JPH01247515A - Method for pre-reducing fine ore and out-of-furnace circulating type fluidized bed reduction furnace - Google Patents
Method for pre-reducing fine ore and out-of-furnace circulating type fluidized bed reduction furnaceInfo
- Publication number
- JPH01247515A JPH01247515A JP7724488A JP7724488A JPH01247515A JP H01247515 A JPH01247515 A JP H01247515A JP 7724488 A JP7724488 A JP 7724488A JP 7724488 A JP7724488 A JP 7724488A JP H01247515 A JPH01247515 A JP H01247515A
- Authority
- JP
- Japan
- Prior art keywords
- riser
- reducing gas
- furnace
- fluidized bed
- header
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000007664 blowing Methods 0.000 claims abstract description 16
- 239000007789 gas Substances 0.000 abstract description 63
- 239000012159 carrier gas Substances 0.000 abstract description 8
- 238000007599 discharging Methods 0.000 abstract description 5
- 238000005243 fluidization Methods 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 20
- 239000000843 powder Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000003723 Smelting Methods 0.000 description 5
- 238000007667 floating Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0033—In fluidised bed furnaces or apparatus containing a dispersion of the material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、溶融還元炉に投入される粉鉱石を流動層炉で
還元ガスによって予備還元する方法及び外部循環式流動
層炉に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for pre-reducing fine ore to be charged into a smelting reduction furnace with a reducing gas in a fluidized bed furnace, and an external circulation fluidized bed furnace.
従来の高炉による溶銑製造技術に代わるものとして、溶
融還元法が注目を浴びている。この方法で使用する溶融
還元炉は、使用する原料に制約を受けることなく、より
小規模な設備により鉄系合金の溶湯を製造することを目
的として開発されたものである。また、溶融還元炉で発
生した排ガスの還元力及び熱を有効に利用するため、流
動化ガスとして流動層炉で原料鉱石を予熱、予備還元す
る方法等も開発されている。The smelting reduction method is attracting attention as an alternative to the conventional hot metal production technology using a blast furnace. The smelting reduction furnace used in this method was developed for the purpose of producing molten iron-based alloys using smaller-scale equipment without being restricted by the raw materials used. Furthermore, in order to effectively utilize the reducing power and heat of the exhaust gas generated in the smelting reduction furnace, a method has been developed in which raw ore is preheated and pre-reduced in a fluidized bed furnace as a fluidizing gas.
また、大きな空塔速度で流動化ガスを炉内に吹き込み、
粉鉱石の予熱、予備還元等を高速で行う形式の炉外循環
式流動層炉が知られている。この場合、流動化ガスの空
塔速度が大きくなるに従って、流動層炉を構成するライ
ザー外部に飛散する粉鉱石の割合も大きくなる。そこで
、飛散した粉鉱石は、炉外循環経路に設けられたサイク
ロンで排ガスから分離、捕捉されて、ダウンカマーを経
てライザーに戻される。In addition, fluidizing gas is blown into the furnace at a high superficial velocity,
BACKGROUND ART An external circulation type fluidized bed furnace is known that performs preheating, preliminary reduction, etc. of fine ore at high speed. In this case, as the superficial velocity of the fluidizing gas increases, the proportion of fine ore scattered outside the riser that constitutes the fluidized bed furnace also increases. Therefore, the scattered fine ore is separated from the exhaust gas by a cyclone installed in the external circulation path, captured, and returned to the riser via the downcomer.
本発明者等は、この種の炉外循11式流動層還元炉とし
て、ダウンカマーの底部を傾斜炉床とし、ここにバブル
流動域を形成するようにキャリアガス吹込み口を開口さ
せたものを開発し、特願昭62−269286号として
出願した。この傾斜炉床の下位側には粗粒排出口を、ラ
イザーの下部には中粒排出口を設け、流動化ガスによっ
て流動化しない粒径の粉鉱石を適宜取り出している。The present inventors have developed an external circulation 11-type fluidized bed reduction furnace of this type, in which the bottom of the downcomer is a slanted hearth, and a carrier gas inlet is opened to form a bubble flow region there. was developed and filed as Japanese Patent Application No. 62-269286. A coarse grain outlet is provided at the lower side of the inclined hearth, and a medium grain outlet is provided at the lower part of the riser, to appropriately take out fine ore having a particle size that is not fluidized by the fluidizing gas.
前掲の特願昭62−269286号で紹介した流動層還
元炉においては、中粒排出口を還元ガス吹込みヘッダー
よりも下方に設けている。ところが、中粒の粉鉱石は、
ライザーの上部にまでは達しないため、ダウンカマーに
流入することがなく、ライブ−下部の小領域において流
動状態に維持される。In the fluidized bed reduction furnace introduced in the above-mentioned Japanese Patent Application No. 62-269286, the medium grain discharge port is provided below the reducing gas injection header. However, medium-grained fine ore,
Since it does not reach the top of the riser, it does not flow into the downcomer and is maintained in a fluid state in a small region of the live bottom.
そのため、中粒の粉鉱石は、ライザーから抜き出されず
に、徐々にライザーの下部に蓄積される。Therefore, the medium-grained fine ore is not extracted from the riser and gradually accumulates at the bottom of the riser.
そして、中粒の粉鉱石が濃厚に浮遊している領域が、還
元ガス吹込みヘッダー及びその上方に形成される。この
濃厚領域を通じて還元ガスがライザー内を上昇するので
、圧損が段々と大きくなる。Then, a region in which medium-grain fine ore is heavily suspended is formed in and above the reducing gas injection header. As the reducing gas rises in the riser through this rich region, the pressure drop gradually increases.
また、還元ガス吹込みヘッダー上方の小領域で浮遊して
いる中粒の粉鉱石に対して還元力の大きな還元ガスと優
先的に接触するため、中粒粉鉱石の還元反応が過度に進
行する。しかも、この中粒の粉鉱石は、ライザー下部の
小領域において濃密状態で循環しているものであるから
、還元反応の過度の進行に起因してスティッキングが生
じ易くなる。このスティッキングが発生すると、炉況が
不安定になるばかりか、吹き込まれた還元ガスが粉鉱石
と効率良く接触せず、未使用のままで炉外に排出され易
くなる。In addition, because the medium-grained fine ore floating in the small area above the reducing gas injection header comes into preferential contact with the reducing gas, which has a large reducing power, the reduction reaction of the medium-grained fine ore progresses excessively. . Moreover, since this medium-grained fine ore circulates in a dense state in a small region below the riser, sticking is likely to occur due to excessive progress of the reduction reaction. When this sticking occurs, not only does the furnace condition become unstable, but the injected reducing gas does not come into contact with the fine ore efficiently, and is likely to be discharged from the furnace without being used.
そこで、本発明は、還元ガス吹込みヘッダー上方に開口
させた中粒排出管から、そこに浮遊する中粒の粉鉱石を
炉内の圧損変動に基づいて取り出すことにより、還元ガ
スの吹込み圧が過剰に高くなることを防止すると共に、
スティッキング等の発生がない安定した炉況の下で流動
層還元炉を稼動させることを目的とする。Therefore, the present invention aims to reduce the reducing gas injection pressure by taking out the medium particle fine ore floating there from the medium particle discharge pipe opened above the reducing gas injection header based on the pressure drop fluctuation in the furnace. In addition to preventing the temperature from becoming excessively high,
The purpose is to operate a fluidized bed reduction furnace under stable furnace conditions without the occurrence of sticking, etc.
本発明の予備還元方法は、その目的を達成するため、ラ
イザーとダウンカマーとの間で粉鉱石を還元ガスによっ
て循環・流動させながら予備還元する際、前記ライザー
内の圧損が大きくなったとき、前記還元ガスを吹き込む
還元ガス吹込みヘッダーより上方の位置で前記ライザー
の内部に開口させた中粒排出管から中粒を取り出すこと
を特徴とする。In order to achieve the purpose of the preliminary reduction method of the present invention, when preliminary reduction is carried out while circulating and fluidizing fine ore with a reducing gas between a riser and a downcomer, when the pressure drop in the riser becomes large, The medium grains are taken out from a medium grain discharge pipe opened inside the riser at a position above the reducing gas blowing header into which the reducing gas is blown.
また、この方法に使用する炉外循環式流動層還元炉は、
ライザーの下部に設けた還元ガス吹込みヘッダーと、該
還元ガス吹込みヘッダーの上方位置でライザーの内部に
開口する中粒排出管と、該中粒排出管に設けられた排出
装置と、ライザーの上部における炉内圧と還元ガスヘッ
ダーを流れる還元ガスの圧力との差を検出する差圧計と
、検出された差圧に基づき排出装置を開閉又は調節する
制御装置とを備えている。In addition, the external circulation fluidized bed reduction furnace used in this method is
A reducing gas blowing header provided at the bottom of the riser, a medium grain discharge pipe opening into the riser at a position above the reducing gas blowing header, a discharge device provided in the medium grain discharge pipe, and a riser. It is equipped with a differential pressure gauge that detects the difference between the internal pressure of the furnace in the upper part and the pressure of the reducing gas flowing through the reducing gas header, and a control device that opens, closes, or adjusts the discharge device based on the detected differential pressure.
以下、図面を参照しながら、実施例により本発明の特徴
を具体的に説明する。Hereinafter, the features of the present invention will be specifically explained using examples with reference to the drawings.
第1図は、本発明の流動層還元炉を示す概略図である。FIG. 1 is a schematic diagram showing a fluidized bed reduction furnace of the present invention.
この流動層還元炉は、流動層本体を構成するライザー1
と、このライザーlに併設されたダウンカマー2とを備
えている。そして、ライザー1の上部3は、導出管4を
介してダウンカマー2に設けたサイクロン5に接続され
ている。他方、ダウンカマー2の下部は、導入管6を介
してライザー1の下部に接続されている。装入管7から
ライザー1内に送り込まれた粉鉱石は、還元ガスヘッダ
ー8から吹き込まれた還元ガスによってライザー1内を
流動化する。ここで、還元ガスとしては、溶融還元炉で
発生した排ガスを直接或いは改質したものを使用するこ
とができる。This fluidized bed reduction furnace has a riser 1 that constitutes the fluidized bed body.
and a downcomer 2 attached to this riser l. The upper part 3 of the riser 1 is connected to a cyclone 5 provided on the downcomer 2 via a lead-out pipe 4. On the other hand, the lower part of the downcomer 2 is connected to the lower part of the riser 1 via an introduction pipe 6. The fine ore fed into the riser 1 from the charging pipe 7 is fluidized inside the riser 1 by the reducing gas blown from the reducing gas header 8. Here, as the reducing gas, exhaust gas generated in the melting reduction furnace can be used directly or after being reformed.
還元ガスとの接触により、粉鉱石は予備還元される。そ
して、粉鉱石の一部は、還元ガスの流れに乗って、導出
管4を経由してサイクロン5に送り込まれる。サイクロ
ン5で、粉鉱石は、排ガスから分離された後、ダウンカ
マー2を下降する。The fine ore is pre-reduced by contact with the reducing gas. Then, a part of the fine ore is sent to the cyclone 5 via the outlet pipe 4 along with the flow of the reducing gas. In the cyclone 5, the fine ore is separated from the exhaust gas and then moves down the downcomer 2.
このダウンカマー2の途中に細粒取出し口9が設けられ
ており、溶融還元炉の操業状態に合わせて粉鉱石を連続
的に或いは間歇的に取り出す。A fine grain extraction port 9 is provided in the middle of the downcomer 2, and fine ore is taken out continuously or intermittently depending on the operational status of the smelting reduction furnace.
残りの粉鉱石は、導入管6を経由してライザー■に再度
送り込まれる。このとき、導入管6からライザ−1下部
への粉鉱石の送込みを円滑に行わせるため、還元ガスの
一部を還元ガスヘッダー8から分岐させ、キャリアガス
10として吹き込むこともできる。このようにして、装
入管7から装入された粉鉱石は、ライザー1→導出管4
→サイクロン5−ダウンカマー2=導入管6→ライザー
1を循環しながら還元されて、細粒取出し口9から適宜
切り出される。The remaining fine ore is fed into the riser (2) again via the inlet pipe 6. At this time, in order to smoothly feed the fine ore from the introduction pipe 6 to the lower part of the riser 1, a part of the reducing gas can be branched from the reducing gas header 8 and blown in as the carrier gas 10. In this way, the fine ore charged from the charging pipe 7 is transferred from the riser 1 to the outlet pipe 4.
→ Cyclone 5 - Downcomer 2 = Introducing pipe 6 → The fine particles are reduced while circulating through the riser 1 and cut out from the fine particle outlet 9 as appropriate.
ライザー1内に送り込まれた粉鉱石は、その粒径に応じ
て流動化状態が異なる。たとえば、還元ガスの吹込み圧
にもよるが、粒径が5111m以上の粗粒は、はとんど
流動化せず、ライザー1の底部に堆積する。この粗粒粉
鉱石は、ライザー1の底部に開口した粗粒取出し管11
から取り出される。ところが、粒径が1〜5 mmの中
粒は、還元ガスによって若干浮遊するものの、ライザー
1の上部3に至ることがない。その結果、中粒粉鉱石は
、ライザー1から導出管4を経てサイクロン5に送り出
されることなく、また粗粒取出し管11から排出される
ことなく、濃厚流動層12として還元ガスヘッダー8近
傍の上下にわたる小領域で増量する。The fluidized state of the fine ore fed into the riser 1 differs depending on its particle size. For example, although it depends on the blowing pressure of the reducing gas, coarse particles with a particle size of 5111 m or more are rarely fluidized and deposited at the bottom of the riser 1. This coarse powder ore is transported through a coarse grain extraction pipe 11 opened at the bottom of the riser 1.
taken from. However, medium particles with a particle size of 1 to 5 mm do not reach the upper part 3 of the riser 1, although they are slightly suspended by the reducing gas. As a result, the medium-grained ore is not sent out from the riser 1 through the outlet pipe 4 to the cyclone 5, nor is it discharged from the coarse-grain take-out pipe 11, but as a dense fluidized bed 12 in the upper and lower vicinity of the reducing gas header 8. increase in small areas over the area.
濃厚流動層12が還元ガスヘッダー8近傍の上下に形成
されることによって、還元ガスヘッダー8から吹き込ま
れた還元ガスは、大きな抵抗を受ける。すなわち、ライ
ザー1の上部3まで粉鉱石を上昇させるためには、還元
ガスの吹込み圧を大きくしなければならない。また、a
厚流動層12が形成される領域は、吹き込まれた還元ガ
スの還元力が最も大きなところである。そのため、還元
ガスヘッダー8を中心とする濃厚流動層12で浮遊して
いる粉鉱石は、過度に還元され、スティッキングを生じ
易くなる。Since the dense fluidized bed 12 is formed above and below the vicinity of the reducing gas header 8, the reducing gas blown from the reducing gas header 8 is subjected to large resistance. That is, in order to raise the fine ore to the upper part 3 of the riser 1, the blowing pressure of the reducing gas must be increased. Also, a
The region where the thick fluidized bed 12 is formed is where the reducing power of the injected reducing gas is greatest. Therefore, the fine ore floating in the dense fluidized bed 12 centered on the reducing gas header 8 is excessively reduced and tends to cause sticking.
そこで、本発明においては、a厚流動層12に浮遊する
中粒の粉鉱石を取り出すため、還元ガスヘッダー8の上
方位置に中粒取出し管13を開口さ仕ている。そして、
中粒取出し管13に設けた排出装置を開閉することによ
り、濃厚流動層12に過剰量の中粒粉鉱石が浮遊するこ
とを防止している。ここで、還元ガスヘッダー8よりも
高い位置に中粒取出し管13を設けているため、還元ガ
スヘッダー8の上方に形成される濃厚流動層12は、効
率良く除去され、還元ガスヘッダー8から吹き込まれた
還元ガスに対する抵抗として働くことが抑制される。Therefore, in the present invention, in order to take out the medium grain fine ore floating in the a-thick fluidized bed 12, a medium grain take-out pipe 13 is opened above the reducing gas header 8. and,
By opening and closing the discharge device provided in the medium grain removal pipe 13, an excessive amount of medium grain powder ore is prevented from floating in the dense fluidized bed 12. Here, since the medium particle removal pipe 13 is provided at a higher position than the reducing gas header 8, the dense fluidized bed 12 formed above the reducing gas header 8 is efficiently removed and is blown from the reducing gas header 8. This prevents the gas from acting as a resistance to the reduced reducing gas.
図示の場合、排出装置として、ライザー1内の圧損に基
づいて作動する二ニーマチックフィーダ14を中粒取出
し管13に設けている。すなわち、ライザー1の上部3
に一方の検出端子15を配置し、還元ガスヘッダー8の
内部に他方の検出端子16を設けた差圧計17によって
、還元ガスヘッダー8からの還元ガスの吹込み圧とライ
ザー1の上部3における炉内圧との差を検出する。検出
された差圧は、差圧制御装置18に入力される。差圧制
御装置18には設定値が予め人力されており、検出され
た差圧をこの設定値と比較する。In the illustrated case, a two-kneematic feeder 14, which operates based on the pressure loss within the riser 1, is provided in the medium grain removal pipe 13 as a discharge device. That is, the upper part 3 of riser 1
A differential pressure gauge 17 having one detection terminal 15 disposed inside the reducing gas header 8 and the other detection terminal 16 provided inside the reducing gas header 8 measures the blowing pressure of the reducing gas from the reducing gas header 8 and the furnace at the upper part 3 of the riser 1. Detects the difference with internal pressure. The detected differential pressure is input to the differential pressure control device 18. A set value is manually entered in the differential pressure control device 18 in advance, and the detected differential pressure is compared with this set value.
検出値が設定値を超えた場合には、制御信号が流量調整
弁19に出力され、キャリアガス吹込み管20からニュ
ーマチックフィーダ14に吹き込まれるキャリアガスの
流量を制御する。検出値が設定値より小さくなったとき
には、すでに吹き込んでいるキャリアガスの供給を停止
する信号を差圧制御装置18から流量調整弁19に出力
する。なお、流量調整弁19に代えて、ニューマチック
フィーダ14からの中粒粉鉱石の排出動作をオン・オフ
する開閉弁を設けることも可能である。When the detected value exceeds the set value, a control signal is output to the flow rate adjustment valve 19 to control the flow rate of the carrier gas blown into the pneumatic feeder 14 from the carrier gas blowing pipe 20. When the detected value becomes smaller than the set value, the differential pressure control device 18 outputs a signal to the flow rate regulating valve 19 to stop the supply of the carrier gas that has already been blown. Note that, in place of the flow rate adjustment valve 19, it is also possible to provide an on-off valve that turns on and off the operation of discharging the medium-sized powder ore from the pneumatic feeder 14.
したがって、ライザー1内の圧損に応じて、ニューマチ
ツタフィーダ14から中粒粉鉱石が中粒取出し管13を
介して系外に排出される。これによって、濃厚流動層1
2の厚み、特に還元ガスヘッダー8上方に浮遊している
中粒粉鉱石の量が少なくなリ、濃厚流動層12に起因し
た圧損の上昇を防ぎ、一定した吹込み圧で還元ガスをラ
イザー内に吹き込み、所定の流動状態を維持することが
できる。Therefore, depending on the pressure drop within the riser 1, medium grain powder ore is discharged from the pneumatic ivy feeder 14 to the outside of the system via the medium grain extraction pipe 13. As a result, the dense fluidized bed 1
2, especially the amount of medium-grained ore suspended above the reducing gas header 8, prevents an increase in pressure drop caused by the dense fluidized bed 12, and allows the reducing gas to be pumped into the riser at a constant blowing pressure. can be blown to maintain a predetermined fluidity state.
また、還元度の大きな中粒粉鉱石を取り出すため、還元
ガスヘッダー8の近傍にスティッキングが発生すること
もなくなる。更には、還元ガスによって若干流動化する
ものの、ライザー1の上部3までには到達しない中粒の
粉鉱石がライザ−1底部から取り出される粗粒粉鉱石と
分離されて取り出される。ここで、還元ガスヘッダー8
の上方に中粒取出し管13を設けているために、中粒粉
鉱石と粗粒粉鉱石との分離精度は、優れたものとなる。Further, since medium-grained ore having a high degree of reduction is taken out, there is no possibility of sticking occurring near the reducing gas header 8. Further, medium-sized fine ore, which is slightly fluidized by the reducing gas but does not reach the upper part 3 of the riser 1, is separated from coarse-grained ore taken out from the bottom of the riser 1 and taken out. Here, reducing gas header 8
Since the medium grain removal pipe 13 is provided above the medium grain ore, the separation accuracy between the medium grain powder ore and the coarse grain powder ore is excellent.
以上に説明したように、本発明においては、還元ガスヘ
ッダーよりも上方の位置で中粒取出し管をライザー内部
に開口させ、圧損が設定値を超えた場合に該中粒取出し
管を介して中粒の粉鉱石を取り出している。そのため、
ライザー内部に形成される濃厚流動層の厚みを一定範囲
に維持し、吹込み圧の上昇を招くことなく、粉鉱石の流
動化を行うことができる。また、最も盛んに還元反応を
受ける濃厚流動層が効率良く取り出されるため、還元ガ
スヘッダー近傍にスティッキングが発生することがなく
なる。しかも、この中粒粉鉱石は、分離精度良く粗粒粉
鉱石と分けられているため、以降の溶融還元工程におけ
る原料としての処理が容易なものとなる。このようにし
て、本発明によるとき、安定した炉況の下で一定した品
質の還元鉱を製造することが可能となる。As explained above, in the present invention, the medium grain removal pipe is opened inside the riser at a position above the reducing gas header, and when the pressure drop exceeds a set value, the medium grain removal pipe is opened through the medium grain removal pipe. Granular powder ore is being extracted. Therefore,
The thickness of the dense fluidized bed formed inside the riser can be maintained within a certain range, and fine ore can be fluidized without increasing the blowing pressure. Furthermore, since the dense fluidized bed that undergoes the most active reduction reaction is efficiently taken out, sticking will not occur near the reducing gas header. Moreover, since this medium-grain powder ore is separated from the coarse-grain powder ore with good separation accuracy, it can be easily processed as a raw material in the subsequent melt-reduction process. In this way, according to the present invention, it is possible to produce reduced ore of constant quality under stable furnace conditions.
第1図は、本発明の流動層還元炉を示す概略図である。
1:ライザ−2:ダウンカマー
3:ライザーの上部 4:導出管
5:サイクロン 6:導入管
7:装入管 8:還元ガスヘッダー9:細粒
取出し口 10:キャリアガスll:粗粒取出し管
12:濃厚流動層13;中粒取出し管 14−ニ
コーマチックフィーダ15.16:検出端子 17
:差圧計18:差圧制御装置 19:流量調整弁20
:キャリアガス吹込み管
特許出願人 新日本製鐵 株式會社代 理
人 小 堀 益 (ほか2名)第1図FIG. 1 is a schematic diagram showing a fluidized bed reduction furnace of the present invention. 1: Riser - 2: Downcomer 3: Upper part of riser 4: Outlet pipe 5: Cyclone 6: Inlet pipe 7: Charge pipe 8: Reducing gas header 9: Fine particle outlet 10: Carrier gas 1: Coarse particle outlet pipe 12: Dense fluidized bed 13; Medium grain removal tube 14-Nicomatic feeder 15.16: Detection terminal 17
:Differential pressure gauge 18:Differential pressure control device 19:Flow rate adjustment valve 20
: Carrier gas injection pipe patent applicant Nippon Steel Corporation Representative
Masu Kobori (and 2 others) Figure 1
Claims (1)
によって循環・流動させながら予備還元する際、前記ラ
イザー内の圧損が大きくなったとき、前記還元ガスを吹
き込む還元ガス吹込みヘッダーより上方の位置で前記ラ
イザーの内部に開口させた中粒排出管から中粒を取り出
すことを特徴とする粉鉱石の予備還元方法。 2、ライザーとダウンカマーとの間で粉鉱石が流動・循
環する流動層還元炉において、前記ライザーの下部に設
けた還元ガス吹込みヘッダーと、該還元ガス吹込みヘッ
ダーの上方位置で前記ライザーの内部に開口する中粒排
出管と、該中粒排出管に設けられた排出装置と、前記ラ
イザーの上部における炉内圧と還元ガスヘッダーを流れ
る還元ガスの圧力との差を検出する差圧計と、検出され
た差圧に基づき前記排出装置を開閉又は調節する制御装
置とを備えていることを特徴とする炉外循環式流動層還
元炉。[Claims] 1. When pre-reducing fine ore while circulating and fluidizing it with reducing gas between the riser and the downcomer, when the pressure drop in the riser becomes large, the reducing gas is blown into the reducing gas. A method for preliminary reduction of fine ore, comprising taking out medium grains from a medium grain discharge pipe opened inside the riser at a position above the blowing header. 2. In a fluidized bed reduction furnace in which fine ore flows and circulates between a riser and a downcomer, there is a reducing gas blowing header installed at the bottom of the riser, and a reducing gas blowing header installed at a position above the reducing gas blowing header above the riser. a medium grain discharge pipe opening into the inside, a discharge device provided on the medium grain discharge pipe, a differential pressure gauge that detects the difference between the furnace internal pressure at the upper part of the riser and the pressure of the reducing gas flowing through the reducing gas header; An extra-furnace circulation type fluidized bed reduction furnace, comprising: a control device that opens, closes, or adjusts the discharge device based on the detected pressure difference.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7724488A JPH01247515A (en) | 1988-03-29 | 1988-03-29 | Method for pre-reducing fine ore and out-of-furnace circulating type fluidized bed reduction furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7724488A JPH01247515A (en) | 1988-03-29 | 1988-03-29 | Method for pre-reducing fine ore and out-of-furnace circulating type fluidized bed reduction furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01247515A true JPH01247515A (en) | 1989-10-03 |
Family
ID=13628446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7724488A Pending JPH01247515A (en) | 1988-03-29 | 1988-03-29 | Method for pre-reducing fine ore and out-of-furnace circulating type fluidized bed reduction furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01247515A (en) |
-
1988
- 1988-03-29 JP JP7724488A patent/JPH01247515A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910008113B1 (en) | Metal-making apparatus involving the smetting redaction of metallic oxides | |
JPH01247515A (en) | Method for pre-reducing fine ore and out-of-furnace circulating type fluidized bed reduction furnace | |
JP2620793B2 (en) | Preliminary reduction furnace for smelting reduction | |
US4378244A (en) | System for coal injection in iron oxide reducing kilns | |
JP3223727B2 (en) | Powder material transfer device | |
JPH01129917A (en) | Device for preheating and charging material in reduction furnace | |
JP2501662B2 (en) | Control method of ore retention in circulating fluidized bed preliminary reduction furnace | |
JPH03215621A (en) | Circulating fluidized bed prereduction for powdery iron ore | |
JPH01242708A (en) | Fluidized-bed reducing equipment for iron ore | |
JPH03177511A (en) | Method for operating fluidized bed pre-reduction furnace and fluidized bed pre-reduction furnace | |
JP2981015B2 (en) | Operating method of circulating fluidized bed reactor | |
JPH03100112A (en) | Method for operating circulating fluidized reduction furnace of powdery ore and reduction furnace | |
JPH0293010A (en) | Method for removing sticking material at circumference of tuyere in smelting reduction furnace | |
JPH01247514A (en) | Fluidized bed pre-reduction furnace and operating method thereof | |
JPH07268429A (en) | Operating method of fluidized bed prereduction device | |
JPH042643B2 (en) | ||
JPH0372012A (en) | Circulating fluidized bed pre-reduction furnace | |
JP2765734B2 (en) | Operation method of iron bath reactor | |
AU1693499A (en) | Complex fluidized bed type fine iron ore reducing apparatus, and method therefor | |
JPH06108131A (en) | Operation of vertical type smelting reduction furnace | |
JPH01100227A (en) | Method for reducing fluidized bed of fine powdered ore | |
JPH0297888A (en) | Operation of circulation type fluidized bed preliminary reducing furnace | |
JPS62230913A (en) | Method for reducing powdery ore in fluidized bed | |
JPH01117132A (en) | Transfer device for hot bulk material | |
JPH03183715A (en) | Fluidized bed pre-reduction method for powdery ore |