JPS62199735A - Method for supplying sintered ore to sintering and cooling machine - Google Patents

Method for supplying sintered ore to sintering and cooling machine

Info

Publication number
JPS62199735A
JPS62199735A JP4008286A JP4008286A JPS62199735A JP S62199735 A JPS62199735 A JP S62199735A JP 4008286 A JP4008286 A JP 4008286A JP 4008286 A JP4008286 A JP 4008286A JP S62199735 A JPS62199735 A JP S62199735A
Authority
JP
Japan
Prior art keywords
grains
sintered ore
cooling
small
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4008286A
Other languages
Japanese (ja)
Inventor
Shoji Nitta
新田 昭二
Shinji Kojima
小島 信司
Akio Sakurai
桜井 昭雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4008286A priority Critical patent/JPS62199735A/en
Publication of JPS62199735A publication Critical patent/JPS62199735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the efficiency of recovering waste heat and cooling capacity by subjecting sintered ore to primary crushing and sieving, subjecting the coarse grains to secondary crushing, adequately supplying the small and middle grains as they are to a cooling machine and allowing the fine grains to bypass the cooling machine. CONSTITUTION:The sintered one 2 of a high temp. obtd. by a sintering machine 1 is subjected to the primary crushing to about <=100mm by a crushing machine 4 provided with a guide 3 and a driven gear 5. The sintered ore subjected to the primary crushing is sieved to by a stationary grizzly 16 to the coarse grains sized about 100-500mm, the middle grains sized about 50-30mm, the small grains sized about 30-10mm, and the fine grains sized about -10mm at a sintered one feeding device 15. The coarse grains are subjected to the secondary crushing by a crushing machine 17 and are then uniformly supplied transversely to the cooling machine 7. The small and middle grains are segmented in the transverse direction of the cooling machine 7 and are supplied thereto. The sensible heat of the coarse, middle and small grains are recovered in a waste heat recovering part provided with hoods 8, 8a, a duct 9, a heat exchanger 10 and a circulation fan 11 in the cooling machine; thereafter, the grains are fed into a secondary sieving station 14 through the cooling part provided with a fan 12 and a chimney 13. On the other hand, the fine grains are bypassed along the cooling machine 7 via divided shoes 18 and a conveyor 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄鉱石焼結冷却機への焼結鉱供給方法に関し
、焼結鉱の冷却および排熱回収を効率よ(行う方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for supplying sinter to an iron ore sinter cooler, and relates to a method for efficiently cooling sinter and recovering exhaust heat.

〔従来の技術〕[Conventional technology]

近年、焼結機から排出される焼結鉱の持つ顕熱を回収す
るため焼結冷却機が使用されており、これらの技術とし
て特開昭56−29635.56−166338が提案
されている。しかしながら、焼結鉱は、焼結機排鉱部に
おいて1次破砕されているのみであり、粗粒、細粒が混
在していることから、次の問題があった。
In recent years, sinter coolers have been used to recover the sensible heat of sintered ore discharged from a sintering machine, and Japanese Patent Application Laid-Open No. 56-29635.56-166338 has been proposed as a technique for this. However, the sintered ore is only primarily crushed in the ore discharge section of the sintering machine, and coarse particles and fine particles are mixed therein, which causes the following problem.

従来の鉄鉱石焼結鉱の冷却工程の説明図である第6図に
ついて以下説明する。
FIG. 6, which is an explanatory diagram of a conventional iron ore sinter cooling process, will be described below.

焼結機1により焼結が完了した高温焼結鉱2は、クラツ
シングガイド3上に落下し、さらに破砕機4と受歯5に
よって1次破砕され、シュート6を経由して冷却機7上
に供給される。
The high-temperature sintered ore 2 that has been sintered by the sintering machine 1 falls onto the crushing guide 3 , is further crushed by the crusher 4 and the receiving teeth 5 , and passes through the chute 6 to the cooler 7 . Supplied on top.

最近の技術的傾向として、第6図に図示するように、冷
却機7の前半部にはフード8.8a、ダクト9、熱交換
器10、循環ファン11からなる排熱回収装置が設置さ
れ、焼結鉱2のもつ顕熱を回収している例が多い。排熱
回収ゾーン30を通過した焼結鉱はファン12、排突1
3からなる冷却ゾーン31に入り80’O前後に冷却さ
れ、次工程の2次破砕篩分ステーション14に供給され
て粒度調整がなされる。
As a recent technical trend, as shown in FIG. 6, an exhaust heat recovery device consisting of a hood 8.8a, a duct 9, a heat exchanger 10, and a circulation fan 11 is installed in the front half of the cooler 7. In many cases, the sensible heat of sintered ore 2 is recovered. The sintered ore that has passed through the waste heat recovery zone 30 is sent to the fan 12 and the exhaust pipe 1.
The powder enters the cooling zone 31 consisting of three parts, is cooled to around 80'O, and is supplied to the next step, the secondary crushing and sieving station 14, where the particle size is adjusted.

排熱回収ゾーン30および冷却ゾーン31において、焼
結鉱のもつ顕熱を効率良く熱交換し抜熱するには、焼結
鉱の粒度が大きく影響するが、従来100〜50mmの
粗粒、50〜30mmの中粒、30〜10mmの小粒、
および−10mmの細粒焼結鉱が全部混合した状態で、
冷却機7に供給されているため、100〜50mmの粗
粒焼結鉱は内部まで十分に抜熱されずに冷却機7から排
出され、2次破砕篩分ステーション14で破砕された時
復熱し、次工程の搬送設備に悪影響を及ぼしていた。
In the exhaust heat recovery zone 30 and the cooling zone 31, the particle size of the sintered ore has a large influence on the efficient heat exchange and removal of the sensible heat possessed by the sintered ore. ~30mm medium grains, 30-10mm small grains,
and -10mm fine grained sintered ore are all mixed together,
Since the coarse sintered ore is supplied to the cooler 7, the coarse sintered ore of 100 to 50 mm is discharged from the cooler 7 without sufficient heat being removed to the inside, and when it is crushed at the secondary crushing and sieving station 14, it recuperates. , which had a negative impact on the transportation equipment for the next process.

また、冷却ゾーン31および排熱回収ゾーン30の充填
層において一10mmの細粒が混入すると通気性が悪化
し圧力損失が大きくなりファン電力が増加する。さらに
、ガス流れの偏流が起こり、効率的な熱交換が行なわれ
ないことがあった。
Furthermore, if fine particles of 10 mm are mixed in the packed beds of the cooling zone 31 and the waste heat recovery zone 30, air permeability will deteriorate, pressure loss will increase, and fan power will increase. Furthermore, the gas flow may be biased, and efficient heat exchange may not take place.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前記した100〜50 m mの粗粒、50〜
30mmの中粒、30〜10mmc7)小粒、および−
10mmの細粒焼結鉱が全部混合した状態で冷却機に供
給されていることによる各種弊害、すなわち冷却機の排
熱回収効率の低下、冷却ゾーンにおける冷却能力の低下
、通気抵抗増大によるファン電力の増大、ざらに粗粒焼
結鉱の2次破砕での復熱による搬送設備の寿命低下環の
問題点を解決することを目的とするものである。
The present invention uses coarse grains of 100 to 50 mm as described above,
30mm medium grain, 30-10mmc7) small grain, and -
There are various adverse effects caused by the fact that all 10 mm fine grain sintered ore is supplied to the cooler in a mixed state, namely, a decrease in the exhaust heat recovery efficiency of the cooler, a decrease in cooling capacity in the cooling zone, and a decrease in fan power due to increased ventilation resistance. The purpose of this is to solve the problems of an increase in sintered ore and a reduction in the life of conveying equipment due to heat recovery during secondary crushing of coarse-grained sintered ore.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決するために開発されたもの
であって、焼結機排鉱部で1次破砕された焼結鉱を焼結
冷却機へ供給するに際し1次の技術手段を講じた。
The present invention has been developed in order to solve the above-mentioned problems, and provides a primary technical means for supplying the sintered ore that has been primarily crushed in the sintering machine discharge section to the sintering cooler. Lectured.

■前記焼結鉱を100〜50mmの粗粒、50〜30m
mの中粒、30〜10mmの小粒、−10mmの細粒に
篩分ける。
■The sintered ore is made into coarse grains of 100-50mm, 50-30mm.
Sieve into medium grains of m, small grains of 30 to 10 mm, and fine grains of -10 mm.

■粗粒は2次破砕して冷却機にそのトラフ幅方向に均一
に供給する。
■Coarse particles are crushed secondarily and supplied uniformly to the cooling machine in the width direction of the trough.

■中粒、小粒は冷却機トラフの幅方向に区分して供給す
る。
■Medium grains and small grains are divided and fed in the width direction of the cooler trough.

■細粒は前記冷却機をバイパスさせる。(2) Fine particles bypass the cooler.

■フード内に仕切りダンパを設ける。■Install a partition damper inside the hood.

〔作用〕[Effect]

一般に、充填層の伝熱量qおよび圧力損、失ΔPは次式
で表わされる。
Generally, the amount of heat transfer q, pressure loss, and loss ΔP of a packed bed are expressed by the following formula.

・・・・・・(1) ・・・・・・(2) ただし q:伝熱量(KcaJ1/ln’h) K1 :粒子形状に関する係数 Dp=平均粒子径(m ) e:空隙率(−) h p ’:粒子と流体間の熱伝達係数(kCa見/I
T+′・ h・℃) tF:流体温度(℃) Ls:固体温度(°C) ΔP:圧力損失(kg/rn’) K2:粒子形状に関する係数 ρ:流体密度(kg/m″) V:平均粒造(m/5ec) 前記に示す如く、充填層の伝熱量qおよび圧力損失ΔP
は焼結鉱の平均粒子径Dpに大きく左右され、Dpを小
さくすると粒子の比表面積が増大し、熱媒体である空気
流との接触面積が増加することにより伝熱量は向上する
が逆に圧力損失は大きくなる。
・・・・・・(1) ・・・・・・(2) where q: heat transfer amount (KcaJ1/ln'h) K1: coefficient related to particle shape Dp=average particle diameter (m) e: porosity (- ) h p': Heat transfer coefficient between particles and fluid (kCa/I
T+'・h・℃) tF: Fluid temperature (℃) Ls: Solid temperature (℃) ΔP: Pressure drop (kg/rn') K2: Coefficient related to particle shape ρ: Fluid density (kg/m'') V: Average granulation (m/5ec) As shown above, the amount of heat transfer q and pressure loss ΔP of the packed bed
is largely influenced by the average particle diameter Dp of the sintered ore; decreasing Dp increases the specific surface area of the particles and increases the contact area with the air flow, which is a heating medium, improving the amount of heat transfer, but conversely, the pressure The losses will be large.

この原理原則に着眼し、冷却機における焼結鉱のもつ顕
熱を効率良く抜熱するため焼結機排鉱部と冷却機との間
に、固定グリズリおよび破砕機を配設し、前記グリズリ
の篩目寸法を上流側から下流側に向って複数段階に順次
大きくすることにより、焼結鉱を例えば粗粒(100m
m〜50mm)、中粒(50〜30mm)、小粒(30
mm〜10mm)および細粒(−10mm)に篩分け、
かつ粗粒は破砕機により中粒サイズ以下に破砕した後焼
結機の幅方向に均一に供給し、中粒および小粒焼結鉱を
冷却機の幅方向に区分して供給し、さらに、その区分さ
れた焼結鉱のL方にダンパを設けて風量調整できるよう
にし、また細粒焼結鉱は冷却機に通さないで直接次工程
の篩分ステーションにバイパスさせることにより冷却機
での排熱回収効率および冷却能力の向上を図るものであ
る。
Focusing on this principle, in order to efficiently remove the sensible heat of the sintered ore in the cooler, a fixed grizzly and a crusher are installed between the sintering machine discharge section and the cooler. By sequentially increasing the sieve size in multiple stages from the upstream side to the downstream side, the sintered ore can be made into coarse grains (100 m
m ~ 50 mm), medium grain (50 ~ 30 mm), small grain (30
sieved into fine particles (-10 mm);
Coarse particles are crushed into medium size or smaller by a crusher, and then fed uniformly in the width direction of the sintering machine, and medium and small sintered ore are divided and fed in the width direction of the cooling machine. A damper is installed on the L side of the separated sintered ore to adjust the air flow, and the fine sintered ore is directly bypassed to the sieving station in the next process without passing through the cooler, so that it can be discharged by the cooler. The aim is to improve heat recovery efficiency and cooling capacity.

〔実施例〕〔Example〕

第1図は、焼結4111と冷却機7との間に本発明の実
施に用いる焼結鉱給鉱装置工5を配設した実施例を示し
、また第2図および第3図は第1図におけるA−A矢視
図、B−B矢視図を示す。
FIG. 1 shows an embodiment in which a sintered ore feeding device 5 used for carrying out the present invention is disposed between a sinter 4111 and a cooler 7, and FIGS. An AA arrow view and a BB arrow view in the figure are shown.

これらの図を用いて詳細に説明すると、第1図に示すよ
うに、焼結機1の排鉱部におけるガイド3、破砕Ja4
および受歯5からなる1次破砕工程と、冷却4117に
よる排熱回収および冷却工程との間に、焼結鉱給鉱装置
15が配設されている。
To explain in detail using these figures, as shown in FIG.
A sintered ore feeding device 15 is disposed between the primary crushing process consisting of the receiving teeth 5 and the exhaust heat recovery and cooling process by the cooling 4117.

この焼結鉱給鉱装置15は焼結鉱2の移送方向に約40
°以上の下り傾斜をもつ固定式のグリズリ16の篩目寸
法を、第3図に示すように上流側(第3図の向って左(
DI)から下流側に向って1例えば10mm、30mm
、50mmの3段階に順次大きく開口させており、また
前記グリズリ16の篩目寸法5.0 m mをオーバー
する粗粒焼結鉱を50mm以下に破砕するための破砕機
17が配設されている。
This sintered ore feeding device 15 has a diameter of about 40 mm in the direction of transport of the sintered ore 2.
The sieve size of the fixed grizzly 16 with a downward slope of more than
For example, 10 mm, 30 mm toward the downstream side from DI)
, 50 mm, and a crusher 17 is provided for crushing coarse sintered ore exceeding the sieve size of 5.0 mm of the grizzly 16 to 50 mm or less. There is.

さらに前記グリズリ16で篩分された 一10mmの細粒焼結鉱19は分割シュート18により
冷却機7の下部に配設したコンベヤ20により次工程の
篩分はステージ璽ン14へ搬送できるようになっている
Furthermore, the 10 mm fine sintered ore 19 sieved by the grizzly 16 is transferred to the stage sieve 14 for the next process by a conveyor 20 disposed at the lower part of the cooler 7 through a dividing chute 18. It has become.

また前記グリズリ16で篩分けされた30〜10 m 
mの小粒焼結鉱21および50〜30mmの中粒焼結鉱
22は分割シュート23.24により冷却機7のトラフ
の幅方向に区分して装入できるようになっている。また
、排熱回収ゾーン30および冷却ゾーン31のフード8
内の、前記中粒焼結鉱22と小粒焼結鉱21の境界線上
には第1図、第4図に示すようにダンパ27を設けてい
る。従って、中粒焼結鉱は小粒焼結鉱に比べ、同一風量
では、冷却に必要な時間が長くなるが、上述の如く幅方
向に区分して異なる位置に装入し、上記ダンパ27の開
度を調整し幅方向の通過風量を制御することにより、中
粒及び小粒の粒度差による抜熱効果の均一化を図るよう
にできる。
In addition, 30 to 10 m sieved by the Grizzly 16
The small sintered ore 21 having a diameter of 50 mm and the medium sintered ore 22 having a diameter of 50 to 30 mm can be divided and charged in the width direction of the trough of the cooler 7 by dividing chutes 23 and 24. In addition, the hood 8 of the exhaust heat recovery zone 30 and the cooling zone 31
A damper 27 is provided on the boundary line between the medium-grained sintered ore 22 and the small-grained sintered ore 21, as shown in FIGS. 1 and 4. Therefore, medium-grained sintered ore requires a longer cooling time than small-grained sintered ore at the same air volume. By adjusting the degree and controlling the amount of passing air in the width direction, it is possible to equalize the heat removal effect due to the difference in particle size between medium particles and small particles.

なお、グリズリ16の取付方向は、第1図の実施例では
冷却機7の移送方向と逆向きに焼結鉱を移送するように
なっているが、冷却機7の移送方向と同じ方向に焼結鉱
を移送するように取り付けても良い。
Note that the mounting direction of the grizzly 16 is such that the sinter is transferred in the opposite direction to the transfer direction of the cooler 7 in the embodiment shown in FIG. It may also be installed to transport condensate.

焼結鉱給鉱装置15を用い、冷却機7へ高温焼結鉱2を
供給する手順を説明する。まず、焼結機1により焼成が
完了した高温焼結鉱2は、排鉱部においてガイド3上に
落下し、破砕機4および受歯5により100mm以下に
1次破砕された後、直下に設けたグリズリ16に投入さ
れ、上流側から例えば目開き10mm、30mmおよび
50mmの順で篩分けられる。
A procedure for supplying high-temperature sintered ore 2 to cooler 7 using sintered ore feeding device 15 will be explained. First, the high-temperature sintered ore 2 that has been fired by the sintering machine 1 falls onto the guide 3 in the ore discharge section, and is first crushed into pieces of 100 mm or less by the crusher 4 and receiving teeth 5, and is then placed directly below. The raw materials are put into a grizzly 16 and sieved from the upstream side in the order of, for example, mesh openings of 10 mm, 30 mm, and 50 mm.

グリズリ16の1段目で篩分けされ篩下となった一10
mmの細粒焼結鉱19は、シュート18により糸外に取
り出され、冷却@7をバイパスにして冷却機7の下部に
設けたコンベヤ20により次工程の篩分ステーション1
4へ直送される。
110 that was sieved on the first stage of Grizzly 16 and became the bottom of the sieve
The fine-grained sintered ore 19 with a diameter of 1.5 mm is taken out of the thread by the chute 18, bypassed by the cooling @ 7, and sent to the sieving station 1 in the next step by a conveyor 20 installed at the bottom of the cooler 7.
4 will be sent directly.

またグリズリ16の2段目および3段目で篩分けされ篩
下となった30−10mmの小粒焼結鉱21および50
〜30mmの中粒焼結鉱22はシュート23.24によ
り冷却機7のトラフ25の幅方向に区分して装入される
In addition, 30-10 mm small sintered ore 21 and 50 were sieved in the second and third stages of Grizzly 16 and became the bottom of the sieve.
Medium-grained sintered ore 22 of ~30 mm is charged into the trough 25 of the cooler 7 in sections in the width direction by a chute 23,24.

さらに、グリズリ16の3段目で篩分けされ篩上となっ
た50mm以上の粗粒焼結鉱は破砕機17により50m
m以下に破砕され、この破砕焼結鉱26は冷却機7のト
ラフ25の幅方向に均一に、前記小粒焼結鉱21および
中粒焼結鉱22より先に装入される。このような給鉱方
法により第2図に示すように、トラフ25上には下段に
2次破砕された焼結鉱26が幅方向に均一に積載され、
その上段に小粒鉱21が図の向って右側に、中粒鉱は図
の向って左側に成層した装入層が形成される。このよう
に細粒分を除き、また粒度別に成層させてトラフ上に装
入された焼結鉱は、前記伝熱ff1qと圧力損失ΔPの
理論式に見られるように適切な伝熱と圧損との関係を保
って効率よく冷却され排熱回収効率が向とした。
Furthermore, the coarse sintered ore of 50 mm or more that has been sieved in the third stage of the Grizzly 16 is crushed by a crusher 17 for 50 m
The crushed sintered ore 26 is crushed into smaller pieces than the small-sized sintered ore 21 and the crushed sintered ore 26 is charged uniformly in the width direction of the trough 25 of the cooler 7 before the small-sized sintered ore 21 and the medium-sized sintered ore 22. With such an ore feeding method, as shown in FIG. 2, the secondary crushed sintered ore 26 is loaded uniformly in the width direction on the trough 25 in the lower stage.
In the upper layer, a charging layer is formed in which small-grained ore 21 is stratified on the right side of the figure, and medium-grained ore is stratified on the left side of the figure. The sintered ore, which has been charged into the trough after removing the fine grains and stratified according to grain size, has appropriate heat transfer and pressure drop, as seen in the theoretical formulas for heat transfer ff1q and pressure loss ΔP. This relationship was maintained for efficient cooling and improved exhaust heat recovery efficiency.

第4図は、第2図に示した装入層が排熱回収ゾーンに位
置した際のパレット部の断面図であって1幅方向に区分
された小粒鉱21.中粒鉱22の区分点上にダンパ27
が設けられ、このダンパ27の傾きを調整することによ
り、図中矢印で示す冷却風量の制御を行い、幅方向の冷
却の均一化を達成する。
FIG. 4 is a cross-sectional view of the pallet section when the charging layer shown in FIG. 2 is located in the exhaust heat recovery zone, and is a sectional view of the small ore 21 divided in the width direction. A damper 27 is placed on the dividing point of the medium-grained ore 22.
By adjusting the inclination of this damper 27, the amount of cooling air indicated by the arrow in the figure is controlled, thereby achieving uniform cooling in the width direction.

第5図に1次破砕後の焼結鉱の粒度分布を示すが、これ
より−10mmの細粒鉱焼結鉱の割合は約35%、30
〜10の小粒焼結鉱は約15%、50〜30mmの中粒
焼結鉱は約20%、+50mmの粗粒焼結鉱は約30%
程度である。
Figure 5 shows the particle size distribution of sintered ore after primary crushing, and from this the proportion of -10mm fine grained ore sintered ore is approximately 35%, 30%.
~10 small grain sintered ore is about 15%, 50-30mm medium grained sintered ore is about 20%, +50mm coarse grained sintered ore is about 30%
That's about it.

〔発明の効果〕〔Effect of the invention〕

(1)100〜50mmの粗粒焼結鉱を50mm以下に
細粒化し、また50〜30mmの中粒焼結鉱および30
〜10mmの中粒焼結鉱を事前分級し、冷却機のトラフ
幅方向に分離して装入し、ざらにダンパにて風量調整す
ることにより冷却機の排熱回収ゾーンでの排熱回収効率
が向上し、蒸気および電力回収量が増大する。また冷却
ゾーンにおいては小風にで冷却できるので冷却ファンの
電力を削減することができる。
(1) Coarse grain sintered ore of 100 to 50 mm is refined to 50 mm or less, and medium grained sintered ore of 50 to 30 mm and 30
~10mm medium-grained sintered ore is pre-classified, separated and charged in the width direction of the trough of the cooler, and the air volume is adjusted with a rough damper to improve the efficiency of exhaust heat recovery in the exhaust heat recovery zone of the cooler. and increase steam and power recovery. In addition, since the cooling zone can be cooled with a small breeze, the power required for the cooling fan can be reduced.

(2)−10mmの細粒焼結鉱を事前に分級し、系外に
排出することにより冷却機における充填層の通気抵抗が
低下し、循環ファンおよび冷却ファンの電力を削減する
ことができる。
(2) By pre-classifying -10 mm fine sintered ore and discharging it outside the system, the ventilation resistance of the packed bed in the cooler is reduced, and the electric power of the circulation fan and cooling fan can be reduced.

(3)粗粒焼結鉱の2次破砕での復熱などの問題もなく
、その後工程の搬送設備の寿命延長が図られ、メンテナ
ンスコスト削減にもなる。
(3) There are no problems such as heat recovery during the secondary crushing of coarse sintered ore, and the life of conveyance equipment for subsequent processes is extended, leading to a reduction in maintenance costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の冷却機への焼結鉱供給方法を示す全体
系統図、第2図は第1図におけるA−A矢視図、第3図
は第1図におけるB−B矢視図、第4図は排熱回収ゾー
ンにおけるパレット部の横断面図、第5図は1次破砕し
た焼結鉱の粒度分布図、第6図は従来技術の説明図を示
す。 1・・・焼結機 2・・・焼結鉱 7・・・冷却機 14・・・2次第分ステーション 15・・・焼結鉱給鉱装置 16・・・グリズリ 17・・・2次破砕機 18・・・分割シュート 19・・・細粒焼結鉱 20・・・搬送コンベヤ 21・・・小粒焼結鉱 22・・・中粒焼結鉱 23・・・中粒焼結鉱装入シュート 24・・・小粒焼結鉱装入シュート 25・・・トラフ 26・・・2次破砕焼結鉱 27・・・ダンパ
Fig. 1 is an overall system diagram showing the method of supplying sintered ore to a cooler of the present invention, Fig. 2 is a view taken along arrow A-A in Fig. 1, and Fig. 3 is a view taken along arrow B-B in Fig. 1. 4 is a cross-sectional view of a pallet portion in an exhaust heat recovery zone, FIG. 5 is a particle size distribution diagram of primary crushed sintered ore, and FIG. 6 is an explanatory diagram of the prior art. 1... Sintering machine 2... Sintered ore 7... Cooler 14... Secondary station 15... Sintered ore feeding device 16... Grizzly 17... Secondary crushing Machine 18...Divided chute 19...Fine sintered ore 20...Transport conveyor 21...Small sintered ore 22...Medium sintered ore 23...Medium sintered ore charged Chute 24...Small sintered ore charging chute 25...Trough 26...Secondary crushed sintered ore 27...Dumper

Claims (1)

【特許請求の範囲】[Claims] 1 焼結機排鉱部で1次破砕された焼結鉱を焼結冷却機
へ供給するに際し、前記焼結鉱を粗粒、中小粒、細粒に
篩分け、粗粒は2次破砕して冷却機の幅方向に均一に供
給し、中小粒は冷却機の幅方向に区分して供給し、細粒
は冷却機をバイパスさせることを特徴とする焼結冷却機
への焼結鉱供給方法。
1. When supplying the sintered ore that has been primarily crushed in the sintering machine discharge section to the sinter cooler, the sintered ore is sieved into coarse grains, medium and small grains, and fine grains, and the coarse grains are crushed secondarily. sintered ore supply to a sinter cooler, characterized in that the sintered ore is supplied uniformly in the width direction of the cooler, the small and medium grains are divided and supplied in the width direction of the cooler, and the fine grains are fed by bypassing the cooler. Method.
JP4008286A 1986-02-25 1986-02-25 Method for supplying sintered ore to sintering and cooling machine Pending JPS62199735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4008286A JPS62199735A (en) 1986-02-25 1986-02-25 Method for supplying sintered ore to sintering and cooling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4008286A JPS62199735A (en) 1986-02-25 1986-02-25 Method for supplying sintered ore to sintering and cooling machine

Publications (1)

Publication Number Publication Date
JPS62199735A true JPS62199735A (en) 1987-09-03

Family

ID=12570977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4008286A Pending JPS62199735A (en) 1986-02-25 1986-02-25 Method for supplying sintered ore to sintering and cooling machine

Country Status (1)

Country Link
JP (1) JPS62199735A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183142A (en) * 2004-11-30 2006-07-13 Jfe Steel Kk Method for particle size regulation in sintered ore and oscillating type classifier used therefor
JP2007217730A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for regulating grain size of sintered ore, and oscillation-type classifier therefor
JP2007217729A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for regulating grain size of sintered ore, and oscillation-type classifier therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183142A (en) * 2004-11-30 2006-07-13 Jfe Steel Kk Method for particle size regulation in sintered ore and oscillating type classifier used therefor
JP2007217730A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for regulating grain size of sintered ore, and oscillation-type classifier therefor
JP2007217729A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for regulating grain size of sintered ore, and oscillation-type classifier therefor

Similar Documents

Publication Publication Date Title
RU2124565C1 (en) Formation of fluidized bed for reduction of iron ore particles (versions) and method of reduction of iron ore particles (versions)
US3289950A (en) Method of and apparatus for grinding moist material
CA1118401A (en) Process and apparatus for recovering heat from finely to coarsely divided material having high temperature
US4025610A (en) Method and apparatus for denitrifying coke
CN106482530A (en) A kind of sintering deposit multipot type heat recovering device and sensible heat recovery method
CA1329479C (en) Apparatus for roasting fine grained material
CN105154662A (en) Rare earth mineral powder calcination decomposition systems and processes thereof
JPS62199735A (en) Method for supplying sintered ore to sintering and cooling machine
US3653645A (en) Method and furnace for heat treating materials
JPS62174336A (en) Method for supplying sintered ore to sintering and cooling device
CN110715547B (en) Horizontal cement clinker grate type particle grading cooler and cooling method
CN103088213A (en) Device and method for cooling direct reduction iron
JP6601482B2 (en) Steel slag treatment method and equipment
JP2905089B2 (en) Casting sand recycling method
US3245778A (en) Method of indurating iron ore concentrates
US4788917A (en) Shaft furnace bypass system
US3790334A (en) Manufacture of lightweight aggregate
JP2004323868A (en) Facility for treating waste gas of metallurgical furnace
JP3504870B2 (en) Pretreatment method of iron ore pellet raw material
CN107206313B (en) Method for reducing nitrogen oxides in exhaust gas of entrained-flow bed treatment system and entrained-flow bed treatment system
KR850001505B1 (en) System for recycling char in iron oxide reducing kilns
RU2817875C1 (en) Section of discharge grate for device for grinding solid materials and discharge grate containing it, device for grinding solid materials and line for processing wastes of metallurgical production
US3168254A (en) Method for preparing the fuel component of agglomerator-feed mix
JPH01242708A (en) Fluidized-bed reducing equipment for iron ore
JPS61279636A (en) Charging apparatus of sintered ore cooling machine