JP2001122653A - Production process of carbonate hardened body - Google Patents

Production process of carbonate hardened body

Info

Publication number
JP2001122653A
JP2001122653A JP30351599A JP30351599A JP2001122653A JP 2001122653 A JP2001122653 A JP 2001122653A JP 30351599 A JP30351599 A JP 30351599A JP 30351599 A JP30351599 A JP 30351599A JP 2001122653 A JP2001122653 A JP 2001122653A
Authority
JP
Japan
Prior art keywords
cured
calcareous
formed body
raw material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30351599A
Other languages
Japanese (ja)
Other versions
JP2001122653A5 (en
JP4664462B2 (en
Inventor
Noribumi Isu
紀文 井須
Toshifumi Teramura
敏史 寺村
Kenji Inagaki
憲次 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clion Co Ltd
Kenzai Gijutsu Kenkyusho KK
Original Assignee
Clion Co Ltd
Kenzai Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clion Co Ltd, Kenzai Gijutsu Kenkyusho KK filed Critical Clion Co Ltd
Priority to JP30351599A priority Critical patent/JP4664462B2/en
Publication of JP2001122653A publication Critical patent/JP2001122653A/en
Publication of JP2001122653A5 publication Critical patent/JP2001122653A5/ja
Application granted granted Critical
Publication of JP4664462B2 publication Critical patent/JP4664462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0231Carbon dioxide hardening

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbonate hardened body production process for producing a carbonate formed body having sufficient material strength by forming a calcareous raw material and a siliceous raw material into a formed body and subjecting the formed body to carbonation to promote the carbonization to the inside of the formed body. SOLUTION: This process comprises forming a grainy powder in which a calcareous material and a siliceous material coexist into a formed body, and curing the formed body in the presence of gaseous carbon dioxide to form calcium carbonate within the formed body and to harden the formed body. The grainy powder, before formed into a formed body, is subjected to pulverization treatment causing a mechanochemical reaction in the powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築用の内装・外
装あるいは土木資材等に使用される材料であって、石灰
質と珪酸質原料とから成形された成形体の炭酸硬化体の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon dioxide cured product of a molded product made of calcareous and siliceous raw materials, which is a material used for interior / exterior building or civil engineering material for buildings. Things.

【0002】[0002]

【従来の技術】石灰質原料粉と珪酸質原料粉とを混合し
た珪酸カルシウム化合物を主成分とする原料粉粒体を炭
酸ガスと反応させることにより硬化させる技術として、
軽量気泡コンクリート(ALC)あるいはセメント系硬
化物の粉粒体と水との混合物を加圧成形し、ついでその
成形体を炭酸ガスの雰囲気で反応させて固化させる炭酸
硬化体の製造方法が提案されている。(特開平7―25
679号公報、特開平7―284628号公報) これらの成形固化技術は、炭酸化反応によって原料中の
カルシウム成分が炭酸カルシウムとなって析出し、それ
が原料粒子間の空隙に充填されてバインダーの機能を果
たすことにより成形体が固化すると解釈されている。ま
た、炭酸カルシウムがその空隙により密接に充填される
ほど、生成された炭酸硬化体は材料強度(力学的性質)
が増加することも知られている。
2. Description of the Related Art As a technique for hardening by reacting a raw material granule mainly composed of a calcium silicate compound obtained by mixing a calcareous raw material powder and a siliceous raw material powder with carbon dioxide gas,
There has been proposed a method for producing a hardened carbonic acid product in which a mixture of light-weight cellular concrete (ALC) or a cement-based hardened material granule and water is pressure-formed, and the formed body is reacted in a carbon dioxide gas atmosphere to be solidified. ing. (Japanese Patent Laid-Open No. 7-25
No. 679, Japanese Unexamined Patent Publication No. Hei 7-284628) These molding and solidifying techniques are based on the fact that a calcium component in a raw material is precipitated as calcium carbonate by a carbonation reaction, and is filled in voids between the raw material particles to form a binder. It is interpreted that the compact is solidified by performing the function. In addition, the more closely the calcium carbonate is filled into the voids, the more the resulting carbonized hardened material has a material strength (mechanical properties).
Is also known to increase.

【0003】[0003]

【発明が解決しようとする課題】しかし、成形体の炭酸
化反応の過程において、多量の炭酸カルシウムが析出さ
れても十分な炭酸硬化体が得られない。この理由とし
て、次に示す推察がなされている。水酸化カルシウムの
モル体積33.1cc/molに対して炭酸カルシウム
の多形の一つである方解石はモル体積36.9cc/m
olと約1.1倍であり、炭酸カルシウム結晶は水酸化
カルシウム結晶に比べて結晶格子の体積が大きくなる。
そのため予め別々に粉砕された石灰質原料粉と珪酸質原
料粉とを単に混合して製造原料としても、分子レベルで
の混合は困難であり、石灰質原料が濃集した部分が残存
してしまう。そして、成形体内に石灰質原料が濃集した
部分において炭酸カルシウム結晶が生成されるとその体
積膨張により、硬化体の組織が内部から破壊されるよう
になる。これにより硬化体そのものの材料強度を向上さ
せることができない。
However, in the course of the carbonation reaction of the compact, a sufficient amount of cured carbon dioxide cannot be obtained even if a large amount of calcium carbonate is precipitated. The following speculation has been made for this reason. Calcite, one of the polymorphs of calcium carbonate, has a molar volume of 36.9 cc / m, while the molar volume of calcium hydroxide is 33.1 cc / mol.
ol and about 1.1 times, and the volume of the crystal lattice of the calcium carbonate crystal is larger than that of the calcium hydroxide crystal.
Therefore, even if the calcareous raw material powder and the siliceous raw material powder, which have been separately ground in advance, are simply mixed to produce a raw material, it is difficult to mix them at the molecular level, and a portion where the calcareous raw material is concentrated remains. When calcium carbonate crystals are generated in a portion where the calcareous raw material is concentrated in the molded body, the structure of the cured body is destroyed from the inside due to the volume expansion. As a result, the material strength of the cured body itself cannot be improved.

【0004】また、細粒粉体によって成形体を形成する
とその成形体の嵩密度は大きくなる。このため成形体を
炭酸ガスによって炭酸化養生する際に、成形体内部への
炭酸ガス透過性が低下してしまい内部の炭酸化が進行し
難くなる。その結果十分な強度の炭酸硬化体を得ること
ができなかった。このように硬化体の材料強度が十分に
得られないことは、建築材料等として用いた場合、その
長期耐久性に問題が生じることになる。そこで、本発明
の目的は上記問題点を解決して、石灰質と珪酸質原料と
から成形された成形体の内部にまで炭酸化を促進させ
て、十分な材料強度のある炭酸硬化体の製造方法を提供
することにある。
[0004] When a compact is formed from fine powder, the bulk density of the compact increases. Therefore, when the molded body is subjected to carbonation curing with carbon dioxide gas, the permeability of carbon dioxide gas into the molded body is reduced, and the carbonation inside the molded body is less likely to proceed. As a result, it was not possible to obtain a carbonic acid cured product having sufficient strength. Insufficient material strength of the cured body as described above causes a problem in long-term durability when used as a building material or the like. Therefore, an object of the present invention is to solve the above-mentioned problems, and to promote carbonation to the inside of a molded product formed from calcareous and siliceous raw materials, thereby producing a method for producing a cured carbonic material having sufficient material strength. Is to provide.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決するために、石灰質と珪酸質とが共存する粉粒体を成
形し、成形体を炭酸ガス存在下で養生することにより、
成形体中に炭酸カルシウムを生成させて成形体を硬化さ
せる炭酸硬化体の製造方法において、成形前の粉粒体に
メカノケミカル反応を生起させる粉砕処理を行う炭酸硬
化体の製造方法とした。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention is to form a granule in which calcareous and siliceous substances coexist and cure the formed body in the presence of carbon dioxide gas.
In a method for producing a cured carbonic acid product in which calcium carbonate is formed in a molded product and the molded product is cured, a method for producing a cured carbonic acid product in which a pulverizing treatment for causing a mechanochemical reaction on the powder before molding is performed.

【0006】[0006]

【発明の実施の形態】本発明では、石灰質と珪酸質とが
共存する原料粉粒体にメカノケミカル反応を生起させる
粉砕処理を行った後、成形処理によって形成された成形
体を炭酸ガス存在下で養生することにより、その成形体
中に炭酸カルシウムを生成させて炭酸硬化体を製造す
る。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, after a pulverization treatment for causing a mechanochemical reaction is performed on a raw material powder in which calcareous material and siliceous material coexist, a molded material formed by the molding treatment is subjected to carbon dioxide gas. Curing to produce calcium carbonate in the molded product to produce a cured carbonic acid product.

【0007】また、石灰質と珪酸質とが共存する原料粉
粒体にメカノケミカル反応を生起させる粉砕処理を行う
ことによって、粉粒体中に非晶質珪酸カルシウム水和物
(C−S−H)が生成される。この非晶質珪酸カルシウ
ム水和物(C−S−H)は、結晶性水酸化カルシウム
(トバモライト等)と違って結晶構造が乱れているため
エネルギー的に不安定である。このため炭酸ガス養生に
対してCa2+イオンが溶出され易くなり、結晶質珪酸カ
ルシウム水和物に比べて速やかに炭酸カルシウムが析出
されるようになる。この作用により、成形体の表層部だ
けでなく成形体内部にまで炭酸化反応がほぼ同時に容易
に進行するようになる。
[0007] Further, by performing a pulverization treatment for causing a mechanochemical reaction on a raw material powder in which calcareous and siliceous substances coexist, amorphous calcium silicate hydrate (CSH) is contained in the powder. ) Is generated. This amorphous calcium silicate hydrate (CSH) is unstable in terms of energy because it has a disordered crystal structure unlike crystalline calcium hydroxide (such as tobermorite). For this reason, Ca 2+ ions are easily eluted with respect to carbon dioxide gas curing, and calcium carbonate is precipitated more quickly than crystalline calcium silicate hydrate. By this action, the carbonation reaction easily and easily proceeds not only to the surface layer portion of the molded body but also to the inside of the molded body.

【0008】さらに、粉砕処理により生成された非晶質
珪酸酸カルシウム水和物(C−S−H)の微細粒子が、
Ca2+イオンを溶出してさらに炭酸カルシウムを析出さ
せる際に、原料粒子間の空隙に溶出したCa2+イオンは
その空隙を充填するように炭酸カルシウムを析出させる
ため、粒子間を密接に接合させるバインダー機能の役目
を果たすようになる。
Further, fine particles of amorphous calcium silicate hydrate (CSH) produced by the pulverizing treatment are:
When Ca 2+ ions are eluted to further precipitate calcium carbonate, Ca 2+ ions eluted in the gap between the raw material particles precipitate calcium carbonate so as to fill the gap, so that the particles are closely bonded. It plays the role of a binder function to make it work.

【0009】併せて、原料の混合粉砕処理によって分子
レベルの混合が十分なされて石灰質原料の濃集された部
分がなくなる。これにより炭酸カルシウムと水酸化カル
シウムとの結晶体積の違いにより発生していた硬化体内
部からの組織破壊は、従来と違って非常に少なくなる。
さらに、析出した炭酸カルシウム結晶は十分に微小であ
るため、粒子同士の結合力も高くなる。また、非晶質珪
酸酸カルシウム水和物(C−S−H)からCa2+イオン
が溶出して生成されたシリカゲルは、それ自身が体積収
縮するため硬化体の内部構造がより緻密となり全体の材
料強度を向上させる。なお、珪酸質原料は基本的に炭酸
化養生時によって反応しないとともに、珪酸質原料が材
料収縮に与える影響は非常に小さいことは知られてい
る。以上の理由により、炭酸硬化体としての材料強度を
向上させることができると推測される。
In addition, the mixing and pulverization of the raw materials ensures sufficient mixing at the molecular level, thereby eliminating the concentrated portion of the calcareous raw material. As a result, tissue destruction from the inside of the hardened body caused by the difference in the crystal volume between calcium carbonate and calcium hydroxide is extremely reduced unlike the conventional case.
Furthermore, since the precipitated calcium carbonate crystal is sufficiently small, the bonding force between the particles is also increased. In addition, silica gel produced by elution of Ca 2+ ions from amorphous calcium silicate hydrate (C—S—H) shrinks in volume by itself, so that the internal structure of the cured product becomes more dense and the entire structure becomes denser. Improve material strength. It is known that the siliceous raw material basically does not react during the carbonation curing, and that the influence of the siliceous raw material on the material shrinkage is extremely small. For the above reasons, it is presumed that the material strength as a carbonic acid cured product can be improved.

【0010】原料粉粒体にメカノケミカル反応を生起さ
せるための粉砕機は、特別な制限はなく、例えばボール
ミル、振動ミル、アトライターミル、ディスクミル等を
用いることができる。さらに、粉砕時に衝撃力が大きい
ものほど、短時間でメカノケミカル反応を生起させるこ
とができるため、望ましい。粉砕処理後の粉粒体の粒径
は、加圧成型時に圧壊されるため特に限定されないが、
平均で5mm〜1μmが生産性または炭酸化効率の面で
望ましい。この5mmを超える粒径では加圧成形が困難
になり、また1μm未満では炭酸化ガスの材料内部への
浸透が困難になる。また、粉砕は乾式粉砕でも湿式粉砕
でも可能である。乾式粉砕の場合は、粉砕助剤として
水、エタノール、エチレングリコール、トリエタノール
アミン等を用いることができる。
The pulverizer for causing a mechanochemical reaction on the raw material powder is not particularly limited, and for example, a ball mill, a vibration mill, an attritor mill, a disk mill, or the like can be used. Further, a material having a large impact force during pulverization is preferable because a mechanochemical reaction can be caused in a short time. The particle size of the powder after the pulverization treatment is not particularly limited because it is crushed during pressure molding,
An average of 5 mm to 1 μm is desirable in terms of productivity or carbonation efficiency. When the particle size exceeds 5 mm, pressure molding becomes difficult. When the particle size is less than 1 μm, it becomes difficult for the carbonation gas to penetrate into the material. The pulverization can be either dry pulverization or wet pulverization. In the case of dry grinding, water, ethanol, ethylene glycol, triethanolamine and the like can be used as grinding aids.

【0011】原料粉粒体のCa/Siモル比は0.2〜
4.0にすると、十分な材料強度が得られて好ましい。
Ca/Siモル比が0.2より小さいと十分な量の炭酸
カルシウムが生成されないため、バインダー機能を十分
果たすことができない。また、Ca/Siモル比が4.
0より大きいと成形体中の空隙に対して充填される炭酸
カルシウム量が過剰となり、先のモル体積の増加により
硬化体内部の組織破壊(クラック)が発生するようにな
る。また、さらには、Ca/Siモル比が0.3〜1.
0であると最も適切な炭酸化状態となるため、比強度
(強度/比重)が高くなり、また安価な珪酸質原料を十
分に使用することができるため望ましい。このCa/S
iモル比は、次段落0012記載の2種類以上の原料粉
粒体を混合する、または必要に応じて原料粉粒体に石灰
質及び/または珪酸質成分を添加して調整することによ
り得ることもできる。
The molar ratio of Ca / Si of the raw material powder is 0.2 to
A value of 4.0 is preferable because sufficient material strength can be obtained.
If the Ca / Si molar ratio is smaller than 0.2, a sufficient amount of calcium carbonate is not generated, so that the binder function cannot be sufficiently performed. The Ca / Si molar ratio is 4.
If it is larger than 0, the amount of calcium carbonate filled in the voids in the molded body becomes excessive, and the structural increase (crack) inside the cured body occurs due to the increase in the molar volume. Further, the molar ratio of Ca / Si is 0.3-1.
When the value is 0, the most appropriate carbonation state is obtained, so that the specific strength (strength / specific gravity) increases, and an inexpensive siliceous raw material can be sufficiently used. This Ca / S
The i molar ratio can also be obtained by mixing two or more types of raw material particles described in the following paragraph 0012, or adjusting the raw material particles by adding a calcareous and / or siliceous component to the raw material particles as necessary. it can.

【0012】原料粉粒体は、石灰質を主成分とするも
の、珪酸質を主成分とするもの、石灰質と珪酸質とを主
成分とするものであれば特に制限はされない。石灰質を
主成分とする粉粒体は、消石灰、生石灰、石灰石等があ
る。また、珪酸質を主成分とする粉粒体は、珪砂、フラ
イアッシュ、シリカフューム、ガラス、粘土、珪藻土等
がある。さらに、石灰質と珪酸質とを主成分とする粉粒
体は、セメント、セメント副産物(γ―C2S)、高炉
水砕スラグ、生コンスラッジ、コンクリート、またはセ
メント系2次製品(ALC(軽量気泡コンクリート)、
ケイカル板、サイディング)等がある。これらの中で
は、フライアッシュ、コンクリート廃材、セメント系2
次製品の廃材等の産業廃棄物を利用することがリサイク
ルの観点から好ましく、さらに石灰質成分の多いコンク
リート廃材においては、炭酸化によって生成される炭酸
カルシウム量が増加するため、材料強度の高い炭酸硬化
体を得ることができるようになり、より望ましい。な
お、原料粉粒体には、石灰質および珪酸質以外の成分が
含有されていても良い。
The raw material particles are not particularly limited as long as they are mainly composed of calcareous materials, those mainly composed of siliceous materials, and those mainly composed of calcareous materials and siliceous materials. Powdered granules mainly composed of calcareous materials include slaked lime, quicklime, limestone and the like. Further, examples of the powdery granules mainly composed of siliceous materials include silica sand, fly ash, silica fume, glass, clay, and diatomaceous earth. In addition, powders mainly composed of calcareous and siliceous materials are used as cement, cement by-product (γ-C2S), granulated blast furnace slag, raw corn sludge, concrete, or cement-based secondary products (ALC (lightweight cellular concrete)). ,
Caical board, siding) and the like. Among them, fly ash, concrete waste, cement 2
It is preferable from the viewpoint of recycling to use industrial waste such as waste material of the next product, and furthermore, in the case of concrete waste material containing a large amount of calcareous material, the amount of calcium carbonate generated by carbonation increases, so that carbonation hardening with high material strength is performed. Being able to gain body is more desirable. The raw material particles may contain components other than calcareous and siliceous materials.

【0013】また、珪酸質を主成分とする珪藻土を原料
粉粒体に使用すると、完成した炭酸硬化体は、材料強度
が高いとともに炭酸化反応により生成された炭酸カルシ
ウムとシリカゲルの細孔構造により、調湿機能も兼ね備
えた部材(硬化体)を得ることが可能となる。そのた
め、この部材は、例えばボード状に加工することによ
り、室内の調湿機能を備えた内装用壁材として活用する
ことができ、より好適なものとなる。
When diatomaceous earth mainly composed of siliceous material is used for the raw material powder, the cured carbonic acid product has a high material strength and has a pore structure of calcium carbonate and silica gel produced by the carbonation reaction. Thus, it is possible to obtain a member (cured body) having a humidity control function. Therefore, by processing this member into a board shape, for example, it can be used as an interior wall material having a humidity control function in a room, and is more suitable.

【0014】さらに、前記石灰質が消石灰であると、そ
の成分中の水分子が容易に放出され非晶質珪酸カルシウ
ム水和物(C−S−H)が生成され易いため、より好ま
しい。また、粉砕処理時またはそれ以前に、生石灰と水
とを反応させて消石灰が生成されると、水和熱が発生し
湿式粉砕によるメカノケミカル反応速度が速まり、より
望ましい。
Further, it is more preferable that the calcareous substance be slaked lime, since water molecules in the component are easily released and amorphous calcium silicate hydrate (CSH) is easily formed. Further, when slaked lime is generated by reacting quicklime and water during or before the pulverizing treatment, heat of hydration is generated and the mechanochemical reaction rate by wet pulverization is increased, which is more preferable.

【0015】成形体の形成時に、炭酸反応に影響しない
補強繊維、骨材、顔料等の添加材を同時に添加すること
も可能である。しかし、これらは粉砕によって破壊され
る可能性があるので、粉砕処理後に添加することが望ま
しい。また、成形体の形成に際して必要となる水分は、
粉砕処理前に添加すると粉砕機の内壁に粉粒体が付着し
やすくなるため、粉砕処理後に加水することが望まし
い。成形体の形成方法としては、加圧成形、鋳込み、抄
造等があるが、加圧成形が加水量が少ないため、成形体
の乾燥時間が短縮できるとともに炭酸化速度が速くなる
ため好ましい。さらに、その加圧成形としてプレス成
形、押出し成型が適用可能であるがプレス成形が低含水
率であっても容易に成形可能であり好ましい。このとき
の加圧力は5〜30MPaの範囲であると、ハンドリン
グに対して適度な硬度が得られているとともに、成形装
置を小型化できて望ましい。
During the formation of the molded article, it is possible to simultaneously add additives such as reinforcing fibers, aggregates and pigments which do not affect the carbonation reaction. However, since these may be destroyed by pulverization, it is desirable to add them after the pulverization treatment. In addition, the water required for forming the molded body is:
If added before the pulverizing treatment, the powder and granules easily adhere to the inner wall of the pulverizer. Therefore, it is desirable to add water after the pulverizing treatment. Examples of the method for forming the molded body include pressure molding, casting, and papermaking. However, since pressure molding has a small amount of water, the drying time of the molded body can be shortened and the carbonation rate is increased. Further, press molding and extrusion molding can be applied as the pressure molding, but it is preferable because press molding can be easily performed even if the water content is low. If the pressing force at this time is in the range of 5 to 30 MPa, appropriate hardness for handling is obtained, and the molding apparatus can be downsized.

【0016】成形体を炭酸ガス存在下で炭酸化養生する
には、次の方法がある。反応条件を温度0〜100℃、
炭酸ガス濃度2〜100%とした容器内で密閉養生して
反応硬化させる。この方法は工業的には好ましいが、そ
れ以外に燃焼時に発生する排気ガス中の炭酸ガス等を使
用することもできる。また、炭酸ガス圧に関しては負圧
条件であっても良いが、高圧であればより反応速度が速
くなるため望ましい。
There are the following methods for carbonating and curing the compact in the presence of carbon dioxide gas. Reaction conditions are temperature 0-100 ° C,
The mixture is sealed and cured in a vessel having a carbon dioxide gas concentration of 2 to 100% to be cured. This method is industrially preferable, but it is also possible to use carbon dioxide gas or the like in the exhaust gas generated during combustion. In addition, the carbon dioxide gas pressure may be a negative pressure condition, but a high pressure is desirable because the reaction speed becomes faster.

【0017】なお、メカノケミカル反応の生起の有無の
確認は、例えばX線回折による格子不整の変化、電子線
回折、溶解度、熱分析、赤外スペクトル、ラマン分光
法、動径分布解析、ESR、NMR等の方法を用いて計
測することができる。
The presence or absence of occurrence of a mechanochemical reaction can be confirmed by, for example, a change in lattice irregularity by X-ray diffraction, electron diffraction, solubility, thermal analysis, infrared spectrum, Raman spectroscopy, radial distribution analysis, ESR, It can be measured using a method such as NMR.

【0018】[0018]

【実施例】以下、本発明の実施例及び比較例を示しま
す。 (実施例1)石灰質と珪酸質とを主成分とするALC
(軽量気泡コンクリート)と(石灰質成分を主成分とす
る)消石灰とを混合して、メカノケミカル反応を生起さ
せた原料粉粒体を使用した場合を以下に示す。オートク
レーブ処理されたALCを破砕した後それを2mm以下
に分級した粉粒体95〜50重量部と、消石灰5〜50
重量部とを混合し、アルミナ製ボールミル(内容積1.
6L)によって2時間及び4時間粉砕処理した原料粉粒
体を生成した。この粉粒体をX線回折によって分析する
と、粉砕時間とともに消石灰およびALCの構成物であ
るトバモライトの回折強度が低くかつ回折線の半価幅が
大きくなり、メカノケミカル反応が生起していることが
確認できた。
EXAMPLES Examples of the present invention and comparative examples are shown below. (Example 1) ALC mainly composed of calcareous and siliceous substances
A case where a raw material granule in which a mechanochemical reaction is caused by mixing (lightweight cellular concrete) and slaked lime (having a calcareous component as a main component) is used is shown below. After crushing the autoclaved ALC and classifying it to 2 mm or less, 95 to 50 parts by weight of powdery granules, and slaked lime 5 to 50 parts
Parts by weight and an alumina ball mill (internal volume 1.
6L) to produce raw material particles pulverized for 2 hours and 4 hours. Analysis of this powder by X-ray diffraction shows that the diffraction intensity of slaked lime and tobermorite, which is a constituent of ALC, is low and the half-width of the diffraction line is large with the grinding time, and a mechanochemical reaction is occurring. It could be confirmed.

【0019】この粉粒体を含水率40%に調整し、プレ
ス圧20MPaで加圧成形し、炭酸ガス濃度100%、
炭酸ガス圧0.2MPaの存在下で24時間炭酸化を行
った。これによって得られた硬化体の粉砕処理時間と曲
げ強度との関係を表1に示す。表1に示すように、粉砕
処理を行うとともにその時間を長くすると曲げ強度が大
きく向上した炭酸硬化体が得られるようになるととも
に、いずれの混合組成比率の場合であっても同様の傾向
が見られた。また、消石灰の混合比率を大きく設定する
に伴って硬化体の曲げ強度がより高くなる傾向も見られ
た。さらに、この結果より、4時間の粉砕処理によって
所定の部材として硬化体を扱うのに十分な曲げ強度が得
られることも確認された。
The granules were adjusted to a water content of 40%, pressed under a press pressure of 20 MPa, and subjected to a carbon dioxide gas concentration of 100%.
Carbonation was performed in the presence of a carbon dioxide gas pressure of 0.2 MPa for 24 hours. Table 1 shows the relationship between the crushing time and the bending strength of the cured product obtained as described above. As shown in Table 1, when the pulverizing treatment is performed and the time is lengthened, a carbonated cured product having greatly improved bending strength can be obtained, and the same tendency is observed regardless of the mixed composition ratio. Was done. In addition, the bending strength of the cured product tended to increase as the mixing ratio of slaked lime was increased. Further, from the results, it was confirmed that a sufficient bending strength to handle the cured body as a predetermined member was obtained by the pulverization treatment for 4 hours.

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例2)珪酸質を主成分とするフライ
アッシュと(石灰質を主成分とする)消石灰とを混合し
て、メカノケミカル反応を生起させた原料粉粒体を使用
した場合を以下に示す。フライアッシュ90〜60重量
部と消石灰10〜40重量部とを混合し、アルミナ製ボ
ールミルによって2時間及び4時間粉砕処理して原料粉
粒体を生成した。この粉粒体をX線回折によって分析す
ると、粉砕時間とともに消石灰の回折強度が低くかつ回
折線の半価幅が大きくなり、メカノケミカル反応が生起
していることが確認できた。
(Example 2) A case in which fly ash mainly composed of siliceous material and slaked lime (mainly calcareous material) are mixed to use a raw material granule in which a mechanochemical reaction is caused is used. Shown in 90 to 60 parts by weight of fly ash and 10 to 40 parts by weight of slaked lime were mixed and pulverized by an alumina ball mill for 2 hours and 4 hours to produce raw material particles. When this powder was analyzed by X-ray diffraction, it was confirmed that the slaked lime had a low diffraction intensity and a large half-value width of the diffraction line with the pulverization time, and that a mechanochemical reaction had occurred.

【0022】この粉粒体を含水率5%に調整し、プレス
圧20MPaで加圧成形し、炭酸ガス濃度100%、炭
酸ガス圧0.2MPaの存在下で24時間炭酸化を行っ
た。これにより得られた硬化体の粉砕処理時間と曲げ強
度との関係を表2に示す。表2に示されているように、
実施例1と同様の下記結果が得られた。 1)粉砕処理を行うとともにその時間を長くすると硬化
体の曲げ強度が大きく向上するようになるとともに、い
ずれの混合組成比率の場合であっても同様の傾向が見ら
れた。 2)消石灰の混合比率を大きく設定するに伴って硬化体
の曲げ強度がより増大した。
The powder was adjusted to a water content of 5%, pressed under a press pressure of 20 MPa, and carbonized for 24 hours in the presence of a carbon dioxide gas concentration of 100% and a carbon dioxide gas pressure of 0.2 MPa. Table 2 shows the relationship between the pulverization time and the bending strength of the obtained cured product. As shown in Table 2,
The following results similar to those in Example 1 were obtained. 1) When the pulverizing treatment is performed and the time is extended, the bending strength of the cured product is greatly improved, and the same tendency is observed in any case of the mixed composition ratio. 2) As the mixing ratio of slaked lime was increased, the flexural strength of the cured product increased.

【0023】[0023]

【表2】 [Table 2]

【0024】(実施例3)石灰質と珪酸質とを主成分と
する生コンスラッジに、メカノケミカル反応を生起させ
た原料粉粒体を使用した場合を以下に示す。生コンスラ
ッジを乾燥し、ジョークラッシャーで粗砕した後に、ア
ルミナ製ボールミルによって1時間粉砕処理して原料粉
粒体を生成した。この粉粒体をX線回折によって分析す
ると、生コンスラッジの構成物である消石灰の回折強度
が低くかつ回折線の半価幅が大きくなり、メカノケミカ
ル反応が生起していることが確認できた。
(Example 3) A case in which raw material granules in which a mechanochemical reaction is caused is used for raw consludge mainly composed of calcareous and siliceous materials is described below. The raw consludge was dried, coarsely crushed by a jaw crusher, and then pulverized by an alumina ball mill for 1 hour to produce raw material particles. When the powder and granules were analyzed by X-ray diffraction, it was confirmed that the diffraction intensity of slaked lime, which is a constituent of raw con sludge, was low and the half-value width of the diffraction line was large, and that a mechanochemical reaction had occurred.

【0025】この粉粒体を含水率20%に調整し、プレ
ス圧20MPaで加圧成形し、炭酸ガス濃度100%、
炭酸ガス圧0.2MPaの存在下で24時間炭酸化を行
った。これによって得られた硬化体の粉砕処理時間と曲
げ強度との関係を表3に示す。表3に示すように、粉砕
処理を行うことにより硬化体の曲げ強度が大きく向上す
ることが確認された。
This granule was adjusted to a water content of 20%, and pressed under a press pressure of 20 MPa to obtain a carbon dioxide gas concentration of 100%.
Carbonation was performed in the presence of a carbon dioxide gas pressure of 0.2 MPa for 24 hours. Table 3 shows the relationship between the crushing time and the bending strength of the cured product obtained as described above. As shown in Table 3, it was confirmed that the pulverization treatment significantly improved the bending strength of the cured product.

【0026】[0026]

【表3】 [Table 3]

【0027】(実施例4)石灰質と珪酸質とを主成分と
するコンクリート廃材に、メカノケミカル反応を生起さ
せた原料粉粒体を使用した場合を以下に示す。普通ポル
トランドセメント17重量部、細骨材32重量部、粗骨
材44重量部、水7重量部を混練し型枠に打設し、室内
で1年間養生した。このコンクリートの嵩密度は228
3kg/m3、曲げ強度は5.33MPaであった。こ
のコンクリートを粗砕して粗骨材を除去した後に、アル
ミナ製ボールミルによって1時間及び2時間粉砕処理し
て原料粉粒体を生成した。この粉粒体をX線回折によっ
て分析すると、粉砕時間とともにコンクリートの構成物
である消石灰の回折強度が低くかつ回折線の半価幅が大
きくなり、メカノケミカル反応が生起していることが確
認できた。
(Example 4) The following describes a case in which raw material granules having a mechanochemical reaction are used as waste concrete containing lime and silicate as main components. 17 parts by weight of ordinary Portland cement, 32 parts by weight of fine aggregate, 44 parts by weight of coarse aggregate, and 7 parts by weight of water were kneaded, cast into a mold, and cured in a room for one year. The bulk density of this concrete is 228
The bending strength was 3 kg / m 3 and the bending strength was 5.33 MPa. After coarsely crushing this concrete to remove coarse aggregate, it was pulverized by an alumina ball mill for 1 hour and 2 hours to produce raw material particles. Analysis of this powder by X-ray diffraction confirmed that the mechanochemical reaction occurred as the diffraction intensity of slaked lime, which is a constituent of concrete, decreased and the half-width of the diffraction line increased with the crushing time. Was.

【0028】この粉粒体を含水率5%に調整し、プレス
圧20MPaで加圧成形し、炭酸ガス濃度100%、炭
酸ガス圧0.2MPaの存在下で72時間炭酸化を行っ
た。これによって得られた硬化体の粉砕処理時間と曲げ
強度との関係を表4に示す。表4に示すように、粉砕処
理を行うとともにその時間を長くすると硬化体の曲げ強
度が大きく向上することが確認された。
This powder was adjusted to a water content of 5%, pressed under a press pressure of 20 MPa, and carbonized for 72 hours in the presence of a carbon dioxide gas concentration of 100% and a carbon dioxide gas pressure of 0.2 MPa. Table 4 shows the relationship between the pulverization time and the bending strength of the cured product obtained as described above. As shown in Table 4, it was confirmed that when the pulverizing treatment was performed and the time was extended, the bending strength of the cured product was greatly improved.

【0029】[0029]

【表4】 [Table 4]

【0030】(実施例5)石灰質と珪酸質とを主成分と
する軽量気泡コンクリート(ALC)に、メカノケミカ
ル反応を生起させた原料粉粒体を使用した場合を以下に
示す。ALCを破砕し2mm以下に分級した粉粒体10
0重量部をアルミナ製ボールミルによって30分及び1
時間粉砕処理して原料粉粒体を生成した。この粉粒体を
X線回折によって分析すると、粉砕時間とともにALC
の構成物であるトバモライトの回折強度が低くかつ回折
線の半価幅が大きくなり、メカノケミカル反応が生起し
ていることが確認できた。
(Example 5) A case where a raw material granule in which a mechanochemical reaction is caused is used for lightweight cellular concrete (ALC) mainly composed of calcareous and siliceous materials is described below. Powder and granules 10 crushed ALC and classified to 2 mm or less
0 parts by weight using an alumina ball mill for 30 minutes and 1
The raw material powder was produced by pulverizing for a time. Analysis of this powder by X-ray diffraction shows that ALC
It was confirmed that the diffraction intensity of tobermorite, which is a component of the above, was low and the half width of the diffraction line was large, and that a mechanochemical reaction had occurred.

【0031】この粉粒体を含水率40%に調整し、プレ
ス圧20MPaで加圧成形し、炭酸ガス濃度100%、
炭酸ガス圧0.2MPaの存在下で24時間炭酸化を行
った。これによって得られた硬化体の粉砕処理時間と曲
げ強度との関係を表5に示す。表5に示すように、粉砕
処理を行うとともにその時間を長くすると硬化体の曲げ
強度が大きく向上することが確認された。
The powder was adjusted to a water content of 40%, pressed under a press pressure of 20 MPa, and subjected to a carbon dioxide gas concentration of 100%.
Carbonation was performed in the presence of a carbon dioxide gas pressure of 0.2 MPa for 24 hours. Table 5 shows the relationship between the crushing time and the bending strength of the cured product obtained as described above. As shown in Table 5, it was confirmed that when the pulverizing treatment was performed and the time was extended, the bending strength of the cured product was greatly improved.

【0032】[0032]

【表5】 [Table 5]

【0033】(比較例)アルミナ製ボールミルによって
消石灰とフライアッシュとを、個別に4時間粉砕処理を
行い2種類の粉粒体を生成した。そして得られた2種類
の粉粒体を、消石灰10〜40重量部とフライアッシュ
90〜60重量部との比率で混合して原料粉粒体を生成
した。この粉粒体はX線回折によって分析しても、消石
灰の回折強度及び回折線の半価幅は粉砕処理前とほとん
ど変化が見られず、メカノケミカル反応の生起は確認さ
れなかった。
(Comparative Example) Slaked lime and fly ash were separately pulverized by an alumina ball mill for 4 hours to produce two types of powders. Then, the obtained two kinds of granules were mixed at a ratio of 10 to 40 parts by weight of slaked lime and 90 to 60 parts by weight of fly ash to produce raw material granules. Even when the powder and granules were analyzed by X-ray diffraction, the diffraction intensity of slaked lime and the half-value width of the diffraction line hardly changed from those before the pulverization treatment, and the occurrence of a mechanochemical reaction was not confirmed.

【0034】そして、この粉粒体を含水率5%に調整
し、プレス圧20MPaで加圧成形し、さらに炭酸ガス
濃度100%、炭酸ガス圧0.2MPaの存在下で24
時間炭酸化を行った。これによって得られた硬化体の粉
砕処理時間と曲げ強度との関係を表6に示す。粉砕処理
により原料粉粒体にメカノケミカル反応を生起させた表
2(実施例2)の結果と比べると、表6の比較例の結果
に示すように、いずれの混合組成比の場合においても、
硬化体の曲げ強度において顕著な差異が見られた。すな
わち、原料粉粒体にメカノケミカル反応を生起させてお
くことにより、曲げ強度の著しく増加した炭酸硬化体を
得ることができる。
The granules were adjusted to a water content of 5%, pressed under a press pressure of 20 MPa, and further pressurized at a carbon dioxide gas concentration of 100% and a carbon dioxide gas pressure of 0.2 MPa.
Carbonation was performed for hours. Table 6 shows the relationship between the pulverization time and the bending strength of the cured product obtained as described above. In comparison with the results of Table 2 (Example 2) in which a mechanochemical reaction was caused in the raw material granules by the pulverization treatment, as shown in the results of Comparative Examples in Table 6, in any case of the mixture composition ratio,
A remarkable difference was found in the bending strength of the cured product. That is, by causing a mechanochemical reaction to occur in the raw material particles, it is possible to obtain a hardened carbonic acid material having significantly increased bending strength.

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【発明の効果】本発明によれば、石灰質と珪酸質とが共
存する成形体の内部にまで炭酸化を十分に進行させると
ともに、原料粒子間が密接に接合されるようになるた
め、材料強度のより大きな炭酸硬化体を得ることが可能
となる。これにより、本炭酸硬化体が建築材料用として
用いられた場合には、その長期耐久性に優れた効果を奏
する。
According to the present invention, carbonation is sufficiently advanced to the inside of a compact in which calcareous and siliceous materials coexist, and the raw material particles are closely bonded to each other. Can be obtained. Thereby, when the present carbonated cured product is used for a building material, it has an effect of being excellent in long-term durability.

フロントページの続き (72)発明者 稲垣 憲次 愛知県尾張旭市下井町下井2035番地 株式 会社建材テクノ研究所内 Fターム(参考) 4G012 PA30 PB03 PE03 PE05 RA02Continued on the front page (72) Inventor Kenji Inagaki 2035 Shimoi-machi, Shioi-machi, Owariasahi-shi, Aichi F-Term in Building Materials Techno-Laboratory Co., Ltd. 4G012 PA30 PB03 PE03 PE05 RA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】石灰質と珪酸質とが共存する粉粒体を成形
し、成形体を炭酸ガス存在下で養生することにより、成
形体中に炭酸カルシウムを生成させて成形体を硬化させ
る炭酸硬化体の製造方法において、成形前の粉粒体にメ
カノケミカル反応を生起させる粉砕処理を行うことを特
徴とする炭酸硬化体の製造方法。
1. Carbonation hardening in which a granule in which calcareous and siliceous materials coexist is formed, and the formed body is cured in the presence of carbon dioxide gas, thereby generating calcium carbonate in the formed body and hardening the formed body. A method for producing a carbonic acid cured product, comprising: performing a pulverizing treatment for causing a mechanochemical reaction on a granular material before molding.
【請求項2】前記粉粒体のCa/Siモル比は、0.2
〜4.0である請求項1記載の炭酸硬化体の製造方法。
2. The Ca / Si molar ratio of the powder is 0.2
2. The method for producing a cured carbonic acid product according to claim 1, wherein
【請求項3】前記粉粒体は、 1)石灰質を主成分とする消石灰、生石灰、石灰石、 2)珪酸質を主成分とする珪砂、フライアッシュ、シリ
カフューム、ガラス、粘土、珪藻土、 3)石灰質と珪酸質とを主成分とするセメント、セメン
ト副産物(γ―C2S)、高炉水砕スラグ、生コンスラ
ッジ、コンクリート、またはセメント系2次製品、 に記載の粉粒体の1種または2種以上を用い、必要に応
じて石灰質及び/または珪酸質を添加したものである請
求項1または2記載の炭酸硬化体の製造方法。
3. The granules are: 1) slaked lime, quicklime, limestone mainly composed of calcareous material, 2) silica sand, fly ash, silica fume, glass, clay, diatomaceous earth mainly composed of silicate, 3) calcareous And one or more of the powdery and granular materials described in Cement, cement by-product (γ-C2S), granulated blast furnace slag, raw concrete sludge, concrete, or cement-based secondary products The method for producing a cured carbonic acid product according to claim 1 or 2, wherein calcareous and / or siliceous materials are added as necessary.
【請求項4】前記石灰質は、消石灰である請求項1、2
または3記載の炭酸硬化体の製造方法。
4. The method according to claim 1, wherein the calcareous material is slaked lime.
Or a method for producing a cured carbonic acid product according to item 3.
【請求項5】前記消石灰は、粉砕処理時またはその直前
に生石灰と水とを反応させて生成される請求項1〜4の
いずれか1項に記載の炭酸硬化体の製造方法。
5. The method for producing a cured carbonic acid product according to claim 1, wherein said slaked lime is produced by reacting quicklime and water during or immediately before the pulverizing treatment.
JP30351599A 1999-10-26 1999-10-26 Method for producing carbonated cured body Expired - Fee Related JP4664462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30351599A JP4664462B2 (en) 1999-10-26 1999-10-26 Method for producing carbonated cured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30351599A JP4664462B2 (en) 1999-10-26 1999-10-26 Method for producing carbonated cured body

Publications (3)

Publication Number Publication Date
JP2001122653A true JP2001122653A (en) 2001-05-08
JP2001122653A5 JP2001122653A5 (en) 2006-10-26
JP4664462B2 JP4664462B2 (en) 2011-04-06

Family

ID=17921921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30351599A Expired - Fee Related JP4664462B2 (en) 1999-10-26 1999-10-26 Method for producing carbonated cured body

Country Status (1)

Country Link
JP (1) JP4664462B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536789A (en) * 2005-04-21 2008-09-11 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of member
JP2010534607A (en) * 2007-07-27 2010-11-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Single-phase hydraulic binder, manufacturing method thereof, and building material manufactured using the same
JP2010534608A (en) * 2007-07-27 2010-11-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Single-phase hydraulic binder, manufacturing method thereof, and building material manufactured using the same
WO2017096729A1 (en) * 2015-12-10 2017-06-15 朱晓燕 Calcareous airplane border-crossing capture material and process for preparing same
CN116283174A (en) * 2022-09-09 2023-06-23 华中科技大学 Method for accelerating mineralization of calcium carbonate by using pulse normal stress

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181779A1 (en) * 2017-03-29 2018-10-04 クスノキ石灰株式会社 Molded article using hydraulic lime and method for producing same
JP2022019100A (en) * 2020-07-17 2022-01-27 株式会社フジタ Concrete curing method and concrete curing member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115828A (en) * 1976-03-25 1977-09-28 Ibigawa Electric Ind Co Ltd Production method of curing material through coal carbonation
JPH06263510A (en) * 1993-03-11 1994-09-20 Onoda Autoclaved Light Weight Concrete Co Ltd Production of carbonated hardened body of calcium silicate
JPH0725679A (en) * 1993-03-04 1995-01-27 Onoda Autoclaved Light Weight Concrete Co Ltd Respective production of carbonation-hardened molded body and precursor thereof and moisture absorbing and desorbing material composed of the same molded body
JPH07291616A (en) * 1994-04-26 1995-11-07 Sumitomo Metal Mining Co Ltd Production of crystalline calcium silicate hydrate
JPH0881284A (en) * 1994-09-12 1996-03-26 Onoda Autoclaved Light Weight Concrete Co Ltd Reinforcing of hardened carbonate material
JPH1121180A (en) * 1997-06-30 1999-01-26 Nihon Ytong Co Ltd Production of lightweight cellular concrete
JPH11310442A (en) * 1998-04-28 1999-11-09 Tohoku Electric Power Co Inc Production of hydraulic powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115828A (en) * 1976-03-25 1977-09-28 Ibigawa Electric Ind Co Ltd Production method of curing material through coal carbonation
JPH0725679A (en) * 1993-03-04 1995-01-27 Onoda Autoclaved Light Weight Concrete Co Ltd Respective production of carbonation-hardened molded body and precursor thereof and moisture absorbing and desorbing material composed of the same molded body
JPH06263510A (en) * 1993-03-11 1994-09-20 Onoda Autoclaved Light Weight Concrete Co Ltd Production of carbonated hardened body of calcium silicate
JPH07291616A (en) * 1994-04-26 1995-11-07 Sumitomo Metal Mining Co Ltd Production of crystalline calcium silicate hydrate
JPH0881284A (en) * 1994-09-12 1996-03-26 Onoda Autoclaved Light Weight Concrete Co Ltd Reinforcing of hardened carbonate material
JPH1121180A (en) * 1997-06-30 1999-01-26 Nihon Ytong Co Ltd Production of lightweight cellular concrete
JPH11310442A (en) * 1998-04-28 1999-11-09 Tohoku Electric Power Co Inc Production of hydraulic powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536789A (en) * 2005-04-21 2008-09-11 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of member
JP2010534607A (en) * 2007-07-27 2010-11-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Single-phase hydraulic binder, manufacturing method thereof, and building material manufactured using the same
JP2010534608A (en) * 2007-07-27 2010-11-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Single-phase hydraulic binder, manufacturing method thereof, and building material manufactured using the same
KR101621022B1 (en) 2007-07-27 2016-05-13 칼스루헤 인스티투트 퓌어 테흐놀로기 Single-phase hydraulic binder, methods for the production thereof and structural material produced therewith
KR101621024B1 (en) 2007-07-27 2016-05-13 칼스루헤 인스티투트 퓌어 테흐놀로기 Single-phase hydraulic binder, methods for the production thereof and structural material produced therewith
WO2017096729A1 (en) * 2015-12-10 2017-06-15 朱晓燕 Calcareous airplane border-crossing capture material and process for preparing same
CN116283174A (en) * 2022-09-09 2023-06-23 华中科技大学 Method for accelerating mineralization of calcium carbonate by using pulse normal stress

Also Published As

Publication number Publication date
JP4664462B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
CN108218272B (en) Environment-friendly artificial aggregate (aggregate) derived from waste
EP0222457B1 (en) Method for producing a building element from fly ash comprising material and building element formed
JP2009518276A (en) MULTIFUNCTIONAL COMPOSITION FOR COAGABLE COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE COMPOSITION
US8535435B2 (en) Method of fabrication of construction materials from industrial solid waste
JP3221908B2 (en) Method for producing recycled aggregate and recycled aggregate
CN110467368B (en) Active excitant for inorganic solid waste building material and preparation method thereof
JP2014065659A (en) Cement-based solidification material using sludge dry powder and manufacturing method thereof
KR101018009B1 (en) Manufacturing method of cement zero concrete using mixed waste glass powder and fly ash as binder
JP4664462B2 (en) Method for producing carbonated cured body
JP3154786B2 (en) Method for producing artificial aggregate for concrete and artificial aggregate for concrete
JP2002114562A (en) Hydrothermal hardened body and method for manufacturing the same
CN115466094A (en) Industrial solid waste base cementing grouting filling material, preparation method and application
JPH10296205A (en) Method for solidifying industrial waste and solidified body of industrial waste
JP2000319074A (en) Production of lightweight carbonate hardened body
KR100876143B1 (en) High strength silica mortar composition and method of manufacturing the same
WO2003040052A1 (en) Alternative to portland cement, method for producing the same, hard wood chip cement board using the same and method for producing the board
KR101117780B1 (en) Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust
JP2000335947A (en) Artificial lightweight aggregate, its production and cement hardened product
JP4340057B2 (en) Method for producing hydrothermal solidified body
KR20180110416A (en) Manufacturing method of alkali actived hardened material using sedimentation sludge
JP2002348165A (en) Polymer cement composition and solidified body
JP2000044301A (en) Method for producing lightweight artificial aggregate and lightweight artificial aggregate produced by the same method
JPH10259052A (en) Production of inorganic hardened body
JPS6256536A (en) Manufacture of unfired briquetted ore
CS198401B1 (en) Process for preparing thermal hardened moulded objects bonded by hydrated silicates

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 19991028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees