JPH01242708A - Fluidized-bed reducing equipment for iron ore - Google Patents

Fluidized-bed reducing equipment for iron ore

Info

Publication number
JPH01242708A
JPH01242708A JP6923688A JP6923688A JPH01242708A JP H01242708 A JPH01242708 A JP H01242708A JP 6923688 A JP6923688 A JP 6923688A JP 6923688 A JP6923688 A JP 6923688A JP H01242708 A JPH01242708 A JP H01242708A
Authority
JP
Japan
Prior art keywords
iron ore
furnace
fluidized bed
cyclone
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6923688A
Other languages
Japanese (ja)
Other versions
JP2562172B2 (en
Inventor
Tetsuaki Yamamoto
山本 哲明
Tatsuhiko Egashira
江頭 達彦
Satoru Suzuki
悟 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6923688A priority Critical patent/JP2562172B2/en
Publication of JPH01242708A publication Critical patent/JPH01242708A/en
Application granted granted Critical
Publication of JP2562172B2 publication Critical patent/JP2562172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material

Abstract

PURPOSE:To appropriately secure the fluidity in a reducing furnace and to efficiently reduce iron ore by supplying iron ore into the exhaust pipe ot the furnace, sizing the ore by a classifying and preheating cyclone and a solid-gas separation cyclone, and supplying the sized ore into the furnace. CONSTITUTION:The iron ore in a hopper 6 is supplied by a feeder 7a into the exhaust pipe 5 of the fluidized-bed reducing furnace 1, and transported to the classifying and preheating cyclone 2 by the reducing gas discharged from the furnace 1 while being preheated and dried. The coarse iron ore is classified and collected by the cyclone 2, and discharged from a discharger 7c. The iron ore classified to a specified grain size is entrained by the reducing gas, transported to the solid-gas separation cyclone 3, and separated from the reducing gas. The sized iron ore heat-exchanged with the reducing gas, dried, and preheated is sent downward through a transport pipe 8, and supplied to the furnace 1 by a feeder 7b. By this method, good fluidity can be secured in the furnace 1, and the ore is efficiently reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶融還元法・高炉法等に使用するための鉄鉱石
を流動層還元炉で還元する鉄鉱石還元装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an iron ore reduction apparatus for reducing iron ore for use in a smelting reduction method, a blast furnace method, etc. in a fluidized bed reduction furnace.

[従来の技術] 鉄鉱石を還元して溶銑を製造するために、高炉を使用す
る方法、シャフト炉で還元した鉄鉱石を電気炉で溶解す
る方法等が従来から採用されている。
[Prior Art] In order to reduce iron ore to produce hot metal, methods such as using a blast furnace and melting iron ore reduced in a shaft furnace in an electric furnace have been adopted.

このような従来の溶銑製造技術に代わるものとして、溶
融還元法が注目を浴びている。この方法で使用する溶融
還元炉は、使用する原料に制約を受けることなく、より
小規模な設備により鉄系合金の8湯を製造することを目
的として開発されたものである。
As an alternative to such conventional hot metal production techniques, the smelting reduction method is attracting attention. The smelting reduction furnace used in this method was developed for the purpose of producing molten metal of iron-based alloys using smaller-scale equipment without being restricted by the raw materials used.

本出願人は、先に特開昭(it −64807号公報に
このような溶融還元法の一つを提案した。
The present applicant previously proposed one of such melt reduction methods in Japanese Patent Application Laid-open No. Sho (IT-64807).

このような溶融還元法においては、特にその開発過程か
ら明らかなように、使用可能な原料の範囲の拡大、還元
効率の向上、溶融還元炉における稍錬反応の促進、溶融
還元炉で発生するC09H2リツチな還元ガスの有効利
用を如何にして達成するかの課題がある。
In this type of smelting reduction method, it is clear from the development process that it expands the range of usable raw materials, improves reduction efficiency, promotes the smelting reaction in the smelting reduction furnace, and reduces CO9H2 generated in the smelting reduction furnace. There is a problem in how to effectively utilize the rich reducing gas.

そこで、本発明者等は、先にかかる観点から、特願昭6
1−288599号明細書において、粒子循環タイプの
鉄鉱石流動層還元装置の一つを提案した。
Therefore, from this perspective, the inventors of the present invention have proposed
In the specification of No. 1-288599, one of the particle circulation type iron ore fluidized bed reduction apparatuses was proposed.

第3図はそのフローを示す。FIG. 3 shows the flow.

即ち流動層還元炉に外部粒子循環装置を付設し、流動層
還元炉11の上部に設けられている出口にサイクロン1
4を接続し、還元ガス12と同伴し飛散してきた細粒子
を捕捉している。
That is, an external particle circulation device is attached to the fluidized bed reduction furnace, and a cyclone 1 is installed at the outlet provided at the upper part of the fluidized bed reduction furnace 11.
4 is connected to capture the fine particles that are scattered along with the reducing gas 12.

サイクロン14の下部には捕捉した粒子を一時溜、 め
るホッパー15が接続され、このホッパー15で一時蓄
え所定量を循環切出装置IBで流動層還元炉1に戻すも
のである。
A hopper 15 is connected to the lower part of the cyclone 14 to temporarily store the captured particles, and a predetermined amount of the trapped particles is temporarily stored in the hopper 15 and returned to the fluidized bed reduction furnace 1 by a circulation cutting device IB.

一方流動層還元炉11の炉内には複数のガス吹出し口1
7.18が形成されている。このガス吹出し口17、1
8の中間部にバブリング流動層19を形成し、このバブ
リング流動層19内に前記外部粒子循環装置の循環出口
が設けられている。
On the other hand, there are a plurality of gas outlets 1 in the fluidized bed reduction furnace 11.
7.18 is formed. This gas outlet 17, 1
A bubbling fluidized bed 19 is formed in the middle of the particle 8, and a circulation outlet of the external particle circulation device is provided within this bubbling fluidized bed 19.

また流動層還元炉11の炉底部に充填層20が形成され
、充填層20内に炉底吹込みノズル21が設けられてい
る。
Further, a packed bed 20 is formed at the bottom of the fluidized bed reduction furnace 11, and a bottom blowing nozzle 21 is provided in the packed bed 20.

図中22は粉鉱石、石炭石等の原料13を流動層還元炉
11に装入する為の切出弁、23.24.25は還元ガ
スの吹出し量を調整するための流量調節弁、26は細粒
状の還元鉱の切出弁、27は細粒状の還元鉱の切出弁で
ある。
In the figure, 22 is a cut-off valve for charging the raw material 13 such as fine ore or coal stone into the fluidized bed reduction furnace 11, 23, 24, and 25 are flow control valves for adjusting the amount of reducing gas blown out, and 26 27 is a cut-out valve for fine-grained reduced ore, and 27 is a cut-out valve for fine-grained reduced ore.

次に切出弁から粉鉱石、石灰石等の原料13を流動層還
元炉11に装入し、還元ガス12を流量調節弁23、2
4.25を介してガス吹出し口17.18.21より吹
込むと、最上部のガス吹込みノズル17の上方は全ての
ガス吹込みノズルの吹出し量が加わり、細粒状の原料粒
子の終末速度ULより大きい速度となり、細粒状の原料
粒子は還元ガスと反応しながら流動層還元炉の上方へ飛
散する。
Next, raw materials 13 such as fine ore and limestone are charged into the fluidized bed reduction furnace 11 from the cutting valve, and the reducing gas 12 is supplied to the flow rate control valves 23 and 2.
When the gas is blown from the gas outlet 17, 18, 21 through the gas outlet 17, 18, and 25, the air flow from all the gas blowing nozzles is added to the uppermost gas blowing nozzle 17, and the final velocity of the fine raw material particles increases. The velocity is higher than the UL, and the fine raw material particles are scattered above the fluidized bed reduction furnace while reacting with the reducing gas.

他方の粗粒状の原料は細粒状の原料に比べ終末速度Ut
が大きい為、ガス吹出し口17で飛散せず、二ケ所のガ
ス吹出し口17.18間に位置するバブリング流動層1
9で更に風ふるいされ、粗粒子は炉下部の充填層20ま
で下降する。
The other coarse-grained raw material has a terminal velocity Ut compared to the fine-grained raw material.
Because the gas is large, it does not scatter at the gas outlet 17, and the bubbling fluidized bed 1 located between the two gas outlets 17 and 18
The particles are further air-sieved in step 9, and the coarse particles descend to the packed bed 20 at the bottom of the furnace.

充填層20内の粗粒子は炉下部に位置する炉底吹込みノ
ズル21により、適正な流量の還元ガスにより還元が確
実になされ、切出弁27から粗粒状の還元鉱が排出され
次工程へ送られる。
The coarse particles in the packed bed 20 are reliably reduced by a proper flow rate of reducing gas through the furnace bottom blowing nozzle 21 located at the bottom of the furnace, and the coarse reduced ore is discharged from the cutting valve 27 to proceed to the next process. Sent.

一方細粒子は流動層還元炉ll内で飛散され、炉上部の
出口からサイクロン14で捕捉され、ホッパー15、循
環切出装置1Bを介し、バブリング流動層19に循環さ
せ、再び還元が行われる。
On the other hand, the fine particles are scattered in the fluidized bed reduction furnace 11, captured by the cyclone 14 from the outlet at the top of the furnace, and circulated through the bubbling fluidized bed 19 via the hopper 15 and the circulation cutting device 1B, where they are reduced again.

そして所望の還元を得られた細粒子の還元鉱は切出弁2
6から排出され次工程へ送られる。
Then, the fine-grain reduced ore that has obtained the desired reduction is removed from the cutting valve 2.
6 and sent to the next process.

[発明が解決しようとする課題] しかし、粒度分布の広い鉄鉱石を使用すると、流動層還
元炉での流動性確保が非常に難かしく、操業性に問題が
あった。すなわち細粒子を飛散させないようにすると、
素粒子の流動が悪化もしくは停止し、粗粒子の還元反応
性が著しく低下すると共に凝集のトラブルが生ずる。
[Problems to be Solved by the Invention] However, when iron ore with a wide particle size distribution is used, it is very difficult to ensure fluidity in a fluidized bed reduction furnace, resulting in problems in operability. In other words, if you prevent fine particles from scattering,
The flow of the elementary particles deteriorates or stops, the reduction reactivity of the coarse particles decreases significantly, and problems of aggregation occur.

一方還元反応を促進させるため、粗粒子の流動性を高め
ようと流動層内の還元ガスの空塔速度を速くすると、細
粒子の流動層からの飛散が大となる。
On the other hand, if the superficial velocity of the reducing gas in the fluidized bed is increased in order to increase the fluidity of coarse particles in order to promote the reduction reaction, the scattering of fine particles from the fluidized bed increases.

このため飛散粒子をサイクロン等の粒子捕集器で捕集し
、粒子循環装置で再度流動層内に戻す粒子循環方式を採
用することになる。
For this reason, a particle circulation method is adopted in which scattered particles are collected by a particle collector such as a cyclone and returned to the fluidized bed by a particle circulation device.

この場合粒度分布が広いと粒子の循環量は芸大なものと
なり、循環装置が非常に大きくなり合理的でなかった。
In this case, if the particle size distribution is wide, the amount of particles to be circulated becomes enormous, and the circulation device becomes extremely large, which is not rational.

また還元速度は鉱石の粒度の影響が大であり、粒度が大
になると還元速度は著しく低下する。
Further, the reduction rate is greatly influenced by the particle size of the ore, and as the particle size increases, the reduction rate decreases significantly.

このため粒度の広い鉄鉱石を還元する場合、均一な還元
が難かしく、細粒の還元度が粗粒のそれに比べ進み高還
元度となり、還元鉱同志の付着性が増し、細粒同志によ
る凝集、あるいは粗粒への凝集が生じ、流動性の悪化、
さらに流動化停止トラブルが発生する危険があった。
For this reason, when reducing iron ore with a wide range of particle sizes, uniform reduction is difficult, and the degree of reduction of fine particles is higher than that of coarse particles, resulting in increased adhesion of the reduced ore to each other and agglomeration of fine particles. , or agglomeration into coarse particles, resulting in poor fluidity.
Furthermore, there was a risk of fluidization stoppage trouble occurring.

したがって、流動層還元炉に供給する鉄鉱石を、事前に
乾燥ふるい分けをする工程を設け、整粒したものを装入
するが、この乾燥ふるい分は設備が大きくなる欠点があ
った。
Therefore, the iron ore to be supplied to the fluidized bed reduction furnace is subjected to a step of drying and sifting in advance, and the sized iron ore is charged, but this dry sifting requires a large amount of equipment.

[課題を解決するための手段] 本発明の鉄鉱石流動層還元装置は、流動層還元炉の排気
管途中に設けた鉄鉱石供給口から、鉄鉱石を供給し、流
動層還元炉からの排ガスによって鉄鉱石を気体搬送する
過程で予熱乾燥を行い、粒子の凝集力を弱め、分離分級
性を高め、該鉄鉱石供給口以降に設けた分級予熱サイク
ロンと、該分級予熱サイクロンの後段に設けた固気分離
サイクロンによって、鉄鉱石を所定の粒度に分けて捕集
し、分級予熱サイクロンもしくは固気分離サイクロンと
、前記流動層還元炉とを移送管で連結し、所定の粒度に
整粒化した鉄鉱石を流動層還元炉へ供給する。
[Means for Solving the Problems] The iron ore fluidized bed reduction apparatus of the present invention supplies iron ore from an iron ore supply port provided in the middle of an exhaust pipe of a fluidized bed reduction furnace, and removes exhaust gas from the fluidized bed reduction furnace. The iron ore is preheated and dried during the gaseous conveyance process to weaken the cohesive force of the particles and improve separation and classification. The iron ore was divided into predetermined particle sizes and collected using a solid-gas separation cyclone, and the classification preheating cyclone or solid-gas separation cyclone and the fluidized bed reduction furnace were connected through a transfer pipe, and the iron ore was sized to a predetermined particle size. Feed iron ore to the fluidized bed reduction furnace.

また前記の分級予熱サイクロンの下部近傍にガス供給口
を設け、ガス供給口から吹込んだガスによって該分級予
熱サイクロン内にアップフローを生じさせ、分級粒子径
を調整する機能を付加する場合もある。
In some cases, a gas supply port is provided near the bottom of the classification preheating cyclone, and the gas blown from the gas supply port generates an upflow within the classification preheating cyclone to adjust the size of the classified particles. .

[作  用コ 本発明の鉄鉱石流動層還元装置は、鉄鉱石を流動層還元
炉の排気管に供給し、分級予熱サイクロンおよび固気分
離サイクロンによって、所定の粒度に分級整粒し、流動
層還元炉へ供給するため、流動層還元炉の流動性確保が
でき、効率的な還元ができる。
[Function] The iron ore fluidized bed reduction apparatus of the present invention supplies iron ore to the exhaust pipe of a fluidized bed reduction furnace, classifies it to a predetermined particle size using a classification preheating cyclone and a solid-gas separation cyclone, and then converts it into a fluidized bed. Since it is supplied to the reduction furnace, the fluidity of the fluidized bed reduction furnace can be ensured, allowing efficient reduction.

鉄鉱石原料によっては、流動を阻害する粗粒を多く含む
ものがある。この鉄鉱石を還元する場合、流動層還元炉
での流動性確保が困難な粗粒鉄鉱石を分別し、適正粒度
に調整した鉄鉱石を流動層還元炉へ供給する。
Some iron ore raw materials contain many coarse particles that inhibit flow. When reducing this iron ore, coarse-grained iron ore that is difficult to maintain fluidity in a fluidized bed reduction furnace is separated, and iron ore adjusted to an appropriate particle size is supplied to the fluidized bed reduction furnace.

したがって、流動層還元炉内の還元ガス空塔速度を適正
流動化速度にすることができ、流動過程での細粒鉄鉱石
の飛散量が少なく、かつ良好な流動性が確保でき、固気
接触効率が向上し、効率的な還元ができる。
Therefore, the superficial velocity of the reducing gas in the fluidized bed reduction furnace can be adjusted to an appropriate fluidization speed, the amount of fine iron ore scattering during the fluidization process is small, good fluidity can be ensured, and solid-gas contact can be achieved. Efficiency is improved and efficient returns can be made.

流動層還元炉から飛散した鉄鉱石の飛散量が多い場合、
粒子循環装置によって流動層還元炉へ循環供給する必要
があり、場合によってはこの粒子循環装置が非常に大き
くなり、設備コスト的に不合理なものとなる。
If there is a large amount of iron ore scattered from the fluidized bed reduction furnace,
It is necessary to circulate and supply the particles to the fluidized bed reduction furnace using a particle circulation device, and in some cases, this particle circulation device becomes very large and becomes unreasonable in terms of equipment cost.

本発明では適正な流動化速度を確保出来るため、飛散量
が少なくでき、粒子循環装置を小型化もしくは省略でき
る。また、整粒化し、粒度をそろえた鉄鉱石を流動還元
するため粒度による還元速度の影響が小さく、還元率分
布がシャープであり、還元率制御性が向上する。
In the present invention, since an appropriate fluidization speed can be ensured, the amount of scattering can be reduced, and the particle circulation device can be downsized or omitted. In addition, since iron ore that has been sized and has a uniform particle size is subjected to fluid reduction, the effect of particle size on the reduction rate is small, the reduction rate distribution is sharp, and the controllability of the reduction rate is improved.

分別した粗粒鉄鉱石は別経路で溶融還元炉へ供給するが
、粗粒鉄鉱石は流動層還元炉で固気接触による還元より
溶融還元炉へ直接供給し、溶融還元する方が効率的に還
元できるため、むしろ溶融還元設備全体としての還元効
率および生産性が向上する。
Separated coarse-grained iron ore is supplied to the smelting-reduction furnace through a separate route, but it is more efficient to supply coarse-grained iron ore directly to the smelting-reduction furnace and smelting it down than by solid-gas contact in a fluidized bed reduction furnace. Since it can be reduced, the reduction efficiency and productivity of the melting reduction equipment as a whole are improved.

一方、流動層から飛散しゃすい細粒を多く含む鉄鉱石を
還元する場合、流動過程で飛散しゃすい細粒鉄鉱石を分
別整粒する。
On the other hand, when iron ore containing a large amount of fine particles that are scattered from the fluidized bed is reduced, the fine iron ore that is scattered during the fluidization process is separated and sized.

したがって、流動層還元炉内の還元ガス空塔速度を最適
流動化にすることができ、すなわち流動層還元炉での細
粒鉄鉱石の飛散を抑えるため流動化速度を小さくするこ
とが不必要となり適正な流動化速度を確保出来るため、
流動過程での粗粒鉄鉱石の流動が悪化もしくは停止する
ことなく操業性が向上する。
Therefore, the superficial velocity of the reducing gas in the fluidized bed reduction furnace can be optimized for fluidization, which means that it is unnecessary to reduce the fluidization speed in order to suppress the scattering of fine iron ore in the fluidized bed reduction furnace. Since appropriate fluidization speed can be ensured,
Operability is improved without deteriorating or stopping the flow of coarse iron ore during the flow process.

また、流動層から飛散しゃすい細粒鉄鉱石を予め除去す
るので、空塔速度を速くすることが可能で、すなわち還
元ガスを多量に供給できるため、還元効率および生産性
が向上し、かつ粒子循環装置を小型化もしくは省略でき
る。
In addition, since the fine iron ore that is scattered from the fluidized bed is removed in advance, it is possible to increase the superficial velocity, which means that a large amount of reducing gas can be supplied, improving reduction efficiency and productivity. The circulation device can be downsized or omitted.

粗粒と細粒が混在した粒度分布の広い鉄鉱石を分別せず
に流動還元した場合、細粒の方が粗粒に比べ七還元速度
が速いため、粗粒の還元率が低いにもかかわらず、細粒
が高還元率になり、細粒表面にメタル鉄が生成し、還元
鉱石同志のスティッキング(粘着)が生じ、流動性の悪
化さらには流動停止トラブルが発生する。
When iron ore with a wide particle size distribution in which coarse and fine particles are mixed is subjected to fluid reduction without separation, the reduction rate of fine particles is faster than that of coarse particles, so even though the reduction rate of coarse particles is low, First, the reduction rate of the fine particles becomes high, metal iron is generated on the surface of the fine particles, sticking of the reduced ore occurs, deterioration of fluidity, and troubles such as flow stoppage occur.

このため、粗粒と細粒が混在した粒度分布の広い鉄鉱石
を分別せずに流動還元する場合は、平均還元率を低くせ
ざるを得ないが、本発明では、均一な還元ができるため
、還元率制御性が向上し、かつ高還元率まで還元できる
For this reason, if iron ore with a wide particle size distribution in which coarse particles and fine particles are mixed is subjected to fluid reduction without separation, the average reduction rate must be lowered, but with the present invention, uniform reduction is possible. , the controllability of the reduction rate is improved, and reduction can be achieved to a high reduction rate.

流動層過程で飛散しゃすい細粒鉄鉱石を流動層還元炉で
還元すると非常に大きな粒子循環装置が必要となり、還
元効率、生産等で問題がある。
If fine iron ore, which is easily scattered during the fluidized bed process, is reduced in a fluidized bed reduction furnace, a very large particle circulation device is required, which causes problems in reduction efficiency, production, etc.

したがって分別した細粒鉄鉱石を別系路で分別した細粒
鉄を溶融還元炉へ直接供給し、溶融還元する方が細粒の
ため溶融還元炉での還元反応性が良いことを考慮すると
、溶融還元設備全体としての還元効率および生産性の向
上が期待出来る。
Therefore, considering that it is better to directly supply the separated fine iron ore to the smelting reduction furnace and smelting and reducing the fine iron ore, since the particles are fine, the reduction reactivity in the smelting reduction furnace is better. It is expected that the reduction efficiency and productivity of the melting reduction equipment as a whole will be improved.

また、鉄鉱石を700〜950℃の流動層還元炉の排気
ガスによって乾燥させながら、分級予熱サイクロンおよ
び固気分離サイクロンで分級整粒化するので、湿分によ
って擬似粒子化している微細粒子が乾燥されることによ
って分離し易くなり分級整粒性が向上する。
In addition, the iron ore is dried by the exhaust gas of the fluidized bed reduction furnace at 700 to 950°C, while being classified and sized using a classification preheating cyclone and a solid-gas separation cyclone, so that the fine particles that have become pseudo-particles due to moisture are dried. This makes separation easier and improves classification and particle size regulation.

更に、鉄鉱石を輸送9分級、固気分離過程で排気ガスと
熱交換し、予熱するため、溶融還元設備の熱効率が向上
する。
Furthermore, since the iron ore is transported, classified, and preheated by exchanging heat with exhaust gas during the solid-gas separation process, the thermal efficiency of the smelting reduction equipment is improved.

流動層還元炉の操業状況、鉄鉱石原料の変化等によって
、流動層還元炉への鉄鉱石の供給粒度分布を変更したい
場合、分級予熱サイクロンの下部近傍に設けたガス供給
口から吹込んだガスによって、分級予熱サイクロン内に
アップフローを生じさせ、鉄鉱石の分級粒度を調整する
When it is desired to change the particle size distribution of iron ore supplied to the fluidized bed reduction furnace due to the operational status of the fluidized bed reduction furnace, changes in the iron ore raw material, etc., the gas injected from the gas supply port installed near the bottom of the classification preheating cyclone can be changed. This produces an upflow in the classification preheating cyclone and adjusts the classification particle size of the iron ore.

分級予熱サイクロンの形状1寸法により捕集限界粒子径
は決まるが、分級予熱サイクロン内にアップフローが生
じると、分級予熱サイクロンの粒子捕集効率は悪化し、
捕集限界粒子径は大きくなる。
The particle collection limit size is determined by the shape and dimensions of the classification preheating cyclone, but if an upflow occurs within the classification preheating cyclone, the particle collection efficiency of the classification preheating cyclone will deteriorate.
The collection limit particle size becomes larger.

本発明は、この現象を利用し、分級予熱サイクロン内に
アップフローを生じさせ、鉄鉱石の分級粒度を調整する
。この方法により分級粒度の選択が可能となり、原料鉱
石の粒度構成、密度等を考慮した効果的な分級を実行出
来る。
The present invention utilizes this phenomenon to generate upflow within the classification preheating cyclone to adjust the classified particle size of iron ore. This method makes it possible to select the classification particle size, and it is possible to carry out effective classification taking into account the particle size structure, density, etc. of the raw ore.

[実 施 例] 第1図、第2図に示す実施例装置により本発明の詳細な
説明する。
[Example] The present invention will be explained in detail using an example apparatus shown in FIGS. 1 and 2.

第1図は、流動を阻害する粗粒を多く含む鉄鉱石を流動
還元する場合の流動層還元装置の構成図である。
FIG. 1 is a block diagram of a fluidized bed reduction apparatus for fluidized reduction of iron ore containing many coarse particles that inhibit fluidization.

ホッパー6に蓄えた鉄鉱石を切出装置7aによって、流
動層還元炉1の排気管5に供給する。
The iron ore stored in the hopper 6 is supplied to the exhaust pipe 5 of the fluidized bed reduction furnace 1 by the cutting device 7a.

該鉄鉱石は、流動層還元炉1から排気された還元ガスに
よって予熱乾燥しながら分級予熱サイクロン2へ輸送さ
れる。
The iron ore is transported to the classification preheating cyclone 2 while being preheated and dried by the reducing gas exhausted from the fluidized bed reduction furnace 1.

該分級予熱サイクロン2で、粗粒鉄鉱石を分級捕集する
。該分級予熱サイクロン2で所定の粒度に分級整粒化し
た鉄鉱石は、還元ガスに同伴され、固気分離サイクロン
3へ輸送され、該固気分離サイクロン3で還元ガスと分
離捕集される。
The coarse grained iron ore is classified and collected by the classification preheating cyclone 2. The iron ore that has been classified and sized to a predetermined particle size in the classification preheating cyclone 2 is entrained by the reducing gas and transported to the solid-gas separation cyclone 3, where it is separated and collected from the reducing gas.

鉄鉱石は輸送、分級、固気分離される過程で、還元ガス
と熱交換し、乾燥、予熱される。固気分離サイクロン3
で捕集した整粒鉄鉱石は、移送管8を流下し、切出装置
7bによって流動層還元炉1に供給される。
During the transportation, classification, and solid-gas separation process, iron ore is dried and preheated by exchanging heat with reducing gas. Solid-gas separation cyclone 3
The sized iron ore collected in the granulated iron ore flows down the transfer pipe 8 and is supplied to the fluidized bed reduction furnace 1 by the cutting device 7b.

分級予熱サイクロン2で捕集した未還元の粗粒鉄鉱石は
排出する。還元鉱石および未還元の粗粒鉄鉱石を溶融還
元炉へ供給する場合、平均還元率は所定の値に調整する
。粗粒鉄鉱石は溶融還元炉内から飛散しに<<、効率的
に還元できる。
The unreduced coarse iron ore collected by the classification preheating cyclone 2 is discharged. When supplying reduced ore and unreduced coarse iron ore to a smelting reduction furnace, the average reduction rate is adjusted to a predetermined value. Coarse-grained iron ore can be efficiently reduced by scattering from inside the smelting reduction furnace.

第2図は他の実施例で流動過程で飛散しやすい、細粒を
多く含む鉄鉱石を流動還元する場合の流動層還元装置の
構成図である。
FIG. 2 is a configuration diagram of a fluidized bed reduction apparatus in another embodiment in which iron ore containing many fine particles, which is easily scattered during the fluidization process, is subjected to fluid reduction.

排気管5に供給した鉄鉱石は、分級予熱ブイクロン2で
流動層還元炉1において流動過程で飛散しやすい細粒鉄
鉱石を除去し、鉄鉱石を所定の粒度に整粒化する。該細
粒鉄鉱石は還元ガスに同伴し、固気分離サイクロン3で
還元ガスと分離捕集される。
The iron ore supplied to the exhaust pipe 5 is passed to the fluidized bed reduction furnace 1 by the classification preheating bucrone 2 to remove fine iron ore that is easily scattered during the fluidization process, and the iron ore is sized to a predetermined particle size. The fine iron ore is accompanied by the reducing gas, and is separated and collected by the solid-gas separation cyclone 3.

分離予熱サイクロン2で捕集した整粒鉄鉱石は流動層還
元炉1へ供給し、固気分離サイクロン3で捕集した未還
元の細粒鉄鉱石は排出する。還元鉄鉱石と未還元の細粒
鉄鉱石は、所定の平均還元率に調整して溶融還元炉へ供
給する。細粒鉄鉱石は鉄浴中あるいはスラブ層にインジ
ェクションすることにより、効率的に還元できる。
The sized iron ore collected by the separation and preheating cyclone 2 is supplied to the fluidized bed reduction furnace 1, and the unreduced fine iron ore collected by the solid-gas separation cyclone 3 is discharged. Reduced iron ore and unreduced fine iron ore are adjusted to a predetermined average reduction rate and supplied to a smelting reduction furnace. Fine-grained iron ore can be efficiently reduced by injecting it into an iron bath or into a slab layer.

第1図、第2図において、分級予熱サイクロン2の下方
に設けた還元ガス供給系10からガスを吹込み、該分級
予熱サイクロン2内にアップフローを生じさせることに
よって分級粒子径を:A整できる。また、流動層還元炉
1の構造は、第3図に示す循環タイプに限ったものでな
く、バブリング流動層、噴流層等の方式でも良い。
In FIGS. 1 and 2, the classified particle size is adjusted to: can. Further, the structure of the fluidized bed reduction furnace 1 is not limited to the circulation type shown in FIG. 3, but may also be of a bubbling fluidized bed, a spouted bed, or the like.

尚本実施例では分級予熱サイクロンはr、It段の実施
例を示したが、分級予熱サイクロンは(夏数段に組合せ
て、予熱と分級性能を向上させることも可能である。
In this embodiment, the classification preheating cyclone has r and It stages, but the classification preheating cyclone can be combined into several stages to improve preheating and classification performance.

[発明の効果] 本発明の鉄鉱石流動層還元装置は、流動層還元炉出口の
排ガス煙道途中に鉄鉱石原料を供給し、流動層還元炉の
排ガスの顕熱を利用して予熱、乾燥し、かつ分級ふるい
分けを行うことにより、流動層還元炉への供給鉄鉱石の
予熱乾燥と、粒度調整を同時に効率的に実行することを
特徴とする。
[Effect of the invention] The iron ore fluidized bed reduction apparatus of the present invention supplies iron ore raw material to the middle of the exhaust gas flue at the outlet of the fluidized bed reduction furnace, and performs preheating and drying using the sensible heat of the exhaust gas of the fluidized bed reduction furnace. Moreover, by performing classification and sieving, preheating and drying of the iron ore to be supplied to the fluidized bed reduction furnace and particle size adjustment can be carried out efficiently at the same time.

以下に本装置採用の利点をあげる。The advantages of adopting this device are listed below.

■流動層還元炉内での流動性および還元性の悪い粗粒鉄
鉱石あるいは該炉内で飛散し易く還元効率が劣る細粒鉄
鉱石を分離除去するので、流動層還元炉の還元性能が向
上する。
■ Coarse grained iron ore with poor fluidity and reducibility in the fluidized bed reduction furnace or fine grained iron ore that easily scatters in the furnace and has poor reduction efficiency is separated and removed, improving the reduction performance of the fluidized bed reduction furnace. do.

■流動層還元炉での還元効率の悪い粒度のものを除去し
て、除去したものを直接溶融還元炉へ供給する方式が採
用出来る。この場合、溶融還元炉へ装入する。還元鉱、
未還元鉱の混合還元率を所要の還元率に確保することに
より、溶融還元設備トータルとして還元生産性は向上す
る。
■It is possible to adopt a method in which particles with a poor reduction efficiency in the fluidized bed reduction furnace are removed and the removed particles are directly fed to the smelting reduction furnace. In this case, it is charged into a melting reduction furnace. reduced ore,
By ensuring the mixed reduction rate of unreduced ore to the required reduction rate, the reduction productivity of the smelting reduction equipment as a whole is improved.

■鉄鉱石の供給系で、流動層還元炉からの高温の排ガス
の顕熱を利用して予熱乾燥するため、鉄鉱石の高温乾燥
が行え、乾燥スペースの小型化と、乾燥効率のアップす
なわち、分級性能が向上する。
■In the iron ore supply system, the sensible heat of the high-temperature exhaust gas from the fluidized bed reduction furnace is used for preheating and drying, making it possible to dry the iron ore at high temperatures, reducing the size of the drying space and increasing drying efficiency. Classification performance is improved.

■鉄鉱石原料の予熱過程で乾燥1分級を行うため、原料
の事前の乾燥ふるい分は設備の省設備化が狙える。
■Drying and sifting is performed during the preheating process of iron ore raw materials, so the pre-drying and sifting of raw materials can be used to save equipment.

等により本発明の装置を採用することにより、鉄鉱石の
効率的な還元が出来る。
By employing the apparatus of the present invention, iron ore can be efficiently reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、本発明の詳細な説明図、第3図は循
環タイプの鉄鉱石流動層還元装置の比較例の説明図であ
る。 1・・・流動層還元炉 2・・・分級予熱サイクロン 3・・・固気分離サイクロン 4・・・還元ガス供給系
5・・・排気管       6・・・ホッパー7a 
、 7b 、 7c −・・切出装置8・・・移送管 
      9・・・還元鉱石排出系IO・・・ガス供
給系 代 理 人  弁理士  茶野木 立 夫第1図   
  第2図
1 and 2 are detailed explanatory diagrams of the present invention, and FIG. 3 is an explanatory diagram of a comparative example of a circulation type iron ore fluidized bed reduction apparatus. 1... Fluidized bed reduction furnace 2... Classification preheating cyclone 3... Solid-gas separation cyclone 4... Reducing gas supply system 5... Exhaust pipe 6... Hopper 7a
, 7b, 7c --- Cutting device 8 --- Transfer pipe
9...Reduced ore discharge system IO...Gas supply system Agent Patent attorney Tatsuo Chanoki Figure 1
Figure 2

Claims (1)

【特許請求の範囲】 1、還元鉱石を製造する設備において、流動層還元炉の
排気管途中に鉄鉱石供給口を設け、該鉄鉱石供給口以降
に分級予熱サイクロンを設け、該分級予熱サイクロンの
後段に固気分離サイクロンを設け、分級予熱サイクロン
もしくは固気分離サイクロンと、前記流動層還元炉とを
移送管で連結したことを特徴とする鉄鉱石流動層還元装
置。 2、前記の分級予熱サイクロンの下部近傍にガス供給口
を設けたことを特徴とする請求項1記載の鉄鉱石流動層
還元装置。
[Claims] 1. In equipment for producing reduced ore, an iron ore supply port is provided in the middle of the exhaust pipe of the fluidized bed reduction furnace, a classification preheating cyclone is provided after the iron ore supply port, and the classification preheating cyclone is An iron ore fluidized bed reduction apparatus characterized in that a solid-gas separation cyclone is provided at a subsequent stage, and the classification preheating cyclone or the solid-gas separation cyclone is connected to the fluidized bed reduction furnace through a transfer pipe. 2. The iron ore fluidized bed reduction apparatus according to claim 1, wherein a gas supply port is provided near the bottom of the classification preheating cyclone.
JP6923688A 1988-03-25 1988-03-25 Iron ore fluidized bed reduction device Expired - Lifetime JP2562172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6923688A JP2562172B2 (en) 1988-03-25 1988-03-25 Iron ore fluidized bed reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6923688A JP2562172B2 (en) 1988-03-25 1988-03-25 Iron ore fluidized bed reduction device

Publications (2)

Publication Number Publication Date
JPH01242708A true JPH01242708A (en) 1989-09-27
JP2562172B2 JP2562172B2 (en) 1996-12-11

Family

ID=13396906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6923688A Expired - Lifetime JP2562172B2 (en) 1988-03-25 1988-03-25 Iron ore fluidized bed reduction device

Country Status (1)

Country Link
JP (1) JP2562172B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314832A (en) * 1991-04-15 1992-11-06 Nippon Steel Corp Method for reducing pulverized ore by circulating fluidized bed
WO2002103063A3 (en) * 2001-06-19 2003-12-11 Voest Alpine Ind Anlagen Method and device for treating particulate material
AU2002344993B2 (en) * 2001-06-19 2007-09-06 Siemens Vai Metals Technologies Gmbh Method and device for treating particulate material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314832A (en) * 1991-04-15 1992-11-06 Nippon Steel Corp Method for reducing pulverized ore by circulating fluidized bed
WO2002103063A3 (en) * 2001-06-19 2003-12-11 Voest Alpine Ind Anlagen Method and device for treating particulate material
JP2004529770A (en) * 2001-06-19 2004-09-30 ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ Method and apparatus for processing particulate material
US7144447B2 (en) * 2001-06-19 2006-12-05 Voest-Alpine Industrieanlagenbau Gmbh & Co. Method and device for treating particulate material
AU2002344993B2 (en) * 2001-06-19 2007-09-06 Siemens Vai Metals Technologies Gmbh Method and device for treating particulate material
JP4647206B2 (en) * 2001-06-19 2011-03-09 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ Method and apparatus for processing granular material

Also Published As

Publication number Publication date
JP2562172B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
KR910008113B1 (en) Metal-making apparatus involving the smetting redaction of metallic oxides
JPS61183404A (en) Method and apparatus for producing sponge iron particles andmolten pig iron
JPH01242708A (en) Fluidized-bed reducing equipment for iron ore
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
JPH01149912A (en) Method for charging exhaust gas dust in smelting reduction furnace
JPS58176108A (en) Fluidized roasting for metal sulfide
JPH01184211A (en) Fluidized bed reduction device for ore
JPH062912B2 (en) Pretreatment method of raw material for smelting furnace
JP2579785B2 (en) Pre-reduction device for smelting reduction
JPS6311609A (en) Prereduction device for iron ore
JPH01129917A (en) Device for preheating and charging material in reduction furnace
JPH01117132A (en) Transfer device for hot bulk material
JPH01111808A (en) Iron ore fluidized bed reduction apparatus
JPH0774368B2 (en) Iron ore fluidized bed reduction device
JPS62199735A (en) Method for supplying sintered ore to sintering and cooling machine
JP2502976B2 (en) Iron ore preliminary reduction device
JPH01111810A (en) Iron ore fluidized bed reduction apparatus
JPS6311611A (en) Prereduction device for iron ore
JPH01129916A (en) Method for charging ore in smelting reduction furnace
JPS6311610A (en) Prereduction device for iron ore
JPH01100227A (en) Method for reducing fluidized bed of fine powdered ore
JPS62230657A (en) Plant for manufacturing cement clinker
JPS62228868A (en) Fluidized bed furnace with out-of-core circulating mechanism
JPH01247987A (en) External circulation type fluidized-bed furnace
JPH03183715A (en) Fluidized bed pre-reduction method for powdery ore