JPH0125636B2 - - Google Patents

Info

Publication number
JPH0125636B2
JPH0125636B2 JP10997680A JP10997680A JPH0125636B2 JP H0125636 B2 JPH0125636 B2 JP H0125636B2 JP 10997680 A JP10997680 A JP 10997680A JP 10997680 A JP10997680 A JP 10997680A JP H0125636 B2 JPH0125636 B2 JP H0125636B2
Authority
JP
Japan
Prior art keywords
high concentration
tank
carbon source
organic carbon
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10997680A
Other languages
Japanese (ja)
Other versions
JPS5735998A (en
Inventor
Juji Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10997680A priority Critical patent/JPS5735998A/en
Publication of JPS5735998A publication Critical patent/JPS5735998A/en
Publication of JPH0125636B2 publication Critical patent/JPH0125636B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、し尿などの高濃度廃液を処理する方
法に関し、特に無希釈、無薬注でし尿その他の廃
液を短日で良好な水質にまで処理することのでき
る方法に関する。 通常の活性汚泥法の適用範囲を超えた高濃度廃
水(BOD、総窒素(以下、T―Nと云う。)の濃
度の高い廃水、例えばし尿、浄化槽汚泥、家畜糞
尿など)を無希釈、短時日で処理する場合、高濃
度活性汚泥(MLSS10000ppm以上)を、通常の
散気管(多孔性デイフユーザー、デイスクフユー
ザーなど)よりも酸素供給能力の大きい曝気装置
を適用した反応槽に導いて処理する場合、同反応
槽では、流入有機態窒素、アンモニア窒素の酸化
(硝化)と同時にその酸化生成物である亜硝酸、
硝酸性窒素のN2への還元(脱窒)が起きる。し
かし、このときのT―N除去率は原液中の有機物
量(有機炭素源として利用可能な)によつて不可
抗力的な限界がある。 すなわち脱窒反応が起きるには有機炭素源が必
要であるが有機炭素源が少ないと脱窒率は制限さ
れる。そしてこの場合原液BODを有機炭素源と
していることからこの流入量が少ないと脱窒率は
抑制されるのである。 また、これら原液の無希釈処理では、一般には
アンモニア性窒素は亜硝酸性窒素にまでしか酸化
されないが、この亜硝酸性窒素は浄化微生物に対
して毒性があり、このためアンモニア性窒素を亜
硝酸性窒素に酸化する亜硝酸菌の酸化能力が劣下
して完全なるアンモニア性窒素の除去には到ら
ず、容易に放流可能な水質レベルに到達しない。 このように、前記する無希釈反応工程(硝化工
程)では次の2つの問題点があつた。 (1) 原液中BOD/T―NによつてT―N除去率
に不可抗力的な限界がある。 すなわち、BOD/T―Nは有機炭素源と脱
窒素すべき窒素量との比率であり、この値が小
さいと脱窒率は抑制される。 (2) 亜硝酸性窒素が蓄積して生物毒性が発現し完
全なるアンモニア性窒素の除去が達成できな
い。 本発明は、上記の問題点を解決する目的でなさ
れたものであつて、高濃度廃液を無希釈又は低希
釈倍率で活性汚泥処理する方法において、上記高
濃度廃液を酸素供給能力の大きい曝気装置を設け
かつ槽内の活性汚泥を高濃度に維持した単一の反
応槽に導き、上記反応槽に有機炭素源を注入して
上記高濃度廃液を硝化脱窒処理し、その後処理液
を沈殿槽に導いて固液分離を行うことを要旨とす
るものである。 以下、添付図面等を用いて本発明を詳細に説明
する。 第1図は、本発明によるプロセスの基本構成を
示す概要図である。 第1図において、図示省略のデカンタまたはド
ラムスクリーンなどの除渣機で除渣した原液11
(高濃度廃液)は、ライン1から無希釈のまま本
プロセスに流入し、原液11は通常の散気管(多
孔性デイフユーザー、デイスクフユーザーなど)
よりも酸素供給能力の大きい曝気装置7を付帯し
て、空気8を供給し、さらに高濃度活性汚泥を適
用した無希釈反応工程を行なう反応槽2へ流入す
る。ここで使用する曝気装置7は、ブロワーから
供給された圧縮空気を分散微細化させるもので、
円筒状(但し、上部はメクラとなつており、ちよ
うどコツプを逆さまにしたもの)の高速度回転体
である。内部は中空となつているが、供給空気は
本回転体内に供給され、オーバーフローして外部
側壁において液との摩擦により微細気泡となる。
したがつて、実際の使用時に、酸素供給速度を調
整するにはこの回転体の回転数と供給空気量を変
化させればよい。酸素供給速度を増加するには、
回転数及び空気量を増加させ、逆に酸素供給速度
を減少させるには回転数及び空気量を減少させ
る。この反応槽2では原液11中のBODの除去
と有機態窒素、アンモニア性窒素を酸化し、さら
にN2まで還元することを同時に行う。その反応
状況は次の通りである。 (第1式〜第4式) 硝化処理(NH4―N→NO2―N→NO3―N) NH4 ++1.5O2→NO2 -+H2O+2H-
……第1式 NO2 -+0.5O2→NO3 - ……第2式 脱窒処理 2NO3 -+10H→N2↑+4H2O+20H-
……第3式 2NO2 -+6H→N2↑+2H2O+20H-
……第4式 この処理反応工程に外部より、有機態窒素、ア
ンモニア性窒素の酸化で生じた亜硝酸、硝酸性窒
素の還元に必要な有機炭素源12をライン9(例
えばメタノール、酢酸など)から注入する。 なお、酸素供給能力の大きい曝気装置7を付帯
するのは次の理由による。すなわち単位反応槽容
量当りのO2消費速度が大となり濃度レベルが高
いので反応速度大となるためである。注入された
空気8および有機炭素源12によつて、原液11
は反応槽2で効率良く硝化脱窒処理されたのち、
反応槽排出液13はライン14を通り後段の分離
槽3に導かれ、同分離槽3で固液分離、汚泥濃縮
が行なわれ、同分離槽3での液分は処理水15と
してライン4から抜き出され、同処理水15の一
部はライン10からライン1へ循環返送され、残
りの処理水15は系外へ放出される。一方、分離
槽3での汚泥の一部は連続的にライン6から前記
のライン1へ返送汚泥16として返送循環すると
共に余剰汚泥17をライン5から引抜く。この余
剰汚泥17は図示省略の汚泥処理施設へ送られ
る。 実験例 次に第1図に図示するプロセスについて連続試
験を行なつた結果を示す。 試験条件は次の通りである。 (1) 原液11 除渣後生し尿、某処理場より調達した破砕生
し尿のデカンター分離液 (2) 処理日数(反応槽容量/原液(無希釈し尿)
流量)……2日 (3) 槽内汚泥濃度……(10000〜13000(ppm) (4) 希釈倍率……無希釈 (5) 汚泥返送率(返送汚泥量/原液流量)×100%
……200〜300% (6) 反応槽2内の溶存酸素(DO)濃度……3〜
4.5(ppm) (7) 曝気設備 高性能曝気装置(第1図に示す曝
気装置) (8) 有機・炭素量……N/Kgに対してCH3OH
2Kg 実験の結果を第1表に示す。
The present invention relates to a method for treating highly concentrated waste liquids such as human waste, and particularly to a method that can treat human waste and other waste liquids to good water quality in a short period of time without dilution or chemical injection. High-concentration wastewater (BOD, wastewater with a high concentration of total nitrogen (hereinafter referred to as TN), such as human waste, septic tank sludge, livestock manure, etc.) that exceeds the scope of application of the normal activated sludge method can be processed without dilution in a short time. In the case of treatment, high-concentration activated sludge (MLSS 10,000 ppm or more) is guided into a reaction tank equipped with an aeration device that has a larger oxygen supply capacity than a normal aeration pipe (porous diffuser, disk user, etc.). In the same reaction tank, the inflow organic nitrogen and ammonia nitrogen are oxidized (nitrified) and its oxidation product nitrite,
Reduction of nitrate nitrogen to N2 (denitrification) occurs. However, the TN removal rate at this time has an irresistible limit depending on the amount of organic matter in the stock solution (which can be used as an organic carbon source). That is, an organic carbon source is necessary for the denitrification reaction to occur, but if the organic carbon source is small, the denitrification rate is limited. In this case, since the undiluted BOD is used as the organic carbon source, if the inflow amount is small, the denitrification rate will be suppressed. In addition, in the undiluted treatment of these stock solutions, ammonia nitrogen is generally oxidized only to nitrite nitrogen, but this nitrite nitrogen is toxic to purification microorganisms, so ammonia nitrogen is oxidized to nitrite nitrogen. The oxidizing ability of nitrite bacteria, which oxidizes to ammonia nitrogen, deteriorates, and complete removal of ammonia nitrogen is not achieved, and the water quality does not reach a level that can be easily discharged. As described above, the above-mentioned non-dilution reaction step (nitrification step) had the following two problems. (1) There is an unavoidable limit to the TN removal rate depending on the BOD/TN in the stock solution. That is, BOD/TN is the ratio between the organic carbon source and the amount of nitrogen to be denitrified, and when this value is small, the denitrification rate is suppressed. (2) Nitrite nitrogen accumulates and becomes biologically toxic, making complete removal of ammonia nitrogen impossible. The present invention has been made for the purpose of solving the above-mentioned problems, and provides a method for treating high-concentration waste liquid with activated sludge without dilution or at a low dilution rate, using an aeration device with a large oxygen supply capacity. The activated sludge in the tank is guided to a single reaction tank in which the activated sludge is maintained at a high concentration, and an organic carbon source is injected into the reaction tank to perform nitrification and denitrification treatment on the high concentration waste liquid, and then the treated liquid is transferred to a sedimentation tank. The gist of this is to conduct solid-liquid separation by introducing Hereinafter, the present invention will be explained in detail using the accompanying drawings and the like. FIG. 1 is a schematic diagram showing the basic configuration of the process according to the present invention. In FIG. 1, the stock solution 11 is removed from the residue using a decanter or drum screen (not shown).
(highly concentrated waste liquid) flows into this process without dilution from line 1, and the raw liquid 11 is passed through a normal aeration pipe (porous diffuser, disk user, etc.).
An aeration device 7 having a larger oxygen supply capacity than the sludge is attached to supply air 8, and the sludge flows into a reaction tank 2 in which a non-dilution reaction process using highly concentrated activated sludge is performed. The aeration device 7 used here disperses and atomizes the compressed air supplied from the blower.
It is a high-speed rotating body with a cylindrical shape (however, the top is blank, which is similar to an upside-down tip). Although the interior is hollow, the supplied air is supplied into the rotating body, overflows, and forms fine bubbles on the external side wall due to friction with the liquid.
Therefore, in actual use, the oxygen supply rate can be adjusted by changing the rotational speed of this rotating body and the amount of supplied air. To increase the oxygen delivery rate,
To increase the number of revolutions and the amount of air, and conversely to decrease the oxygen supply rate, reduce the number of revolutions and the amount of air. In this reaction tank 2, the removal of BOD in the stock solution 11, the oxidation of organic nitrogen and ammonia nitrogen, and further reduction to N2 are performed simultaneously. The reaction situation is as follows. (Equations 1 to 4) Nitrification treatment (NH 4 -N→NO 2 -N→NO 3 -N) NH 4 + +1.5O 2 →NO 2 - +H 2 O+2H -
...1st formula NO 2 - +0.5O 2 →NO 3 - ...2nd formula Denitrification treatment 2NO 3 - +10H→N 2 ↑+4H 2 O+20H -
...3rd formula 2NO 2 - +6H→N 2 ↑+2H 2 O+20H -
...Equation 4 In this treatment reaction step, an organic carbon source 12 necessary for reducing nitrous acid and nitrate nitrogen generated by oxidation of organic nitrogen and ammonia nitrogen is externally supplied to line 9 (for example, methanol, acetic acid, etc.). Inject from. The reason why the aeration device 7 with a large oxygen supply capacity is provided is as follows. In other words, this is because the O 2 consumption rate per unit reaction tank capacity is high and the concentration level is high, resulting in a high reaction rate. By injected air 8 and organic carbon source 12, stock solution 11
After being efficiently nitrified and denitrified in reaction tank 2,
The reaction tank discharge liquid 13 is led to the downstream separation tank 3 through a line 14, where solid-liquid separation and sludge concentration are performed. A part of the treated water 15 is recycled from line 10 to line 1, and the remaining treated water 15 is discharged outside the system. On the other hand, a part of the sludge in the separation tank 3 is continuously circulated from line 6 to line 1 as return sludge 16, and excess sludge 17 is pulled out from line 5. This surplus sludge 17 is sent to a sludge treatment facility (not shown). EXPERIMENTAL EXAMPLE Next, the results of continuous tests on the process shown in FIG. 1 will be shown. The test conditions are as follows. (1) Raw solution 11 Human waste after sediment removal, decanter separated liquid of crushed raw human waste procured from a certain treatment plant (2) Number of processing days (reaction tank capacity / raw solution (undiluted human waste)
Flow rate)...2 days (3) Sludge concentration in tank...(10000 to 13000 (ppm)) (4) Dilution ratio...No dilution (5) Sludge return rate (return sludge amount/undiluted solution flow rate) x 100%
...200~300% (6) Dissolved oxygen (DO) concentration in reaction tank 2...3~
4.5 (ppm) (7) Aeration equipment High-performance aeration equipment (aeration equipment shown in Figure 1) (8) Organic carbon content... CH 3 OH for N/Kg
The results of the 2Kg experiment are shown in Table 1.

【表】 本発明はこのように、高濃度廃液を無希釈又は
低希釈倍率で活性汚泥処理する方法において、上
記高濃度廃液を酸素供給能力の大きい曝気装置を
設けかつ槽内の活性汚泥を高濃度に維持した単一
の反応槽に導き、上記反応槽に有機炭素源を注入
して上記高濃度廃液を硝化脱窒処理し、その後処
理液を沈殿槽に導いて固液分離を行うので、次の
ような効果が得られる。 有機炭素源を注入しない場合は、この工程の
T―N除去率Aは、原液BOD/T―Nによつ
て第5式のような不可抗力的な限界がある。す
なわち、原液BODを有機炭素源としているの
みであるので、原液BODの流入量が少なくな
るとT―N除去率Aが抑制され限界が生じるこ
とになる。 A=L0/a×N0 …(第5式) ただし、 L0:原液中BOD濃度(Kg/m3) N0:原液中T―N濃度(Kg/m3) a:NO2―N又はNO3―N1Kg環元するに
必要なBOD量(Kg) しかし、本発明のようにあらためて外部より
有機炭素源を注入すれば有機炭素源が増えるか
ら、T―N除去率Aの上限値がさらに高まるこ
とになる。 高濃度廃水の無希釈反応工程では、流入アン
モニア性窒素は亜硝酸性窒素にまでしか酸化さ
れず、この亜硝酸性窒素は生物毒性がありした
がつてアンモニア性窒素の除去能力が制限され
る。外部から有機炭素源を注入すれば亜硝酸性
窒素の濃度レベルが下がりアンモニア性窒素の
除去能力が向上し、高効率のT―N除去率が達
成できる。 なお、本発明は次の条件で行なえばさらに上記
の効率が高まることになる。 (1) 汚泥濃度を可能な限り高めること。 (2) 一般の散気管より酸素供給能力の大きい曝気
装置を適用すること。 (3) 対象高濃度廃水を3倍以下の希釈倍率で処理
すること。
[Table] In this way, the present invention provides a method for treating high concentration waste liquid with activated sludge without dilution or at a low dilution rate, by providing an aeration device with a large oxygen supply capacity for the high concentration waste liquid and increasing the activated sludge in the tank. The high concentration waste liquid is led to a single reaction tank where the concentration is maintained, an organic carbon source is injected into the reaction tank, the high concentration waste liquid is subjected to nitrification and denitrification treatment, and the treated liquid is then led to a precipitation tank to perform solid-liquid separation. The following effects can be obtained. When an organic carbon source is not injected, the TN removal rate A in this step has an irresistible limit as shown in equation 5 depending on the stock solution BOD/TN. That is, since the undiluted solution BOD is only used as an organic carbon source, when the inflow amount of the undiluted solution BOD decreases, the TN removal rate A is suppressed and a limit occurs. A=L 0 /a×N 0 (5th formula) where, L 0 : BOD concentration in stock solution (Kg/m 3 ) N 0 : TN concentration in stock solution (Kg/m 3 ) a: NO 2 - N or NO 3 - Amount of BOD required for N1Kg ring formation (Kg) However, if an organic carbon source is injected from outside as in the present invention, the organic carbon source increases, so the upper limit of the TN removal rate A is will further increase. In the no-dilution reaction process of highly concentrated wastewater, the influent ammonia nitrogen is oxidized only to nitrite nitrogen, which is biotoxic and thus limits the ability to remove ammonia nitrogen. By injecting an organic carbon source from the outside, the concentration level of nitrite nitrogen is reduced, the ammonia nitrogen removal ability is improved, and a highly efficient TN removal rate can be achieved. Note that the efficiency described above can be further improved if the present invention is carried out under the following conditions. (1) Increase sludge concentration as much as possible. (2) Apply an aeration device with a larger oxygen supply capacity than a general aeration pipe. (3) Target high concentration wastewater shall be treated at a dilution rate of 3 times or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本プロセスフローを示す概
要図である。 2…反応槽、7…酸素供給能力の大きい曝気装
置、8…空気、9…有機炭素源、11…原液。
FIG. 1 is a schematic diagram showing the basic process flow of the present invention. 2... Reaction tank, 7... Aeration device with large oxygen supply capacity, 8... Air, 9... Organic carbon source, 11... Stock solution.

Claims (1)

【特許請求の範囲】[Claims] 1 高濃度廃液を無希釈又は低希釈倍率で活性汚
泥処理する方法において、上記高濃度廃液を酸素
供給能力の大きい曝気装置を設けかつ槽内の活性
汚泥を高濃度に維持した単一の反応槽に導き、上
記反応槽に有機炭素源を注入して上記高濃度廃液
を硝化脱窒処理し、その後処理液を沈殿槽に導い
て固液分離を行うことを特徴とする高濃度廃液の
処理方法。
1. In a method of treating high concentration waste liquid with activated sludge without dilution or at a low dilution ratio, a single reaction tank is provided with an aeration device having a large oxygen supply capacity and the activated sludge in the tank is maintained at a high concentration. A method for treating a high concentration waste liquid, comprising: injecting an organic carbon source into the reaction tank to subject the high concentration waste liquid to nitrification and denitrification treatment, and then introducing the treated liquid to a precipitation tank to perform solid-liquid separation. .
JP10997680A 1980-08-11 1980-08-11 Disposal of highly concentrated waste liquid Granted JPS5735998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10997680A JPS5735998A (en) 1980-08-11 1980-08-11 Disposal of highly concentrated waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10997680A JPS5735998A (en) 1980-08-11 1980-08-11 Disposal of highly concentrated waste liquid

Publications (2)

Publication Number Publication Date
JPS5735998A JPS5735998A (en) 1982-02-26
JPH0125636B2 true JPH0125636B2 (en) 1989-05-18

Family

ID=14523916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10997680A Granted JPS5735998A (en) 1980-08-11 1980-08-11 Disposal of highly concentrated waste liquid

Country Status (1)

Country Link
JP (1) JPS5735998A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166096A (en) * 1984-02-03 1985-08-29 Shoshi Hiraoka Treatment of waste water
CN102795703B (en) * 2012-02-17 2013-12-18 华东理工大学 Deep treatment method of nitrate-containing water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814838B2 (en) * 1978-12-20 1983-03-22 株式会社クボタ Human waste disposal method
JPS5592197A (en) * 1978-12-28 1980-07-12 Kubota Ltd Processing method of water
JPS5724699A (en) * 1980-07-17 1982-02-09 Mitsubishi Heavy Ind Ltd Disposal of highly concentrated waste liquid

Also Published As

Publication number Publication date
JPS5735998A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
KR101473050B1 (en) Method and device for removing biological nitrogen and support therefor
JP4632356B2 (en) Biological nitrogen removal method and system
JP2006281003A (en) Biological waste water treatment method
JPS5881491A (en) Purification of filthy water with activated sludge
JP5333953B2 (en) Nitrogen removal system and nitrogen removal method of dehydrated filtrate
JP5095882B2 (en) Waste nitric acid treatment method
JPH0125636B2 (en)
WO2001062676A1 (en) Method for treating organic wastewater
JP3483081B2 (en) Organic wastewater treatment method and treatment device
KR20030035019A (en) Advance Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JPS6350078B2 (en)
CN211734108U (en) Processing system for ammonium adipate waste water
KR100469641B1 (en) advanced wastwater treatment apparatus using a submerged type membrane
JP2540150B2 (en) Biological denitrification equipment
JPS6358639B2 (en)
JP3919999B2 (en) Organic wastewater treatment method and apparatus
JPS6146198B2 (en)
JPH03232597A (en) Treatment of organic waste water
KR100228739B1 (en) Disposal method of organic wastewater using oxygen
US3464918A (en) Method and apparatus for treating digestion tank super-natant liquor
JPH0631297A (en) Method for treating waste water containing high concentration of nitrogen sophistically
JPS6253238B2 (en)
JPH05285491A (en) Treatment of ammonical liquor of coke oven
JPH0218155B2 (en)