is added, and then shaped and dried,
After removing the binder, the silicon nitride sintered body is manufactured by firing.The thickness of the molded body is d (mm), the amount of binder added is a (wt%), and the molded body is heated during the binder removal process. The temperature was raised at a temperature increase rate of 300/d (°C/h) or less, and the binder was thermally decomposed and removed by holding the temperature at 500 to 900°C for 0.6·d·a (min) or more.
h) A method for producing a silicon nitride sintered body, characterized by cooling at a temperature lowering rate of:
JP63086654A 1988-04-08 1988-04-08 Production of sintered silicon nitride Pending JPH01261273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086654A JPH01261273A (en) 1988-04-08 1988-04-08 Production of sintered silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086654A JPH01261273A (en) 1988-04-08 1988-04-08 Production of sintered silicon nitride

Publications (1)

Publication Number Publication Date
JPH01261273A true JPH01261273A (en) 1989-10-18

Family

ID=13893018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086654A Pending JPH01261273A (en) 1988-04-08 1988-04-08 Production of sintered silicon nitride

Country Status (1)

Country Link
JP (1) JPH01261273A (en)

Similar Documents

Publication Publication Date Title
EP1338581B1 (en) Method for producing aluminum titanate sintered object
US4671912A (en) Method of manufacturing sintered ceramic body
JP3839537B2 (en) Production method of opaque quartz glass containing fine bubbles
US5387562A (en) Silicon slip-casting composition, and process for the preparation thereof
JPH01261273A (en) Production of sintered silicon nitride
JPH05194037A (en) Water extrusion of silicon nitride
CN108358628B (en) Mullite-zirconia composite ceramic and preparation method thereof
US4940843A (en) Method of producing non-oxide ceramic sintered bodies
JP2786719B2 (en) Method for producing rare earth oxide sintered body
SU865479A1 (en) Composition for making ceramic foundry cores
US3116350A (en) Production of slip cast calcia hollowware
JPS61225004A (en) Manufacture of injection molding ceramic molded shape with large-sized section
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JPH03290370A (en) Production of sintered silicon nitride having high toughness
JP2003104777A (en) Aluminum nitride powder and its production method
JP2510251B2 (en) Method for manufacturing silicon carbide sintered body
JPH01197307A (en) Silicon nitride fine powder having a low oxygen content and its production
JPH03159907A (en) Silicon nitride powder
JPH06172024A (en) Production of light-transmitting sintered spinel
JPS61186264A (en) Manufacture of silicon nitride sintered body
JPH02145482A (en) Packing powder composition for sintering silicon nitride
JPH06166569A (en) Production of sintered silicon nitride
JPS60230806A (en) Preparation of casting mud containing silicon
JPH01261277A (en) Granulated powder for production of silicon nitride sintered form
JPH01261274A (en) Production of silicon nitride sintered form