JPH02145482A - Packing powder composition for sintering silicon nitride - Google Patents

Packing powder composition for sintering silicon nitride

Info

Publication number
JPH02145482A
JPH02145482A JP63299258A JP29925888A JPH02145482A JP H02145482 A JPH02145482 A JP H02145482A JP 63299258 A JP63299258 A JP 63299258A JP 29925888 A JP29925888 A JP 29925888A JP H02145482 A JPH02145482 A JP H02145482A
Authority
JP
Japan
Prior art keywords
silicon
compound
silicon nitride
boron nitride
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63299258A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hashimoto
信行 橋本
Yasuo Imamura
保男 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP63299258A priority Critical patent/JPH02145482A/en
Publication of JPH02145482A publication Critical patent/JPH02145482A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride

Abstract

PURPOSE:To prevent the lowering of oxidation resistance of a sintered material in the sintering of silicon nitride containing a Zr compound as a sintering assistant by compounding silicon nitride, silicon, silicon dioxide, boron nitride and a compound other than Zr compound. CONSTITUTION:The objective packing powder composition contains 30-80wt.% of silicon nitride 2-6wt.% of silicon, 4-12wt.% of silicon dioxide and remaining part of boron nitride and a compound other than zirconium compound. The content of the compound other than zirconium compound is preferably 2-10wt.%. When the content is less than 2wt.%, the density of the sintered product becomes low and if it exceeds 10wt.%, the packing powder is solidified by sintering. The content of boron nitride is preferably 10-40wt.%. The packing powder is solidified to cause undesirable influences upon the deformation and releasability of the sintered product at a boron nitride content of <10wt.% and there is not further improvement of releasability by increasing the content of boron nitride to >40wt.%. Since boron nitride is expensive, the amount is as low as possible within a range not to deteriorate the releasability of the sintered product.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼結助剤としてジルコニア、ジルコン等のジ
ルコニウム化合物を含有する窒化珪素の焼結用詰粉組成
物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a filling composition for sintering silicon nitride containing a zirconium compound such as zirconia or zircon as a sintering aid.

〔従来の技術〕[Conventional technology]

従来、窒化珪素焼結体を製造する際に窒化珪素の分解抑
制のために1窒化珪素成形体を窒化珪素粉末中又は、焼
結助剤を含有した窒化珪素質焼結体とほぼ同一成分の粉
末中に埋設する方法が知られている。(特開昭61−2
1976号公報)しかしながら、焼結助剤として酸化ジ
ルコニウム、ジルコン等のジルコニウム化合物を含む窒
化焼成した成形体あるいは、グリーン成形体を上記の方
法で焼結すると焼結体の耐酸化性が損なわれる欠点があ
った。
Conventionally, in order to suppress the decomposition of silicon nitride when producing a silicon nitride sintered body, a silicon nitride molded body was mixed with a silicon nitride powder or a silicon nitride sintered body containing almost the same components as the silicon nitride sintered body containing a sintering aid. A method of embedding it in powder is known. (Unexamined Japanese Patent Publication No. 61-2
(No. 1976) However, when a nitrided fired molded body or a green molded body containing a zirconium compound such as zirconium oxide or zircon as a sintering aid is sintered by the above method, the oxidation resistance of the sintered body is impaired. was there.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記実情に鑑み、酸化ジルコニウム、ジルコ
ン等のジルコニウム化合物を焼結助剤として含む窒化珪
素の焼結に際し、焼結体の耐酸化性が損なわれるのを防
止するのに役立つ詰粉を提供しようとするものである。
In view of the above circumstances, the present invention provides a filling powder that is useful for preventing the oxidation resistance of a sintered body from being impaired when sintering silicon nitride containing a zirconium compound such as zirconium oxide or zircon as a sintering aid. This is what we are trying to provide.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、ジルコニウム化合物を焼結助剤と
して含有する窒化珪素の焼結用詰粉組成物であって、窒
化珪素6o〜8o重量%、シリコツ2〜6重貴チ、二酸
化珪素4〜12重量%、及び残部がジルコニウム化合物
以外の化合物と窒化硼素を含有してなることを特徴とす
る詰粉組成物である。
That is, the present invention is a filling powder composition for sintering silicon nitride containing a zirconium compound as a sintering aid, comprising 6 to 8 percent by weight of silicon nitride, 2 to 6 percent silicone, and 4 to 6 percent silicon dioxide. 12% by weight, and the balance contains a compound other than a zirconium compound and boron nitride.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明者らは、シリコン100重量部、フォルステライ
ト6.5〜20重量部、酸化ジルコニウム6.5〜10
重量部から成る混合粉末に成形バインダーを添加混練し
、成形乾燥後窒素雰囲気下1000〜1500℃で加熱
窒化し、次いで粉砕して成る窒化珪素粉末を所望形状に
成形後、会衆雰囲気下1550〜1800℃の焼結温度
で焼結させる際に、詰粉として、フォルステライト2〜
10重量%、シリコン2〜6重量%、二酸化珪素4〜1
2重量%、窒化珪素60〜80重量%で残部が窒化硼素
からなる組成物を用いれば耐酸化性を損なわない焼結体
が得られることを見い出し、本発明に至ったものである
The present inventors have obtained 100 parts by weight of silicon, 6.5 to 20 parts by weight of forsterite, and 6.5 to 10 parts by weight of zirconium oxide.
A molding binder is added to a mixed powder consisting of parts by weight, kneaded, molded and dried, heated and nitrided at 1000 to 1500°C under a nitrogen atmosphere, and then crushed to form a silicon nitride powder into a desired shape. When sintering at a sintering temperature of ℃, forsterite 2 ~
10% by weight, 2-6% by weight silicon, 4-1% silicon dioxide
The inventors have discovered that a sintered body that does not impair oxidation resistance can be obtained by using a composition comprising 2% by weight of silicon nitride, 60 to 80% by weight of silicon nitride, and the remainder boron nitride, leading to the present invention.

以上のように、本発明によって耐酸化性が損われない理
由は次のように考えている。すなわち、従来、耐酸化性
が損なわれる原因は、 4Sii、N4 + 6ZrO2,26ZrN + f
28i0↑+5N2↑−(1)(1)式で示される反応
によシ、ZrNを性成した焼結体は高温酸化雰囲気に曝
されるとZrNが酸化されてZrO2になシ、その時に
体積膨張を起こし焼結体にクラックを発生することによ
るものであるが、本発明では、詰粉にシリコンと二酸化
珪素を含有させることによって(2)式の反応によp 
SiOを発生させ(1)式の右側への反応を抑制できた
ためである。
As mentioned above, the reason why the oxidation resistance is not impaired by the present invention is considered as follows. That is, conventionally, the cause of loss of oxidation resistance is 4Sii, N4 + 6ZrO2, 26ZrN + f
28i0↑+5N2↑-(1) According to the reaction shown by the equation (1), when a sintered body made of ZrN is exposed to a high-temperature oxidizing atmosphere, ZrN is oxidized and becomes ZrO2, and at that time the volume decreases. This is due to expansion and cracks in the sintered body, but in the present invention, by containing silicon and silicon dioxide in the packed powder, p is caused by the reaction of equation (2).
This is because SiO was generated and the reaction to the right side of equation (1) could be suppressed.

Si + 5i02 : 28i0↑−(2)本発明の
詰粉の各成分割合について説明すると、主成分は窒化珪
素である。これは、本発明が対象としている焼結体は窒
化珪素であることにもとづいている。詰粉中の窒化珪素
の含有量は60〜80重量%であることが望ましい。一
方、シリコンは2〜6重量%、二酸化珪素は4〜12重
量%である。特に両者は等モル程度であることがより望
ましい。シリコン2重量%未満及び二酸化珪素4重量−
未満では焼結体の耐酸化性が低下する。
Si + 5i02: 28i0↑-(2) To explain the proportions of each component in the stuffed powder of the present invention, the main component is silicon nitride. This is based on the fact that the sintered body targeted by the present invention is silicon nitride. The content of silicon nitride in the stuffed powder is preferably 60 to 80% by weight. On the other hand, silicon is 2 to 6% by weight, and silicon dioxide is 4 to 12% by weight. In particular, it is more desirable that the two be in equimolar amounts. Less than 2% silicon and 4% silicon dioxide by weight
If it is less than that, the oxidation resistance of the sintered body decreases.

また、シリコンが6重量%をこえるか又は二酸化珪素が
12重量%をこえると焼結後の詰粉を固くし焼結体に悪
影響を与えるおそれがある。
Furthermore, if the silicon content exceeds 6% by weight or the silicon dioxide content exceeds 12% by weight, the packed powder after sintering may become hard, which may adversely affect the sintered body.

ジルコニラ・ム化合物以外の化合物の含有量は2〜10
重量%であることが望ましい。2重量%未満では焼結体
の緻密化に劣シ、一方、10重量%をこえると焼結後の
詰粉を固くする。この種の化合物の例としては、従来よ
シ焼結助剤として機能することが知られているものであ
シ、具体的には、酸化アルミニウム、酸化マグネシウム
、窒化アルミニウム、フォルステライト、酸化イツトリ
ウム等の希土類元素の酸化物などである。
The content of compounds other than zirconyl-mu compounds is 2 to 10
Preferably, it is % by weight. If it is less than 2% by weight, the densification of the sintered body is poor, while if it exceeds 10% by weight, the powder after sintering becomes hard. Examples of this type of compound include those conventionally known to function as sintering aids, such as aluminum oxide, magnesium oxide, aluminum nitride, forsterite, yttrium oxide, etc. oxides of rare earth elements.

窒化硼素の含有量は10〜40重量%であることが好ま
しい。10重量%未満では詰粉が固くなシ焼結体の変形
や離形に悪影響を与えるおそれがあシ、一方、40重量
%をこえて含有させる離形性改善上の利点はない。窒化
硼素は高価であるので離形性を損なわせカい範囲で少量
がよい。
The content of boron nitride is preferably 10 to 40% by weight. If the powder content is less than 10% by weight, it may adversely affect the deformation and mold release of the hard sintered body, while if it is contained in excess of 40% by weight, there is no advantage in improving mold release properties. Since boron nitride is expensive, it is preferable to use a small amount of boron nitride as long as it does not impair mold releasability.

〔実施例〕〔Example〕

以下、実施例と比較例をあげてさらに具体的に本発明を
説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1〜7 比較例1〜8 シリコン粉末(市販品、平均粒径10μm1比表面積5
m”/g ) 100重量部に対し焼結助剤としてフォ
ルステライト粉末(市販品、平均粒径2μm、比表面積
12m2/g)と酸化ジルコニウムこと 粉末(市販品、平均粒径2μm比表面積10TrL2/
g ’) 4.8重量部をミックスフラー混練様に装入
し、先づ乾式混合した後次いで濃度5%のポパール溶に
成形後150℃で乾燥して成形体となし、それをバッチ
式の窒化炉で加熱開始から合計90時間かけて1000
〜1450℃まで徐々に昇温窒化20時時間式粉砕した
。この粉砕品を乾燥解砕して得られた粉末(平均粒径0
.9μm1比表面積8.2 m2/ l! )を100
 kli/cIn2の圧力で10x60X7v1形状に
金属成形し、次いで1000kg/crn2の圧力で静
水圧プレスを行った。
Examples 1 to 7 Comparative Examples 1 to 8 Silicon powder (commercial product, average particle size 10 μm 1 specific surface area 5
Forsterite powder (commercial product, average particle size 2 μm, specific surface area 12 m2/g) and zirconium oxide powder (commercial product, average particle size 2 μm, specific surface area 10 TrL2/g) per 100 parts by weight of sintering aids.
g') 4.8 parts by weight were charged in a MixFuller kneading manner, first dry-mixed, then molded into a Popal solution with a concentration of 5%, dried at 150°C to form a molded body, and then subjected to a batch-type process. 1,000 in a total of 90 hours from the start of heating in a nitriding furnace
The mixture was gradually heated up to 1450°C and nitrided for 20 hours. The powder obtained by drying and crushing this pulverized product (average particle size 0
.. 9μm1 specific surface area 8.2 m2/l! ) to 100
Metal forming was carried out into a 10x60x7v1 shape at a pressure of kli/cIn2, and then hydrostatic pressing was performed at a pressure of 1000 kg/crn2.

以上のようにして得られた成形体を第1表に示す各種詰
粉な用いて1650℃×6時間で常圧焼結を行った。
The molded bodies obtained as described above were subjected to atmospheric pressure sintering at 1650° C. for 6 hours using various powders shown in Table 1.

得られた焼結体はJISR1601に準拠して研削加工
しテストピースを作製しアルキメデス法(、Tl5R2
205に準拠)で嵩比重を測定し相対密度を算出した。
The obtained sintered body was ground according to JISR1601 to prepare a test piece, and the Archimedean method (Tl5R2
205), the bulk specific gravity was measured and the relative density was calculated.

高比重測定後のテストピースは乾燥後温度1300℃の
空気中で耐酸化性テストを行った。
After drying the test piece after high specific gravity measurement, an oxidation resistance test was conducted in air at a temperature of 1300°C.

テスト時間は100時間とし、耐酸化性を酸化増量(単
位面積当りの重量増加)及びクラックの発生を外観によ
シ評価した。それらの結果を第1表に示した。
The test time was 100 hours, and oxidation resistance was evaluated based on oxidation weight gain (weight increase per unit area) and crack occurrence based on appearance. The results are shown in Table 1.

(7〕 実施例8〜10 ジルコニウム化合物以外の化合物として、フォルステラ
イトのかわシに酸化アルミニウム(市販品、平均粒径0
.8μm、比表面積7m2/、!?)、酸化マグネシウ
ム(市販品、平均粒径0.9μm、比表面積23m2/
、!i’)又は窒化アルミニウム(市販品、平均粒径1
.9μm1比表面積5.5 m”/ 、!i’ )を用
いたこと以外は実施例4と同一の条件で焼結体を製造し
評価した。その結果を第2表に示す。
(7) Examples 8 to 10 As a compound other than the zirconium compound, aluminum oxide (commercial product, average particle size 0
.. 8μm, specific surface area 7m2/,! ? ), magnesium oxide (commercial product, average particle size 0.9 μm, specific surface area 23 m2/
,! i') or aluminum nitride (commercial product, average particle size 1
.. A sintered body was produced and evaluated under the same conditions as in Example 4, except that 9 μm 1 specific surface area 5.5 m”/,!i') was used. The results are shown in Table 2.

れた焼結体の耐酸化性の低下を著しく防止することがで
きる。
It is possible to significantly prevent a decrease in the oxidation resistance of the sintered body.

Claims (1)

【特許請求の範囲】[Claims] 1.ジルコニウム化合物を焼結助剤として含有する窒化
珪素の焼結用詰粉組成物であつて、窒化珪素60〜80
重量%、シリコン2〜6重量%、二酸化珪素4〜12重
量%及び残部がジルコニウム化合物以外の化合物と窒化
硼素を含有してなることを特徴とする詰粉組成物。
1. A filling powder composition for sintering silicon nitride containing a zirconium compound as a sintering aid, the composition comprising 60 to 80% silicon nitride.
1. A powder filling composition comprising 2 to 6 percent by weight of silicon, 4 to 12 percent by weight of silicon dioxide, and the balance containing a compound other than a zirconium compound and boron nitride.
JP63299258A 1988-11-26 1988-11-26 Packing powder composition for sintering silicon nitride Pending JPH02145482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299258A JPH02145482A (en) 1988-11-26 1988-11-26 Packing powder composition for sintering silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299258A JPH02145482A (en) 1988-11-26 1988-11-26 Packing powder composition for sintering silicon nitride

Publications (1)

Publication Number Publication Date
JPH02145482A true JPH02145482A (en) 1990-06-04

Family

ID=17870208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299258A Pending JPH02145482A (en) 1988-11-26 1988-11-26 Packing powder composition for sintering silicon nitride

Country Status (1)

Country Link
JP (1) JPH02145482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021688A1 (en) * 2014-08-07 2016-02-11 日産化学工業株式会社 Silane-treated forsterite fine particles and production method therefor, and organic solvent dispersion of silane-treated forsterite fine particles and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021688A1 (en) * 2014-08-07 2016-02-11 日産化学工業株式会社 Silane-treated forsterite fine particles and production method therefor, and organic solvent dispersion of silane-treated forsterite fine particles and production method therefor
KR20170039137A (en) * 2014-08-07 2017-04-10 닛산 가가쿠 고교 가부시키 가이샤 Silane-treated forsterite fine particles and production method therefor, and organic solvent dispersion of silane-treated forsterite fine particles and production method therefor
JPWO2016021688A1 (en) * 2014-08-07 2017-05-25 日産化学工業株式会社 Silane-treated forsterite fine particles and production method thereof, organic solvent dispersion of silane-treated forsterite fine particles and production method thereof
US10501637B2 (en) 2014-08-07 2019-12-10 Nissan Chemical Industries, Ltd. Silane-treated forsterite fine particles and production method therefor, and organic solvent dispersion of silane-treated forsterite fine particles and production method therefor

Similar Documents

Publication Publication Date Title
JPS6152108B2 (en)
JPH0577632B2 (en)
JP3284310B2 (en) Production of α-phase silicon nitride, conversion to β-phase
JP3321621B2 (en) Manufacture of silicon nitride with densification aid and resulting product
JPH0222175A (en) Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder
JPH02145482A (en) Packing powder composition for sintering silicon nitride
JP2786719B2 (en) Method for producing rare earth oxide sintered body
JPS63319263A (en) Silicon nitride-based ceramic
JP2002053376A (en) Method for sintering silicon nitride ceramics
JP2687632B2 (en) Method for producing silicon nitride sintered body
SU865479A1 (en) Composition for making ceramic foundry cores
JPS5895660A (en) Silicon nitride sintered body and manufacture
JP2910359B2 (en) Method for producing silicon nitride based sintered body
JP2720201B2 (en) Method for producing silicon nitride sintered body
JPH075386B2 (en) Silicon nitride sintering aid and method for producing silicon nitride sintered body using the same
JP2002201083A (en) Ceramic porous compact and method of manufacturing the same
JP2916934B2 (en) Method for producing sialon-based sintered body
JPH0568428B2 (en)
JPH0511064B2 (en)
JPH05178669A (en) Production of silicon nitride sintered body
JPH0535107B2 (en)
JPH05238829A (en) Sintered silicone nitride ceramic
JPS62128968A (en) Nitroxide ceramic material and manufacture
JPH06239665A (en) Method for sintering ceramic
JPS63185866A (en) Manufacture of silicon nitride sintered body