JPH01149912A - Method for charging exhaust gas dust in smelting reduction furnace - Google Patents

Method for charging exhaust gas dust in smelting reduction furnace

Info

Publication number
JPH01149912A
JPH01149912A JP62310118A JP31011887A JPH01149912A JP H01149912 A JPH01149912 A JP H01149912A JP 62310118 A JP62310118 A JP 62310118A JP 31011887 A JP31011887 A JP 31011887A JP H01149912 A JPH01149912 A JP H01149912A
Authority
JP
Japan
Prior art keywords
reduction furnace
dust
smelting reduction
exhaust gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62310118A
Other languages
Japanese (ja)
Other versions
JP2608736B2 (en
Inventor
Takuya Maeda
卓也 前田
Keikichi Murakami
村上 慶吉
Susumu Yamada
山田 邁
Mitsuharu Kishimoto
岸本 充晴
Kenichi Yajima
健一 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP31011887A priority Critical patent/JP2608736B2/en
Publication of JPH01149912A publication Critical patent/JPH01149912A/en
Application granted granted Critical
Publication of JP2608736B2 publication Critical patent/JP2608736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacture Of Iron (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)

Abstract

PURPOSE:To improve yield of a product and heat efficiency and to reduce consumption of coal and lime by separating dust in gas exhausting from outlet of a smelting reduction furnace and re-charging this into the smelting reduction furnace. CONSTITUTION:Iron ore charged into a pre-reduction furnace 21 is pre-reduced with reduction gas, and middle and coarse ores are stored in a storing tank 33 through a discharging tube 24 below a dispersing plate 26 for a time and charged on a surface of molten iron 2 in the smelting reduction furnace 1. On the other hand, a part of fine granular iron ore is stored in a storing tank 36 through a cyclon separator 28 for a time and blown into the molten iron 2 with carrier gas. Then, high temp. gas generated in the smelting reduction furnace 1 and having reduction ability is introduced into a hot cyclon separator 11 through a hood 9 and duct 10, and powdery reducing iron, coal, lime, etc., in the exhaust gas is separated as the dust and the exhaust gas is sent to the pre-reduction furnace 21. On the other hand, the dust is sent to a weighing tank 12 for a time and successively, sent to the tank 36 with the carrier gas and blown into the molten iron 2 through a transporting tube 5.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、原料としての鉱石を、石炭、石灰とともに
装入し、酸素を吹き込んで溶融状態で還元させる溶融還
元炉において、その出口から排出されるガス中のダスト
を回収して前記溶融還元炉に装入する方法に関するもの
である。
Detailed Description of the Invention (Field of Industrial Application) This invention is a smelting reduction furnace in which ore as a raw material is charged together with coal and lime, and oxygen is blown into it to reduce it in a molten state. The present invention relates to a method for collecting dust in the gas and charging it into the melting reduction furnace.

(従来の技術) 溶融還元法は、酸化鉄(鉄鉱石)などの金属酸化物(鉱
石)を溶融状態で還元して鉄やフェロアロイを製造する
方法であり、将来の原料およびエネルギー事情に適応す
るとして最近注目されるようになり、実用化のための研
究開発が進められている技術である。この方法に期待さ
れる特長はつぎの点にある。すなわち、製鉄法としては
、高炉法と比べて、安価な原料の使用、粉鉱の塊成化な
どの事前処理工程の省略、設備の小型化などを実現でき
ること、またフェロアロイの製造法としては、電力に依
存しないプロセスの実用化が可能であることなどである
(Conventional technology) The smelting reduction method is a method for producing iron and ferroalloys by reducing metal oxides (ores) such as iron oxide (iron ore) in a molten state, and is a method that can be adapted to future raw materials and energy situations. It is a technology that has recently attracted attention as a technology, and research and development is underway to put it into practical use. The expected features of this method are as follows. In other words, compared to the blast furnace method, as a steel manufacturing method, it is possible to use cheaper raw materials, omit pre-processing steps such as agglomeration of fine ore, and downsize equipment, and as a method for manufacturing ferroalloys, For example, it is possible to put a process that does not depend on electricity into practical use.

溶融還元炉では、原料としての鉱石を、熱発生源でかつ
還元剤としての石炭、フラックスとしての石灰および石
炭の酸化剤としての酸素とともに炉内に装入し、溶融状
態で還元反応させる。こうした溶融還元炉には種々の形
式のものが提案されているが、鉱石を溶融金属浴中に装
入する金属浴炉式と、鉱石をコークス充填層などに装入
する竪型炉弐などに大別される。また、還元工程につい
ては、溶融還元炉のみで還元するものと、予備還元炉と
溶融還元炉との組み合わせによって還元するものとがあ
る。なお、予備還元炉では、鉱石は一般に固体状態で予
備還元されている。
In a smelting reduction furnace, ore as a raw material is charged into the furnace together with coal as a heat generating source and as a reducing agent, lime as a flux, and oxygen as an oxidizing agent for the coal, and is subjected to a reduction reaction in a molten state. Various types of smelting reduction furnaces have been proposed, including a metal bath furnace in which ore is charged into a molten metal bath, and a vertical furnace in which ore is charged into a coke-filled bed. Broadly classified. Regarding the reduction process, there are two types: one in which reduction is carried out only by a smelting reduction furnace, and the other in which reduction is carried out by a combination of a preliminary reduction furnace and a smelting reduction furnace. In addition, in the pre-reduction furnace, the ore is generally pre-reduced in a solid state.

ところで、この種の溶融還元炉出口から排出されるガス
は多量の粉体(以下、ダストという)を含んでいるが、
このダストは金属分を主成分とし、残りは未反応の石炭
や石灰からなっている。
By the way, the gas discharged from the outlet of this type of smelting reduction furnace contains a large amount of powder (hereinafter referred to as dust),
This dust is mainly composed of metals, with the remainder consisting of unreacted coal and lime.

従来の溶融還元法においては、これら金属分含有ダスト
を回収して還元炉に戻すという考え方はなかった。また
、高炉法では、従来より高炉からの排ガス中のダストを
回収して炉に戻すことが行われていたが、この場合には
、回収したダストをライン外部に一旦取り出してアッシ
ュ分などを除去し、有効成分だけを例えばペレット状に
再生した後、新たに原料を装入する際に一緒に混入して
高炉に装入していた。
In the conventional smelting reduction method, there was no concept of collecting these metal-containing dusts and returning them to the reduction furnace. In addition, in the blast furnace method, dust in the exhaust gas from the blast furnace has traditionally been collected and returned to the furnace, but in this case, the collected dust is taken out of the line and ash etc. However, after regenerating only the active ingredients into, for example, pellets, they were mixed in with new raw materials and charged into the blast furnace.

(発明が解決しようとする問題点) 上記したように多量のダストを、ライン外部へそのまま
排出してしまうことは、製品としての還元金属の歩留ま
りを低下させ、また、再使用可能な未燃焼の石炭や未反
応の石灰を無駄にし、非常に不経済である。さらに、上
記した高炉からの排ガス中のダストを分離回収する方法
のように、回収したダストをライン外部に一旦取り出し
て有効成分だけを再生する方法では、ダストが保有する
顕熱が無駄になって熱効率が悪く、また、ライン外へ取
り出して処理するので、処理工程が増えて作業負担が重
くなる、既に還元された金属が再酸化されるなどの点て
問題がある。
(Problems to be solved by the invention) As described above, discharging a large amount of dust directly to the outside of the line reduces the yield of reduced metal as a product, and also reduces the yield of reusable unburned metal. It wastes coal and unreacted lime and is very uneconomical. Furthermore, with methods such as the above-mentioned method of separating and recovering dust in the exhaust gas from blast furnaces, where the collected dust is taken out of the line and only the active ingredients are regenerated, the sensible heat held by the dust is wasted. Thermal efficiency is poor, and since it is taken out of the line for processing, there are problems in that the number of processing steps increases and the workload becomes heavier, and metal that has already been reduced is reoxidized.

(発明の目的) この発明は上述の点に鑑みなされたもので、溶融還元炉
からの排ガス中のダストを分離回収して、ライン内でそ
のまま溶融還元炉に戻すことにより、製品の歩留まりお
よび熱効率の向上を図るとともに石炭や石灰石の消費量
を削減することを目的とする。
(Objective of the Invention) This invention was made in view of the above points, and improves product yield and thermal efficiency by separating and collecting dust in the exhaust gas from the smelting reduction furnace and returning it to the smelting reduction furnace as it is in the line. The aim is to reduce the consumption of coal and limestone.

(問題点を解決するための手段) 上記した目的を達成するためのこの発明の要旨とすると
ころは、金属酸化物を含有する鉱石と、石炭などの固体
炭素含有物を装入し、酸素を吹き込んで溶融状態で前記
金属酸化物を還元させる溶融還元炉において、前記溶融
還元炉出口から排出されるガスを、ザイクロンセパレー
タなどの粉体分離装置に導入して排ガス中のダストを分
離し、分離したダストを移送管を介して前記溶融還元炉
に装入するように構成したことである。
(Means for Solving the Problems) The gist of this invention to achieve the above-mentioned object is to charge ore containing metal oxides and solid carbon-containing substances such as coal, and to In a smelting reduction furnace in which the metal oxide is reduced in a molten state by blowing, the gas discharged from the smelting reduction furnace outlet is introduced into a powder separation device such as a Zylon separator to separate dust in the exhaust gas, The separated dust is charged into the melting reduction furnace via a transfer pipe.

(作用) この発明の方法によれば、溶融還元炉出口から排出され
たガス中のダストは、粉体分離装置によって分離され、
この分離されたダストはその顕熱を保有した状態で移送
管内をキャリア・ガスなどによって移送され、前記溶融
還元炉に装入されて溶融還元に供されるものである。
(Operation) According to the method of the present invention, dust in the gas discharged from the outlet of the smelting reduction furnace is separated by the powder separator,
The separated dust retains its sensible heat and is transferred through a transfer pipe by a carrier gas or the like, and is charged into the melting and reducing furnace where it is subjected to melting and reduction.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

図面は予備還元炉を備えた製鉄用の溶融還元工程を示す
全体系統図で、そのプロセスは、溶融還元工程で発生す
る高温の還元力を有するガスを用いて鉄鉱石を固体状態
で予備還元し、そののち溶融還元するものである。!が
溶融還元炉、21が予備還元炉である。溶融還元炉lは
溶融金属浴炉式の溶融還元炉からなっており、耐火材を
内張すした炉内に溶鉄2とスラグ3を溶融状態で保持し
、ここへ予備還元された鉱石(以下、予備還元鉄という
)と、石炭、石灰および酸素を供給して還元反応を行わ
せる方式のものである。
The drawing is an overall system diagram showing the smelting reduction process for steel manufacturing equipped with a pre-reduction furnace.The process involves pre-reducing iron ore in a solid state using a high-temperature reducing gas generated in the smelting-reduction process. , and then melted and reduced. ! 2 is a melting reduction furnace, and 21 is a preliminary reduction furnace. The smelting reduction furnace 1 consists of a molten metal bath furnace type smelting reduction furnace, in which molten iron 2 and slag 3 are held in a molten state in the furnace lined with a refractory material, and pre-reduced ore (hereinafter referred to as This method involves supplying coal, lime, and oxygen (referred to as pre-reduced iron) to carry out the reduction reaction.

予備還元炉21は、幅広い粒度分布を有する鉄鉱石を同
時に予備還元し、粗粒状の鉱石と微粉粒状の鉱石とをそ
れぞれ別の排出口より排出する構造からなる。この予備
還元炉21において、供給管2zから炉内に装入された
鉄鉱石は、溶融還元炉lから後述するホットサイクロン
セパレータ11でダストが除去されて送られてくる還元
ガスと接触・反応し、予備還元されて、中・粗粒鉱石は
、底部の分散板26より下方へ延設された排出管24か
ら排出される。また、微粉粒状鉱石は、排ガスとともに
上部のガス排出管25よりザイクロンセパレータ28に
導入され、その下方の二方向払出しバルブ29を介して
一部は循環管30より予備還元炉21へ戻され、残りは
排出管31から排出される。なお、排出された粗粒状お
よび微粉粒状の鉱石はそれぞれ、切出しバルブ32.3
5を経て貯蔵タンク33.36にそれぞれいったん貯蔵
される。
The pre-reduction furnace 21 has a structure that simultaneously pre-reduces iron ore having a wide particle size distribution and discharges coarse ore and fine ore from separate discharge ports. In this preliminary reduction furnace 21, the iron ore charged into the furnace from the supply pipe 2z contacts and reacts with the reducing gas sent from the smelting reduction furnace 1 after dust has been removed by a hot cyclone separator 11, which will be described later. After being pre-reduced, the medium-to-coarse ore is discharged from a discharge pipe 24 extending downward from the dispersion plate 26 at the bottom. Further, the fine granular ore is introduced into the Zylon separator 28 from the upper gas discharge pipe 25 together with the exhaust gas, and a part is returned to the preliminary reduction furnace 21 from the circulation pipe 30 via the two-way discharge valve 29 below. The remainder is discharged from the discharge pipe 31. Incidentally, the discharged coarse and fine ores are each discharged through a cutting valve 32.3.
5 and are temporarily stored in storage tanks 33 and 36, respectively.

そして、上記のようにして予備還元し、粒度別に排出・
貯蔵された鉄鉱石は、その粒度別に二系統に分けて溶融
還元炉!へ装入される。詳述すると、粗粒状の予備還元
鉄は、タンク33の秤量装置(図示せず)によって計量
し、所定量を切出しバルブ34によって切出し、炉体上
方に開口端部4aを有する投入シュート4から、重力落
下により炉l内の溶融鉄浴面付近に投入するとともに、
微粉粒状の予備還元鉄は、タンク36の秤量装置(図示
せず)によって計量し、所定量を切出しバルブ37によ
って切出し、移送用のキャリア・ガス供給管39に接続
された移送管5内をギヤリア・ガスによって気体移送さ
れて、ノズル5aより炉内の溶鉄2中に吹き込まれる。
Then, it is pre-reduced as described above, and discharged and discharged according to particle size.
The stored iron ore is divided into two systems according to its particle size and sent to a smelting reduction furnace! is charged to. To be more specific, the coarse grained preliminary reduced iron is weighed by a weighing device (not shown) in the tank 33, and a predetermined amount is cut out by the cut-out valve 34, from the input chute 4 having an open end 4a above the furnace body. It is thrown into the vicinity of the molten iron bath surface in the furnace l by gravity fall, and
The pre-reduced iron in the form of fine particles is weighed by a weighing device (not shown) in the tank 36, cut out in a predetermined amount by a valve 37, and passed through the transfer pipe 5, which is connected to the carrier gas supply pipe 39 for transfer, through the gearbox. - The gas is transferred and blown into the molten iron 2 in the furnace through the nozzle 5a.

ところで、溶融還元炉lには予備還元鉄のほかに、石炭
、石灰および酸素を供給ずろ必要がある。酸素は供給管
8より溶鉄2中に吹き込み、石炭および石灰は、上記予
備還元鉄と同様に、粗粒状のものは炉体上方の投入シュ
ート6より重力落下させて投入し、微粉粒状のものは、
前記のようなキャリア・ガスで気体移送し、移送管7よ
り溶鉄2中に吹き込むようにする。
By the way, it is necessary to supply coal, lime, and oxygen to the smelting reduction furnace l in addition to pre-reduced iron. Oxygen is blown into the molten iron 2 through the supply pipe 8, and as with the pre-reduced iron mentioned above, coarse particles are dropped by gravity from the input chute 6 above the furnace body, and fine particles are fed into the molten iron 2. ,
The carrier gas as described above is used to transfer the gas and blow it into the molten iron 2 through the transfer pipe 7.

また、溶融還元炉lで発生する還元力のある高温ガスは
、炉1出口よりフード9、ダクトlOを経たのち、粉体
分離装置としてのホットサイクロンセパレータ11に導
入される。そして、このポットサイクロンセ°パレータ
11で、排ガス中の粉状還元鉄、石炭、石灰などのダス
トが分離されて、排ガスは導入管23より予備還元炉2
1底部へ導入される。
Further, high-temperature gas with reducing power generated in the melting reduction furnace 1 passes through a hood 9 and a duct 10 from the exit of the furnace 1, and is then introduced into a hot cyclone separator 11 as a powder separation device. The pot cyclone separator 11 separates dust such as powdered reduced iron, coal, and lime in the exhaust gas, and the exhaust gas is passed through the inlet pipe 23 to the preliminary reduction furnace 2.
1 is introduced into the bottom.

一方、ホットサイクロンセパレータ11で分離されたダ
ストは、下方の秤量タンク12へ一旦送られ、このタン
ク12の秤量装置13よって計量されながら、切出しバ
ルブ14を経て、移送用のキャリア・ガス供給管16に
接続された移送管15内をキャリア・ガスによって気体
移送されて、前記微粉粒状予備還元鉄と共通のタンク3
6および移送管5を経てノズル5aより炉内の溶鉄2中
に吹き込まれる。なお、キャリア・ガスとしては、窒素
などの不活性ガスやプロセス回収排ガスや一酸化炭素な
ど非酸化性のガスを用いる。
On the other hand, the dust separated by the hot cyclone separator 11 is once sent to the weighing tank 12 below, and while being weighed by the weighing device 13 of this tank 12, it passes through the cut-out valve 14 and then passes through the carrier gas supply pipe 16 for transfer. The gas is transferred by a carrier gas through a transfer pipe 15 connected to a tank 3 common to the fine powder granular pre-reduced iron.
6 and the transfer pipe 5, and is blown into the molten iron 2 in the furnace from the nozzle 5a. Note that as the carrier gas, an inert gas such as nitrogen, a non-oxidizing gas such as process recovery exhaust gas, or carbon monoxide is used.

このようにして、溶融還元炉lからの排ガス中のダスト
は、溶融還元炉1に戻されて鉄分は製品としての還元鉄
になり、また、石炭分や石灰分は溶融還元反応に供され
るとともに、ダストが分離除去されることにより清浄化
された、還元力を有する排ガスは、導入経路23を閉塞
することなくスムーズに予備還元炉21に導入されて予
備還元に供され、すべてが有効に利用される。
In this way, the dust in the exhaust gas from the smelting reduction furnace 1 is returned to the smelting reduction furnace 1, the iron content becomes reduced iron as a product, and the coal content and lime content are subjected to a smelting reduction reaction. At the same time, the exhaust gas having reducing power, which has been purified by separating and removing dust, is smoothly introduced into the pre-reduction furnace 21 without clogging the introduction path 23 and is subjected to pre-reduction, so that all of the gas is effectively used. used.

また、ダスト中に含まれているアッシュなどの非有効成
分は、溶融還元炉1内に再装入された後、スラグ3とし
て回収されることになる。
In addition, ineffective components such as ash contained in the dust will be recovered as slag 3 after being reinjected into the melting reduction furnace 1.

なお、前記ダストを還元鉄移送ライン中へ合流させる位
置は、タンク36の上流側、タンク36内および移送管
5のいずれでもよく、また、前記バルブ14およびタン
ク33並びにシュート4の系統内でもよい。さらに、排
ガスから分離したダストは、既設のランス(図示せず)
を用いて、溶融還元炉lの上部から炉内に装入してもよ
い。
Note that the position where the dust is merged into the reduced iron transfer line may be any of the upstream side of the tank 36, inside the tank 36, and the transfer pipe 5, or may be within the system of the valve 14, the tank 33, and the chute 4. . Furthermore, the dust separated from the exhaust gas is removed from the existing lance (not shown).
It may be charged into the furnace from the upper part of the smelting reduction furnace 1 using .

さらにまた、予備還元炉31を具備しない(溶融還元炉
lだけの)溶融還元法にも、同様に実施できる。
Furthermore, a smelting reduction method that does not include the preliminary reduction furnace 31 (only the smelting reduction furnace 1) can be implemented in the same manner.

(効果) 上記のように構成したこの発明の方法によれば、下記の
効果がもたらされる。
(Effects) According to the method of the present invention configured as described above, the following effects are brought about.

(1)製品としての還元金属の歩留まりが大幅に向上す
るとともに、再使用可能な未反応の石炭や石灰が無駄に
ならず、非常に経済的である。
(1) The yield of reduced metal as a product is greatly improved, and reusable unreacted coal and lime are not wasted, making it very economical.

(2)従来の高炉からの排ガス中のダストを分離回収す
る方法に比べて、回収したダストの処理工程が不要で作
業者の負担が軽く、しかも、ダストが保有する顕熱を溶
融還元工程に利用できるので、熱効率がよく、また、ラ
イン内で溶融還元炉へ再装入されるので、既に還元され
た金属の再酸化が防止される。
(2) Compared to the conventional method of separating and collecting dust in the exhaust gas from a blast furnace, there is no need to process the collected dust, which reduces the burden on workers, and moreover, the sensible heat held by the dust can be used in the melting and reduction process. Its availability is thermally efficient, and its in-line recharging to the smelting reduction furnace prevents reoxidation of already reduced metal.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は予備還元炉を備えた製鉄用の溶融還元工程を示す
全体系統図である。 ■・・・溶融還元炉、5.15・・・移送管、11・・
・ホットサイクロンセパレータ、16・・・キャリア・
ガス供給管、2工・・・予備還元炉。
The drawing is an overall system diagram showing a smelting reduction process for iron manufacturing equipped with a preliminary reduction furnace. ■...Melting reduction furnace, 5.15...Transfer pipe, 11...
・Hot cyclone separator, 16...Carrier・
Gas supply pipe, 2 pieces...Preliminary reduction furnace.

Claims (5)

【特許請求の範囲】[Claims] (1)金属酸化物を含有する鉱石と、石炭などの固体炭
素含有物を装入し、酸素を吹き込んで溶融状態で前記金
属酸化物を還元させる溶融還元炉において、前記溶融還
元炉出口から排出されるガスを、サイクロンセパレータ
などの粉体分離装置に導入して排ガス中のダストを分離
し、分離したダストを移送管を介して前記溶融還元炉に
装入するように構成したことを特徴とする溶融還元炉に
おける排ガスダストの装入法。
(1) In a smelting reduction furnace in which ore containing metal oxides and solid carbon-containing substances such as coal are charged and oxygen is blown into the furnace to reduce the metal oxides in a molten state, the metal oxides are discharged from the exit of the smelting reduction furnace. The gas is introduced into a powder separation device such as a cyclone separator to separate dust in the exhaust gas, and the separated dust is charged to the smelting reduction furnace via a transfer pipe. A method of charging exhaust gas dust in a smelting reduction furnace.
(2)前記分離したダストを、窒素ガスなどのキャリア
・ガスによって気体移送する特許請求の範囲第1項に記
載の溶融還元炉における排ガスダストの装入法。
(2) The method for charging exhaust gas dust in a smelting reduction furnace according to claim 1, wherein the separated dust is gas-transferred using a carrier gas such as nitrogen gas.
(3)前記溶融還元炉へ装入する前に前記鉄鉱石を予備
還元する予備還元炉を設け、前記粉体分離装置によりダ
ストが分離除去された排ガスを前記予備還元炉へ導入し
て鉄鉱石の予備還元に利用するとともに、予備還元炉か
らの予備還元鉄を前記溶融還元炉へ移送するライン内に
設けたホッパーや移送管中に前記ダストを装入して予備
還元鉄と合流させるようにした特許請求の範囲第1項又
は第2項に記載の溶融還元炉における排ガスダストの装
入法。
(3) A pre-reduction furnace is provided to pre-reduce the iron ore before charging it into the smelting reduction furnace, and the exhaust gas from which dust has been separated and removed by the powder separator is introduced into the pre-reduction furnace to produce iron ore. In addition, the dust is charged into a hopper or a transfer pipe provided in a line for transferring the pre-reduced iron from the pre-reduction furnace to the smelting reduction furnace, and is merged with the pre-reduced iron. A method for charging exhaust gas dust in a smelting reduction furnace according to claim 1 or 2.
(4)前記予備還元炉から排出される予備還元鉄を、比
較的小粒径のものと大粒径のものとの二系統に分け、前
記小粒径の予備還元鉄の移送路内を通して前記ダストを
移送するようにした特許請求の範囲第3項に記載の溶融
還元炉における排ガスダストの装入法。
(4) The pre-reduced iron discharged from the pre-reducing furnace is divided into two systems, one with a relatively small particle size and one with a relatively large particle size, and passed through the transfer path for the pre-reduced iron with a relatively small particle size. A method for charging exhaust gas dust in a smelting reduction furnace according to claim 3, wherein the dust is transferred.
(5)前記予備還元炉から排出される予備還元鉄を、比
較的小粒径のものと大粒径のものとの二系統に分け、前
記大粒径の予備還元鉄の移送路内を通して前記ダストを
移送するようにした特許請求の範囲第3項に記載の溶融
還元炉における排ガスダストの装入法。
(5) The pre-reduced iron discharged from the pre-reduction furnace is divided into two systems, one with a relatively small particle size and one with a relatively large particle size, and passed through the transfer path of the pre-reduced iron with a relatively small particle size. A method for charging exhaust gas dust in a smelting reduction furnace according to claim 3, wherein the dust is transferred.
JP31011887A 1987-12-07 1987-12-07 Method of charging exhaust gas dust in smelting reduction furnace Expired - Fee Related JP2608736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31011887A JP2608736B2 (en) 1987-12-07 1987-12-07 Method of charging exhaust gas dust in smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31011887A JP2608736B2 (en) 1987-12-07 1987-12-07 Method of charging exhaust gas dust in smelting reduction furnace

Publications (2)

Publication Number Publication Date
JPH01149912A true JPH01149912A (en) 1989-06-13
JP2608736B2 JP2608736B2 (en) 1997-05-14

Family

ID=18001393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31011887A Expired - Fee Related JP2608736B2 (en) 1987-12-07 1987-12-07 Method of charging exhaust gas dust in smelting reduction furnace

Country Status (1)

Country Link
JP (1) JP2608736B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382279A (en) * 1994-01-07 1995-01-17 Bethlehem Steel Corporation Method and apparatus for combustion of steel plant wastes
KR100360111B1 (en) * 2000-12-23 2002-11-07 주식회사 포스코 Method For Manufacturing Molten Iron Using Non-Coking Coal And Fine Iron Ore And Device For Manufacturing Molten Iron
KR100840265B1 (en) * 2006-12-27 2008-06-20 주식회사 포스코 Apparatus for collecting fine powders and apparatus for manufacturing molten irons having the same
WO2008078938A1 (en) * 2006-12-26 2008-07-03 Posco Apparatus for manufacturing molten iron and method for manufacturing molten iron
KR100864458B1 (en) * 2006-12-27 2008-10-20 주식회사 포스코 Apparatus and method for manufacturing molten irons
KR100864459B1 (en) * 2008-09-16 2008-10-20 주식회사 포스코 Apparatus and method for manufacturing molten irons
CN108424990A (en) * 2018-03-28 2018-08-21 北京首钢国际工程技术有限公司 A kind of ironmaking technique of fusion and reduction coal gas of high temperature processing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996478A (en) * 1958-02-07 1961-08-15 Du Pont Polyvinyl fluoride resins stabilized with an alkali metal formate
JPS55797A (en) * 1978-06-19 1980-01-07 Du Pont Tetrafluoroethylene dispersion polymerization
JPS578225A (en) * 1980-05-14 1982-01-16 Ugine Kuhlmann Treatment of polytetrafluoroethylene aqueous colloidal dispersion
JPS60188454A (en) * 1984-02-04 1985-09-25 バイエル・アクチエンゲゼルシヤフト Abs forming material having improved burning properties and manufacture
EP0708133B1 (en) * 1994-10-18 2001-01-03 General Electric Company Process for making flame retardant thermoplastic compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996478A (en) * 1958-02-07 1961-08-15 Du Pont Polyvinyl fluoride resins stabilized with an alkali metal formate
JPS55797A (en) * 1978-06-19 1980-01-07 Du Pont Tetrafluoroethylene dispersion polymerization
JPS578225A (en) * 1980-05-14 1982-01-16 Ugine Kuhlmann Treatment of polytetrafluoroethylene aqueous colloidal dispersion
JPS60188454A (en) * 1984-02-04 1985-09-25 バイエル・アクチエンゲゼルシヤフト Abs forming material having improved burning properties and manufacture
EP0708133B1 (en) * 1994-10-18 2001-01-03 General Electric Company Process for making flame retardant thermoplastic compositions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382279A (en) * 1994-01-07 1995-01-17 Bethlehem Steel Corporation Method and apparatus for combustion of steel plant wastes
KR100360111B1 (en) * 2000-12-23 2002-11-07 주식회사 포스코 Method For Manufacturing Molten Iron Using Non-Coking Coal And Fine Iron Ore And Device For Manufacturing Molten Iron
WO2008078938A1 (en) * 2006-12-26 2008-07-03 Posco Apparatus for manufacturing molten iron and method for manufacturing molten iron
KR100840265B1 (en) * 2006-12-27 2008-06-20 주식회사 포스코 Apparatus for collecting fine powders and apparatus for manufacturing molten irons having the same
WO2008078937A1 (en) * 2006-12-27 2008-07-03 Posco Apparatus for restoring fine irons and apparatus for manufacturing molten iron comprising the same
KR100864458B1 (en) * 2006-12-27 2008-10-20 주식회사 포스코 Apparatus and method for manufacturing molten irons
KR100864459B1 (en) * 2008-09-16 2008-10-20 주식회사 포스코 Apparatus and method for manufacturing molten irons
CN108424990A (en) * 2018-03-28 2018-08-21 北京首钢国际工程技术有限公司 A kind of ironmaking technique of fusion and reduction coal gas of high temperature processing system

Also Published As

Publication number Publication date
JP2608736B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JP2001506315A (en) Direct reduction of metal oxide nodules
US9512496B2 (en) Method and device for introducing fine particle-shaped material into the fluidised bed of a fluidised bed reduction unit
RU2077595C1 (en) Method and apparatus (alternatives) for producing iron and/or alloys thereof from iron oxide materials
EP0541269A1 (en) Method and apparatus for continuously producing steel or semi-steel
SK281417B6 (en) Process for utilizing iron-containing wastes or residues
JP2013531733A (en) Hot metal manufacturing method and manufacturing plant
KR100584732B1 (en) Recycling method of waste material by using of coal based iron making process
KR20180030268A (en) Method and device for producing pressed articles
CN102016080A (en) Process for production of direct-reduced iron
JP2608736B2 (en) Method of charging exhaust gas dust in smelting reduction furnace
RU2143007C1 (en) Double-stage furnace with fluidized bed for preliminarily reducing finely divided iron ore and method for preliminarily reducing finely divided iron ore at using such furnace
RU2285048C2 (en) Method of production of iron-nickel alloys and nickel from oxide materials and plant for realization of this method
JPH11152511A (en) Treatment of steelmaking furnace dust and dust pellet
CN214327826U (en) Treatment and utilization device for recovering zinc oxide by smelting reduction of suspended metallurgical zinc-containing ash
JP2016536468A (en) Steel production in coke dry fire extinguishing system.
JP3745996B2 (en) Processing method of aluminum ash
JP4711350B2 (en) Electric furnace operation method using steelmaking dust
JP2579785B2 (en) Pre-reduction device for smelting reduction
JPH01129916A (en) Method for charging ore in smelting reduction furnace
RU2326173C2 (en) Method of direct reduction of metals from dispersed crude ore and device for its implementation
JPH07173549A (en) Method for recovering metallic zinc and iron from dust containing zinc and iron
RU2272849C1 (en) Method of production of metals from ore materials and unit for realization of this method
JP2502976B2 (en) Iron ore preliminary reduction device
JPS62227022A (en) Preheating and reducing device for iron ore
JPS6311609A (en) Prereduction device for iron ore

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees