JPH01253955A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01253955A
JPH01253955A JP63082001A JP8200188A JPH01253955A JP H01253955 A JPH01253955 A JP H01253955A JP 63082001 A JP63082001 A JP 63082001A JP 8200188 A JP8200188 A JP 8200188A JP H01253955 A JPH01253955 A JP H01253955A
Authority
JP
Japan
Prior art keywords
active region
semiconductor device
type
dimensions
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63082001A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Nakamura
充善 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63082001A priority Critical patent/JPH01253955A/en
Publication of JPH01253955A publication Critical patent/JPH01253955A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the gate dimensions of a P-type active region and an N-type active region equal to each other by specifying the difference in step level between the P-type active region and the N-type active region. CONSTITUTION:The difference Ha in step level between a P-type active region on an N-type well 6 and an N-type active region on a P-type well 7 is a multiple of lambda/2n multiplied by an integer wherein (lambda) denotes the wavelength of an exposure light source and (n) denotes the refractive index of a photoresist. If the difference in thickness between resist films is a multiple of lambda/2n multiplied by an integer, the same pattern dimensions can be obtained with the period of lambda/2n by the standing wave effect of the exposure light source so that the same pattern dimensions can be obtained even at the different parts where the resist film thickness are different. With this constitution, if the mask dimensions of the P-type region and the N-type region are the same, a semiconductor device in which the gate dimensions LPa and LNa of the P-type region and the N-type region are equal to each other can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device.

〔従来の技術〕[Conventional technology]

第9図は、従来のcPlos型半導体装置の断面構造を
示す図で、図において、(11はシリコン基板、(2)
FIG. 9 is a diagram showing a cross-sectional structure of a conventional cPlos type semiconductor device, in which (11 is a silicon substrate, (2)
.

(2b)はフィールド酸化膜、(3b)はPchゲート
電極、(4b)はNchゲート電極、《5》はゲート酸
化膜、(6)はNウェル、《ηはPウェルを示す.また
(Hb)はPch活性領域とNch活性領域の段差を示
す。
(2b) is a field oxide film, (3b) is a Pch gate electrode, (4b) is an Nch gate electrode, <5> is a gate oxide film, (6) is an N well, and <<η is a P well. Further, (Hb) indicates the level difference between the Pch active region and the Nch active region.

次にこの半導体装置の製造工程を第11図〜第13図に
よって説明する.第11図において、(3)は一例とし
てゲート電極用ポリシリコン膜で、ゲート酸化膜(5)
形成後CVD法によりゲート酸化膜(5)の上に形成す
る.また、Q’Jはゲート電極形成のための写真製版時
に用いるフォトレジスト膜である,第12図において、
フォトマスクを用いて露光・現像によりゲート電極用レ
ジストパターンで、Pch用(13a) 、Nch用(
13b)を形成する。そして第13図において、フォト
レジストパターン(13a) 、 (13b)を用いて
異方性エツチングによりポリシリコン膜を選択除去して
ゲート電極(3b) (4b)を形成し、レジスト除去
後第9図の様な断面構造の半導体装置を得る。
Next, the manufacturing process of this semiconductor device will be explained with reference to FIGS. 11 to 13. In FIG. 11, (3) is a polysilicon film for a gate electrode as an example, and a gate oxide film (5) is a polysilicon film for a gate electrode.
After formation, it is formed on the gate oxide film (5) using the CVD method. In addition, Q'J is a photoresist film used during photolithography for forming the gate electrode.
Using a photomask, expose and develop a resist pattern for gate electrodes, for Pch (13a) and for Nch (13a).
13b) is formed. Then, in FIG. 13, the polysilicon film is selectively removed by anisotropic etching using photoresist patterns (13a) and (13b) to form gate electrodes (3b) and (4b), and after the resist is removed, as shown in FIG. A semiconductor device having a cross-sectional structure as shown in FIG.

第10図はフォトレジスト膜01に対する露光時の露光
光源の定在波効果を示すグラフで、−例としてゲート工
程中のレジスト膜厚と、ゲートレジストパターン寸法と
の関係を示している。alはレジストIJ、(13c)
は露光・現像後のレジストパターン、(1)  はレジ
スト膜厚、(L) はパターン寸法を示す。膜厚と寸法
とが一率に比例関係にないことを示している。第10図
ta+で一例としてA点、B点。
FIG. 10 is a graph showing the standing wave effect of the exposure light source during exposure to the photoresist film 01, and shows, as an example, the relationship between the resist film thickness during the gate process and the gate resist pattern dimensions. al is resist IJ, (13c)
indicates the resist pattern after exposure and development, (1) indicates the resist film thickness, and (L) indicates the pattern dimension. This shows that the film thickness and dimensions are not directly proportional. In Fig. 10 ta+, point A and point B are taken as an example.

C点について考えると、A点(t = tl、L=Lx
)B点(t = t、、L−L、)C点(t−t6.L
−Ls)で、A点とC点は1.>1.でL3>Lオであ
りレジスト膜厚の差が大きいときの一般的な関係である
(定在波効果が強くあられれるB点ではt。
Considering point C, point A (t = tl, L = Lx
) Point B (t = t,, L-L,) Point C (t-t6.L
-Ls), and points A and C are 1. >1. This is a general relationship when L3>Lo and the difference in resist film thickness is large (at point B, where the standing wave effect is strong, t.

>1.にもかかわらず、L+<t、z となり、レジス
ト膜厚の厚いB点でのパターン寸法の方が短くなってし
まう場合である。
>1. Nevertheless, L+<t,z, and the pattern dimension at point B where the resist film is thick becomes shorter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体装置は、以上の様な工程で製造されており
、アイランドの段差(Hb)によってレジスト膜厚がP
ch部とNch部で第10図のA点とB点の様な関係に
なると、マスク寸法がPch=Nchでもレジストパタ
ーンならびに仕上りのゲート電極長が異ったものになる
り、≠L、という課題があった。
Conventional semiconductor devices are manufactured using the process described above, and the resist film thickness is reduced by the island step (Hb).
If the relationship between points A and B in Figure 10 is established between the channel and Nch areas, the resist pattern and finished gate electrode length will be different even if the mask dimensions are Pch=Nch, or ≠L. There was an issue.

この発明は上記のような課題を解消するためになされた
もので、Pch とNchのマスク寸法が同じであれば
常にPch とNchのゲート寸法が同じ半導体装置を
得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to obtain a semiconductor device in which the gate dimensions of Pch and Nch are always the same if the mask dimensions of Pch and Nch are the same.

(課題を解決するための手段〕 この発明に係る半導体装置はアイランドの段差オ ム レジストの屈折率)にすることにより、写真製版での露
光・現像後の段差の上と下とでのゲートレジストパター
ンの寸法を等しくし、Pch とNchのゲート寸法を
等しくなる様にしたものである。
(Means for Solving the Problems) The semiconductor device according to the present invention has the refractive index of the island step ombre resist. are made equal, and the gate dimensions of Pch and Nch are made equal.

〔作用〕[Effect]

この発明での半導体装置は露光光源の定在波動λ 果のうち、レジスト膜厚の差が−の整数倍であれn λ ば同じパターン寸法が−の周期でえられるというn 長所を利用して、レジストの膜厚が異る場所でも同しゲ
ートパターン寸法を得ることができる様にしている。即
ち、A点とD点ではレジスト膜厚は異るが、同一のレジ
ストパターンをうろことかでλ きまたA点とD点ではそのレジスト膜厚差は−でn λ ある(1.−1=−)。
The semiconductor device of this invention utilizes the advantage of the standing wave λ of the exposure light source that if the difference in resist film thickness is an integral multiple of -, the same pattern size can be obtained with a cycle of -. This makes it possible to obtain the same gate pattern dimensions even in locations where the resist film thickness is different. That is, although the resist film thickness is different at points A and D, the same resist pattern is λ due to scales and points, and the difference in the resist film thickness between points A and D is - n λ (1.-1= -).

n 〔実施例〕 以下、この発明の一実施例を図について説明する。第1
図において、+11はシリコン基板、(21(2a)−
ト電極、(5)はゲート酸化膜、(6)はNウェル、(
7)はPウェルを示す、また、Pch活性領域とNch
活λ 性領域の段差Haは−の整数倍になっている。
n [Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
In the figure, +11 is a silicon substrate, (21(2a)-
(5) is the gate oxide film, (6) is the N-well, (
7) shows the P well, and also the Pch active region and the Nch
The level difference Ha in the active λ active region is an integral multiple of -.

n 次にこの発明の半導体装置の製造工程を第2図〜第8図
について説明する。第2図において、(1)はシリコン
基板で熱酸化により下敷酸化膜(8)を形成し、その上
に窒化膜をCVD法にて形成し、フォトレジストを用い
て選択除去し窒化膜パターン(9)を形成する。そして
窒化膜パターン(9)をマスクにしてウェハ全面にイオ
ン注入をおこない、Pウェル用の注入層(7a)を形成
する。第3図において、窒化膜パターン(9)をマスク
にして熱酸化によりアイランド酸化膜α・を形成する。
Next, the manufacturing process of the semiconductor device of the present invention will be explained with reference to FIGS. 2 to 8. In Fig. 2, (1) is formed by forming an underlying oxide film (8) on a silicon substrate by thermal oxidation, forming a nitride film on it by CVD method, and selectively removing it using a photoresist to form a nitride film pattern ( 9). Then, using the nitride film pattern (9) as a mask, ion implantation is performed over the entire surface of the wafer to form an implantation layer (7a) for the P well. In FIG. 3, an island oxide film α is formed by thermal oxidation using the nitride film pattern (9) as a mask.

このとき、アイラλ ンド酸化膜αlの厚さはHa(・−の整数倍)の2倍の
n 2Haになる様にする。このときに同時に注入層(7a
)のイオンは熱拡散により拡散されPウェル(7)が形
成される。そして窒化膜パターン(9)を除去後、アイ
ランド酸化膜αφをマスクにしてウェハ全面にイオン注
入をおこない、さらに熱拡散をおこなってNウェル(6
1を形成する。そして下敷酸化膜(8)、アイランド酸
化膜Qlを除去することにより第4図の様な断面構造を
得る。このとき、Nウェル(6)とλ Pウェル(7)との段差はHa (−一の整数倍)にな
ってn いる。第5図において、下敷酸化膜aIlを形成後CV
D法により窒化膜をデボし、フォトレジストを用いて窒
化膜を選択除去し窒化膜パターンamを形成する。そし
て第6図において、窒化膜パターン@をマスクにして熱
酸化によりフィールド酸化膜(2a)(21を形成する
。そして、窒化膜パターン@を除去し、下敷酸化膜0υ
を除去後第7図の様な断面構造を得る。このとき、Nウ
ェル(6)上のPch活性領域とPウェル(7)上のN
ch活性領域の段差はλ Ha(・−の整数倍)になっている、第8図において、
n 熱酸化により、ゲート酸化膜(5)を形成後、ゲート電
極用ポリシリコン膜をCVD法により形成し、ゲート電
極形成用のフォトレジスト膜O1を塗布する。
At this time, the thickness of the island λ oxide film αl is set to n 2Ha, which is twice Ha (an integral multiple of -). At this time, the injection layer (7a
) are diffused by thermal diffusion to form a P-well (7). After removing the nitride film pattern (9), ions are implanted into the entire surface of the wafer using the island oxide film αφ as a mask, and thermal diffusion is performed to perform N well (6
Form 1. Then, by removing the underlying oxide film (8) and the island oxide film Ql, a cross-sectional structure as shown in FIG. 4 is obtained. At this time, the level difference between the N well (6) and the λP well (7) is Ha (an integral multiple of -1). In FIG. 5, after forming the underlying oxide film aIl, the CV
The nitride film is debossed by method D, and the nitride film is selectively removed using a photoresist to form a nitride film pattern am. Then, in FIG. 6, field oxide films (2a) (21) are formed by thermal oxidation using the nitride film pattern @ as a mask.Then, the nitride film pattern @ is removed and the underlying oxide film 0υ
After removing , a cross-sectional structure as shown in FIG. 7 is obtained. At this time, the Pch active region on the N well (6) and the N well on the P well (7)
In FIG. 8, the step difference in the channel active region is λ Ha (an integer multiple of -).
n After forming a gate oxide film (5) by thermal oxidation, a polysilicon film for a gate electrode is formed by a CVD method, and a photoresist film O1 for forming a gate electrode is applied.

このとき、Pch活性領域上のレジスト膜厚t、とNc
h活性領域上のレジスト膜厚1Hの差は、λ −の整数倍になっている。その後、従来法とまっn たく同様に第12図第13図の様になり、第1図のごと
くこの発明の半導体装置の断面構造ができあがる。この
ときゲート仕上り寸法はL Pa ” L Naとなっ
ている。
At this time, the resist film thickness t on the Pch active region and Nc
The difference in resist film thickness 1H on the h active region is an integral multiple of λ −. Thereafter, the process becomes as shown in FIGS. 12 and 13 in exactly the same manner as in the conventional method, and the cross-sectional structure of the semiconductor device of the present invention as shown in FIG. 1 is completed. At this time, the finished gate dimensions are LPa''LNa.

なお、上記実施例はゲート電極にポリシリコンを用いた
場合について説明したが、高融点金属やそのシリサイド
の場合あるいはポリシリコンとのポリサイド構造の場合
にも同様の効果を奏する。
Although the above embodiments have been described with reference to the case where polysilicon is used for the gate electrode, similar effects can be obtained in the case of a high melting point metal or its silicide, or in the case of a polycide structure with polysilicon.

また、上記実施例ではゲート電極について説明したが、
そののちのコンタクトホールの形成や金属多層配線パタ
ーンこの形成の場合にも、同様の効果が得られる。
In addition, although the gate electrode was explained in the above embodiment,
Similar effects can be obtained in the subsequent formation of contact holes and metal multilayer wiring patterns.

〔発明の効果ン 以上のようにこの発明によれば、ウェハ上の段n レジスト膜厚が異なる場所でも均一な寸法のパターンを
得ることができ、設計どおりのパターンを得ることがで
き、より精度の高い半導体装置が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, it is possible to obtain a pattern with uniform dimensions even at locations on the wafer where the resist film thickness is different, it is possible to obtain a pattern as designed, and it is possible to obtain a pattern with higher precision. This has the effect of providing a semiconductor device with high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は、この発明の一実施例による半導体装
置の断面図およびその各製造工程の断面図、第9図、第
11図〜第13図は従来の半導体装置の断面図および各
製造工程の断面図、第10図(al〜(C1はゲート工
程の写真製版時の露光光源の定在波効果によるレジスト
膜厚とレジストパターン寸法の関係考曲線図および形状
図である。 図において、fl+はシリコン基板、+21(2a)は
フィールド酸化膜、[31+41はゲート電極、(5)
はゲート酸化膜、(6目よNウェル、(7)はPウェル
、(8)は下敷酸化膜、(9)は窒化膜パターン、al
はアイランド酸化膜、Qllは下敷酸化膜、(2)は窒
化膜パターン、G1はフォトレジスト膜を示す。 なお、図中、同一符号は同一、又は相当部分を示す。
1 to 8 are sectional views of a semiconductor device according to an embodiment of the present invention and sectional views of each manufacturing process thereof, and FIGS. 9 and 11 to 13 are sectional views and sectional views of a conventional semiconductor device. Cross-sectional views of each manufacturing process, FIG. , fl+ is the silicon substrate, +21 (2a) is the field oxide film, [31+41 is the gate electrode, (5)
is gate oxide film, (6th is N well, (7) is P well, (8) is underlying oxide film, (9) is nitride film pattern, al
(2) shows an island oxide film, Qll shows an underlying oxide film, (2) shows a nitride film pattern, and G1 shows a photoresist film. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)CMOS型半導体装置のPchのゲート長とNc
hのゲート長を等しくするために、アイランドの段差を
λ/2n(λ;露光用光源の波長、n;フォトレジスト
の屈折率)、の整数倍にしたこと特徴とする半導体装置
(1) Pch gate length and Nc of CMOS type semiconductor device
1. A semiconductor device characterized in that, in order to equalize the gate length of h, the step difference between the islands is made an integral multiple of λ/2n (λ: the wavelength of the exposure light source, n: the refractive index of the photoresist).
(2)CMOS型半導体装置のPch活性領域上のコン
タクトホール、Pchゲート配線上のコンタクトホール
とNch活性領域上のコンタクトホール、Nchゲート
配線上のコンタクトホールの径をそれぞれ等しくするた
めに、アイランド段差をλ/2nの整数倍にしたことを
特徴とする半導体装置。
(2) In order to equalize the diameters of the contact hole on the Pch active region of the CMOS type semiconductor device, the contact hole on the Pch gate wiring and the contact hole on the Nch active region, and the contact hole on the Nch gate wiring, an island step difference is made. A semiconductor device characterized in that λ/2n is an integral multiple of λ/2n.
(3)CMOS型半導体装置のPch活性領域上をとお
る金属多層配線の巾とNch活性領域上をとおる金属多
層配線の巾を等しくするためにアイランドの段差をλ/
2nの整数倍にしたことを特徴とする半導体装置。
(3) In order to equalize the width of the metal multilayer interconnection passing over the Pch active region of the CMOS type semiconductor device and the width of the metal multilayer interconnection passing over the Nch active region, the step difference between the islands is set to λ/
A semiconductor device characterized in that the number is an integral multiple of 2n.
JP63082001A 1988-04-01 1988-04-01 Semiconductor device Pending JPH01253955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63082001A JPH01253955A (en) 1988-04-01 1988-04-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63082001A JPH01253955A (en) 1988-04-01 1988-04-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01253955A true JPH01253955A (en) 1989-10-11

Family

ID=13762263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63082001A Pending JPH01253955A (en) 1988-04-01 1988-04-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01253955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965310A (en) * 1997-03-14 1999-10-12 Nec Corporation Process of patterning photo resist layer extending over step of underlying layer without deformation of pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965310A (en) * 1997-03-14 1999-10-12 Nec Corporation Process of patterning photo resist layer extending over step of underlying layer without deformation of pattern

Similar Documents

Publication Publication Date Title
JPH0415938A (en) Formation of contact hole
JPH01253955A (en) Semiconductor device
JP2000098593A (en) Production of stencil mask
JPH06216006A (en) Manufacture of semiconductor device
JP2658959B2 (en) Semiconductor device and manufacturing method thereof
JPH08298314A (en) Nonvolatile semiconductor memory and its manufacture
JPS6120334A (en) Manufacture of semiconductor device
JPS60240131A (en) Manufacture of semiconductor device
JPS61181132A (en) Formation of patterned layer
KR100192474B1 (en) Method of manufacturing mosfet
JPH05175441A (en) Semiconductor device and manufacture thereof
KR920010195B1 (en) Method for manufacturing of the high registance poly-silicon
KR0151183B1 (en) Semiconductor memory device manufacturing method
KR100540332B1 (en) Method for fabricating pattern of semiconductor device
JPS6211514B2 (en)
JP2961860B2 (en) Method for manufacturing semiconductor device
KR101096208B1 (en) Method for forming isolation patterns of semiocnductor device
JPH0675360A (en) Reticle and production of semiconductor device using the same
JPS61107747A (en) Manufacture of semiconductor device
JPH0320024A (en) Manufacture of semiconductor device
JPH0313949A (en) Resist pattern forming method
JPS62165329A (en) Manufacture of semiconductor integrated circuit device
JPH08264407A (en) Pattern forming method
JPH02231711A (en) Manufacture of semiconductor device
JPH02213121A (en) Photomask, and light sensing method of photoresist, and manufacture of semiconductor device