JPH0297888A - Operation of circulation type fluidized bed preliminary reducing furnace - Google Patents

Operation of circulation type fluidized bed preliminary reducing furnace

Info

Publication number
JPH0297888A
JPH0297888A JP63247499A JP24749988A JPH0297888A JP H0297888 A JPH0297888 A JP H0297888A JP 63247499 A JP63247499 A JP 63247499A JP 24749988 A JP24749988 A JP 24749988A JP H0297888 A JPH0297888 A JP H0297888A
Authority
JP
Japan
Prior art keywords
ore
fluidized bed
furnace
reduction furnace
cyclone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63247499A
Other languages
Japanese (ja)
Inventor
Eiji Katayama
英司 片山
Hiroshi Itaya
板谷 宏
Hideyuki Momokawa
桃川 秀行
Kazuhiko Sato
和彦 佐藤
Takashi Ushijima
牛島 崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63247499A priority Critical patent/JPH0297888A/en
Publication of JPH0297888A publication Critical patent/JPH0297888A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To permit wide operation without selecting the kind of employing ore by a method wherein powdered ore is extracted out of the side wall of a furnace and is introduced into the inlet side of a cyclone when the amount of ore, stagnating in a fluidized bed preliminary reducing furnace, is increased. CONSTITUTION:When the flow speed of fluidized reducing gas 3, introduced into a preliminary reducing furnace 1, is higher than the terminal speed of powder ore or solvent, the solvent or the powder ore is flown out of the fluidized bed preliminary reducing furnace and is collected by a cyclone 8. The collected powdered ore 7 is descended to the lower part of the cyclone but is returned again into a fluidized bed 4 through a circulating passage 9. Then, the powdered ore 7 is fluidized again by the reducing gas 3 and is ascended through the fluidized bed 4 while being reduced by CO, H2 and CH4 in the reducing gas and, thereafter, is flown out of the furnace. The flying powder bodies are collected again by the cyclone 8 and are returned into the fluidized bed 4 again through the circulating passage 9.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、粉状鉱石の予備還元に供する循環型流動層
予備還元炉の操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for operating a circulating fluidized bed pre-reduction furnace for pre-reducing powdered ore.

(従来の技術) 鉄鉱石その他の金属鉱石資源は、塊状のものが減少して
粉状のものが増加する傾向にあるが、現在とくに低品位
鉱石の品位を向上させるべく浮選や磁選等の選鉱が積極
的に進められていることもあって、かかる傾向は今後ま
すます強まるものと考えられる。
(Conventional technology) Iron ore and other metal ore resources tend to be less in the form of lumps and more in the form of powder.Currently, methods such as flotation and magnetic separation are being used to improve the quality of low-grade ores. This trend is expected to become even stronger in the future, partly because ore beneficiation is being actively promoted.

ところで近年、上記したような粉状鉱石使用量の増加に
呼応して、粉状鉱石から直接溶融金属を製造するいわゆ
る溶融還元法が開発された。
In recent years, in response to the increase in the amount of powdered ore used, a so-called smelting reduction method has been developed to directly produce molten metal from powdered ore.

かかる溶融還元法にも種々の型式があるが、考案者らは
、竪型溶融還元炉と流動層予備還元炉を用いた溶融還元
法の研究、開発に永年にわたって従事しており、これま
でにも数多くの開発成果を報告している。
There are various types of smelting reduction methods, but the inventors have been engaged in research and development of smelting reduction methods using vertical smelting reduction furnaces and fluidized bed pre-reduction furnaces for many years, and have has also reported numerous development results.

例えば特公昭59−18452号、同59−18453
号、同62−5207号、特開昭59−80703号お
よび同62−56537号各公報。
For example, Special Publication No. 59-18452, No. 59-18453
No. 62-5207, JP-A-59-80703 and JP-A-62-56537.

溶融還元法では、溶融還元炉の高温排ガスを流動層予備
還元炉に導入して流動層を形成し高温徘ガス(流動化還
元ガス)を利用して粉状鉱石を予備還元する方法がシス
テムとして有利とされている。
In the smelting reduction method, high-temperature exhaust gas from the smelting reduction furnace is introduced into a fluidized bed pre-reduction furnace to form a fluidized bed, and powdered ore is pre-reduced using high-temperature wandering gas (fluidized reducing gas) as a system. It is considered advantageous.

流動層予備還元炉は、その設備規模、とくに流動層の塔
径(内径)と粉状鉱石の粒径、見掛は密度によって流動
化還元ガス量が制限され、その結果粉状鉱石の処理量や
還元率が制限されるため、流動化還元ガス流量を増やす
ことができれば同−設備規模であっても鉱石の処理量や
還元率を増加させることができるわけである。
In a fluidized bed pre-reduction furnace, the amount of fluidizing reducing gas is limited by the equipment scale, especially the column diameter (inner diameter) of the fluidized bed, the particle size of the powdered ore, and the apparent density, and as a result, the amount of powdered ore processed is limited. Since the reduction rate is limited, if the flow rate of the fluidizing reducing gas can be increased, the throughput of ore and the reduction rate can be increased even with the same equipment scale.

そこで発明者らは、流動化還元ガス流量の有利な増加を
実現すべく鋭意研究を重ねた結果、流動層の流動化還元
ガス流速が終端速度以上になると粉状鉱石は流動層から
飛び出すことになるわけであるが、かような飛び出し粒
子をサイクロンで捕集し、ついでこの捕集粉鉱石をクロ
ーズドサーキットで循環装置によって再び流動層に戻す
ようにすれば、流動化還元ガス流量を効果的に増大し得
ることの知見を得、先に特願昭63−136644号明
細書にて循環式流動層予備還元炉について提案した。
Therefore, the inventors conducted extensive research in order to realize an advantageous increase in the flow rate of the fluidizing reducing gas, and as a result, they found that when the flow rate of the fluidizing reducing gas in the fluidized bed exceeds the terminal velocity, the powdered ore will fly out of the fluidized bed. However, if such ejected particles are collected using a cyclone and the collected powder ore is then returned to the fluidized bed using a circulation device in a closed circuit, the flow rate of the fluidizing reducing gas can be effectively reduced. Based on this knowledge, we previously proposed a circulating fluidized bed pre-reduction furnace in Japanese Patent Application No. 136644/1983.

(発明が解決しようとする課題) 上記した粉状鉱石の循環は比較的粒径の小さい鉱石にお
いては容易であるが、粒径が大きくなるほど流動層から
の飛び出しが少なく、なって炉内の滞留鉱石が増加し流
動層操業のトラブルを招く不利があった。したがって循
環式流動層予備還元炉を用いる場合は原料鉱石の粒径に
制限を設けなくてはならず、すなわち比較的大径の粉状
鉱石の予備還元に循環式流動層予備還元炉を適用できな
いところに問題を残していた。
(Problems to be Solved by the Invention) The above-mentioned circulation of powdered ore is easy for ores with relatively small particle sizes, but the larger the particle size, the less they jump out of the fluidized bed, and the more they accumulate in the furnace. This had the disadvantage of increasing the amount of ore and causing problems in fluidized bed operation. Therefore, when using a circulating fluidized bed pre-reduction furnace, it is necessary to limit the particle size of the raw ore, which means that the circulating fluidized bed pre-reduction furnace cannot be used for pre-reducing relatively large-diameter powdered ores. There remained a problem.

そこでこの発明は、使用鉱石を選ばない幅広い操業を可
能とする循環型流動層予備還元炉の操業方法について提
案することを目的とする。
Therefore, the purpose of this invention is to propose a method for operating a circulating fluidized bed pre-reduction furnace that enables a wide range of operations regardless of the ore used.

(課題を解決するための手段) この発明は、高温の流動化還元ガスを流動層予備還元炉
に、粉状鉱石又は予備還元鉱石粉の飛び出し速度よりも
速い速度で導入して流動層を形成する一方、この流動層
の上部から飛び出した予備還元鉱石粉はサイクロンで捕
集し、捕集した鉱石粉は循環用経路にて該還元炉にもど
すことにより予備還元鉱石粉を循環流動させつつ、予備
還元するに当り、流動層予備還元炉内の滞留鉱石量が増
加した場合は炉の側壁から粉状鉱石を抜き出してサイク
ロンの入側に導入することを特徴とする循環型流動層予
備還元炉の操業方法である。
(Means for Solving the Problems) This invention forms a fluidized bed by introducing high-temperature fluidized reducing gas into a fluidized bed pre-reduction furnace at a faster rate than the ejection speed of powdered ore or pre-reduced ore powder. On the other hand, the pre-reduced ore powder flying out from the top of the fluidized bed is collected by a cyclone, and the collected ore powder is returned to the reduction furnace through the circulation path, thereby circulating and fluidizing the pre-reduced ore powder. A circulating fluidized bed pre-reduction furnace characterized in that during pre-reduction, if the amount of accumulated ore in the fluidized bed pre-reduction furnace increases, powdered ore is extracted from the side wall of the furnace and introduced into the inlet side of a cyclone. This is the operating method.

以下この発明を具体的に説明する。This invention will be specifically explained below.

第1図に、この発明の実施に好適な循環型流動層予備還
元炉を模式で示す。
FIG. 1 schematically shows a circulating fluidized bed pre-reduction furnace suitable for carrying out the present invention.

図中1は流動層予備還元炉、2は溶融還元炉からの流動
化還元ガス3の導入口、4は流動化還元ガス3による流
動層、5は流動層4に臨ませて設けた原料供給口、6は
流動化還元ガス3と流動層4から飛び出した粉状鉱石7
の排出口、8は予備還元炉1から飛び出した粉状鉱石(
操業条件によっては媒溶剤を含む)7を捕集するサイク
ロン、9はサイクロン8で捕集された粉状鉱石7を再び
予備還元炉lの循環用供給口10に導(循環経路、11
は予備還元された粉状鉱石を溶融還元炉あるいは外部へ
と導く輸送経路、12は流動層4の中間部から滞留鉱石
を抜き出しサイクロン8の入側に導入する抜き出し管で
ある。そして第2図に示す13は予備還元炉1内の滞留
鉱石量を検知する滞留量検出器である。なお循環経路9
は、図示しないN2などの粒子循環用ガスを噴き込む機
能をそなえている。
In the figure, 1 is a fluidized bed preliminary reduction furnace, 2 is an inlet for the fluidized reducing gas 3 from the smelting reduction furnace, 4 is a fluidized bed by the fluidized reducing gas 3, and 5 is a raw material supply facing the fluidized bed 4. 6 indicates the fluidized reducing gas 3 and powdered ore 7 ejected from the fluidized bed 4.
The discharge port 8 is the powdered ore ejected from the preliminary reduction furnace 1 (
A cyclone 9 collects the powdered ore 7 (including a solvent depending on operating conditions), and a cyclone 9 guides the powdered ore 7 collected by the cyclone 8 again to the circulation supply port 10 of the preliminary reduction furnace l (circulation path, 11
Reference numeral 12 designates a transportation path that leads the pre-reduced powdery ore to the smelting reduction furnace or the outside, and 12 represents an extraction pipe that extracts the accumulated ore from the middle part of the fluidized bed 4 and introduces it into the inlet side of the cyclone 8. Reference numeral 13 shown in FIG. 2 is a retention amount detector for detecting the amount of accumulated ore in the preliminary reduction furnace 1. In addition, circulation route 9
has a function of injecting particle circulation gas such as N2 (not shown).

さて予備還元炉1内に導入された流動化還元ガス3の流
速が粉状鉱石や媒溶剤の終端速度以上であると、媒溶剤
や粉状鉱石は、流動層予備還元炉から飛び出してサイク
ロン8で捕集されることになる。捕集された粉状鉱石7
は、サイクロンの下方に降下するが、循環経路9から再
び流動層4内に戻される。すると再び還元ガス3によっ
て流動化され、還元ガス中のCO,H!、およびCH4
などによって還元されながら流動層4中を上昇し、該炉
から飛び出す。飛び出した粉体はサイクロン8で再び捕
集され、循環経路9を経て再度流動層4に戻されること
になる。
Now, when the flow velocity of the fluidized reducing gas 3 introduced into the pre-reduction furnace 1 is higher than the terminal velocity of the powdered ore and the solvent, the solvent and the powdered ore fly out of the fluidized bed pre-reduction reactor into the cyclone 8. will be collected. Collected powdered ore 7
falls below the cyclone, but is returned to the fluidized bed 4 through the circulation path 9. Then, it is fluidized again by the reducing gas 3, and the CO, H! , and CH4
It rises in the fluidized bed 4 while being reduced by such methods as above, and flies out of the furnace. The ejected powder is collected again by the cyclone 8 and returned to the fluidized bed 4 via the circulation path 9.

粉状鉱石は、上記したような循環流動を繰り返す間に予
備還元され、高予備還元率の予備還元鉱石粉となるが、
この発明ではかかる型式の予備還元炉を循環型流動層予
備還元炉と呼ぶ。
Powdered ore is pre-reduced while repeating the circulation flow as described above, and becomes pre-reduced ore powder with a high pre-reduction rate.
In this invention, this type of pre-reduction furnace is referred to as a circulating fluidized bed pre-reduction furnace.

このように、粉状鉱石や媒溶剤は何回も循環している間
に還元され、あるいは加熱され、とくに石灰石の場合に
は炭酸ガスが除去される。
In this way, the powdered ore and the solvent are reduced or heated while being circulated many times, and especially in the case of limestone, carbon dioxide gas is removed.

ここに予備還元炉l内のガス流速が速いほど、より粒径
の粗い粉状鉱石や媒溶剤を処理することができる。
Here, the faster the gas flow rate in the preliminary reduction furnace 1, the more coarse the powdered ore and solvent can be processed.

(作 用) 上記した循環型流動層予備還元炉における循環流動は粉
状鉱石の粒径が小さいほど容易に実現できるが、粉状鉱
石の粒径は一定ではないため、粒径の小さなものは流動
層4から飛び出すことが容易であるのに対し、粒径の大
きなものは流動層4からの飛び出しが難しく徐々に炉内
に滞留することがある。そして炉内の滞留鉱石量が増加
すると、予備還元炉の入側圧力の上昇や圧力変動が大き
くなり、予備炉の操業が不能になる。予備還元炉を溶融
還元炉と連結して操業している場合、溶融還元炉の圧力
炉の圧力変動も大きくなり、また、送風ブロワ−の送風
が不能になるなどして溶融還元炉の操業も不能になる。
(Function) Circulating flow in the above-mentioned circulating fluidized bed pre-reduction furnace can be easily realized as the particle size of the powdery ore becomes smaller, but since the particle size of the powdery ore is not constant, While it is easy for particles to jump out of the fluidized bed 4, particles with a large size are difficult to jump out of the fluidized bed 4 and may gradually stay in the furnace. When the amount of ore retained in the furnace increases, the pressure on the inlet side of the pre-reduction furnace increases and pressure fluctuations become large, making it impossible to operate the pre-reduction furnace. If the preliminary reduction furnace is operated in conjunction with the smelting reduction furnace, the pressure fluctuations in the pressure furnace of the smelting reduction furnace will increase, and the operation of the smelting reduction furnace may be affected due to the air blower becoming unable to blow air. becomes incapable.

そこでこの発明では、予備還元炉1内の滞留鉱石量を滞
留量検出器13で検知し、検出量が所定値をこえた場合
は抜き出し管12から粉状鉱石をサイクロン8の入側に
導入して滞留鉱石量を減少させ、よって予備還元炉l内
の圧力損失の低下をはかるようにした。したがって予備
還元炉内の鉱石の滞留量を調節できるため、鉱石の還元
時間を制御し適当な還元率にすることが可能である。
Therefore, in this invention, the amount of accumulated ore in the preliminary reduction furnace 1 is detected by the accumulated amount detector 13, and if the detected amount exceeds a predetermined value, powdered ore is introduced from the extraction pipe 12 into the inlet side of the cyclone 8. In this way, the amount of accumulated ore is reduced, thereby reducing the pressure loss inside the pre-reducing furnace 1. Therefore, since the amount of ore retained in the preliminary reduction furnace can be adjusted, it is possible to control the reduction time of ore and achieve an appropriate reduction rate.

流動層に必要な高温流動化還元ガスは溶融還元炉から直
接供給される場合ばかりでなく、プロセスの多様性から
、溶融還元炉の発生ガスを冷却しガスタンクなどに貯蔵
しておいた還元ガスを使用してもよい、この場合、還元
ガスの高温化は、還元ガスの一部を燃焼することにより
可能になる。
The high-temperature fluidized reducing gas required for the fluidized bed is not only supplied directly from the smelting reduction furnace, but due to the variety of processes, reducing gas generated by the smelting reduction furnace is cooled and stored in a gas tank. It may also be used, in which case increasing the temperature of the reducing gas is made possible by burning part of the reducing gas.

なお滞留鉱石量を検知する滞留量検出器13は、第2図
に示すように、予備還元炉lの高さ方向の側壁の複数箇
所に接地された圧力計からなり、各位置での圧力の測定
値から各々の差圧を計算する。
The retention amount detector 13, which detects the amount of retained ore, consists of pressure gauges grounded at multiple locations on the side wall in the height direction of the preliminary reduction furnace l, as shown in Fig. 2, and measures the pressure at each location. Calculate each differential pressure from the measured values.

差圧から次式によりその区分(例えばP、〜P4間)の
滞留鉱石量を算出できる。
From the differential pressure, the amount of retained ore in that section (for example, between P and P4) can be calculated using the following formula.

差圧:ΔP  (kg/m”) = Pl −P4予備
還元炉断面積:S(m”) 滞留鉱石量:W(kg)・Δpxs 簡易的には鉱石重量(kg)でなく差圧で管理する。例
えば通常P、〜P4間の差圧が0.15kg/m”の場
合、測定値が0.20kg/l112に達し、予備還元
炉の操業が不調の時、抜き出し管12を一時的に開けて
、予備還元炉からの鉱石の飛出し速度を促進し、短時間
で23〜21間の差圧を0.15kg/m”に正常化さ
せることにより、その後の操業を継続することが可能に
なる。
Differential pressure: ΔP (kg/m") = Pl - P4 pre-reducing furnace cross-sectional area: S (m") Retention ore amount: W (kg)・Δpxs Simplified management is based on differential pressure rather than ore weight (kg) do. For example, when the differential pressure between P and P4 is normally 0.15 kg/m'', when the measured value reaches 0.20 kg/l112 and the preliminary reduction furnace is not operating properly, the extraction pipe 12 is temporarily opened. By accelerating the ejecting speed of ore from the preliminary reduction furnace and normalizing the differential pressure between 23 and 21 to 0.15 kg/m'' in a short time, it becomes possible to continue the subsequent operation. .

(実施例) 第1図に示した循環型流動層予備還元炉を縦型溶融還元
炉に組み合わせ、以下の条件下に粉状鉱石の溶融還元を
行った。
(Example) The circulating fluidized bed preliminary reduction furnace shown in FIG. 1 was combined with a vertical smelting reduction furnace, and powdered ore was smelted and reduced under the following conditions.

1、使用炉 ・竪型溶融還元炉 内径  炉下部:1.2m 炉上部:1.8m 炉高さ    :4m 羽口 2段 上段羽口:3本 下段羽口:3本 ・流動層予備還元炉 内径:0.7m 炉高さ:4.5m 2、操業条件 i)溶融還元部 ・送風量(0,濃度40%)  :  990 Nm2
/hO発生ガス流1 : 2200 Nm+″/hO発
生ガス温度: 1oos’c ・炭材(石炭) ? 905 kg/hii)流動層予
備還元部 ・還元ガス流量: 2200 Nm’/h・還元ガス流
速:3m/s 曇還元ガス組成:CO:30% H露=21% N! ? 38% その他=11% ・還元ガス温度:970°C ・圧    力  :  0.9kg/cm”G・循環
用ガス N寞流量: 45 Nm”/hI)鉄鉱石粉(
平均粒径:30μmおよび140#Il)供給量: 5
80 kg/h tv)石灰石粉(平均粒径:35p鵬および200p■
)供給量: 100 kg/h ■)珪石粉 (平均粒径:35μ論および200μ−)
供給量: 43 kg/h 上記の条件下で溶融還元処理を行い、操業中予備還元炉
内の全滞留量が2100kg (予備還元炉の全差圧P
I −Piが0.55kg/cs+”G)になり圧力上
昇と圧力変動で操業不調になったので、抜き出し管から
鉱石を抜き出してサイクロンの入側に導入したところ予
備還元炉の全差圧は0.29kg/cm”Gになり操業
は正常化し、鉱石処理量は400〜600 kg/hで
還元率は50〜70%であった。
1. Furnace used: Vertical smelting reduction furnace inner diameter Furnace lower part: 1.2 m Furnace upper part: 1.8 m Furnace height: 4 m Tuyere 2 stages Upper tuyeres: 3 lower tuyeres: 3 Fluidized bed pre-reduction furnace Inner diameter: 0.7 m Furnace height: 4.5 m 2. Operating conditions i) Melting reduction section/blow volume (0, concentration 40%): 990 Nm2
/hO generated gas flow 1: 2200 Nm+''/hO generated gas temperature: 1 oos'c - Carbon material (coal)? 905 kg/hii) Fluidized bed preliminary reduction section - Reducing gas flow rate: 2200 Nm'/h - Reducing gas flow rate : 3 m/s Cloudy reducing gas composition: CO: 30% H dew = 21% N!? 38% Others = 11% ・Reducing gas temperature: 970°C ・Pressure: 0.9 kg/cm"G ・Circulating gas Flow rate: 45 Nm”/hI) Iron ore powder (
Average particle size: 30μm and 140#Il) Supply amount: 5
80 kg/h tv) limestone powder (average particle size: 35p and 200p)
) Supply amount: 100 kg/h ■) Silica powder (Average particle size: 35μ and 200μ)
Supply amount: 43 kg/h Melting reduction treatment was performed under the above conditions, and the total retention amount in the pre-reduction furnace during operation was 2100 kg (total differential pressure P of the pre-reduction furnace).
I - Pi became 0.55 kg/cs + "G) and the operation became unstable due to the pressure increase and pressure fluctuation, so the ore was extracted from the extraction pipe and introduced into the inlet side of the cyclone, and the total differential pressure in the preliminary reduction furnace was 0.29 kg/cm''G and the operation normalized, the ore throughput was 400 to 600 kg/h and the reduction rate was 50 to 70%.

また比較として、同様の条件下で途中鉱石の抜き出しを
行わずに溶融還元処理を継続したところ、溶融還元炉へ
送風するブロワ−の圧力が許容範囲をこえ、操業の続行
が不可能になった。
For comparison, when the smelting reduction process was continued under similar conditions without extracting the ore midway, the pressure of the blower blowing air into the smelting reduction furnace exceeded the allowable range, making it impossible to continue the operation. .

(発明の効果) この発明によれば、粒径の異なる鉱石の予備還元を同時
に又は同一の炉で行うことができ、原料に左右されない
柔軟性のある操業を実現できる。
(Effects of the Invention) According to the present invention, ores having different particle sizes can be pre-reduced simultaneously or in the same furnace, and flexible operation that is not influenced by raw materials can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施に使用する循環型流動予備還元
炉の模式図、 第2図は滞留量検出器の取付けを示す模式図である。 1・・・予備還元炉    2・・・導入口3・・・流
動化還元ガス  4・・・流動層5・・・原料供給口 
   6・・・排出ロア・・・粉状鉱石     8・
・・サイクロン9・・・循環経路     10・・・
循環用供給口11・・・輸送経路     12・・・
抜き出し管13・・・滞留量検出器 第1図
FIG. 1 is a schematic diagram of a circulating type fluidized pre-reduction furnace used to carry out the present invention, and FIG. 2 is a schematic diagram showing the installation of a retention amount detector. 1... Pre-reduction furnace 2... Inlet 3... Fluidized reducing gas 4... Fluidized bed 5... Raw material supply port
6...Discharge lower...Powdered ore 8.
...Cyclone 9...Circulation route 10...
Circulation supply port 11...transport route 12...
Extraction pipe 13...Retention amount detector Fig. 1

Claims (1)

【特許請求の範囲】 1、高温の流動化還元ガスを流動層予備還元炉に、粉状
鉱石又は予備還元鉱石粉の飛び出し速度よりも速い速度
で導入して流動層を形成する一方、この流動層の上部か
ら飛び出した予備還元鉱石粉はサイクロンで捕集し、捕
集した鉱石粉は循環用経路にて該還元炉にもどすことに
より予備還元鉱石粉を循環流動させつつ予備還元するに
当り、 流動層予備還元炉内の滞留鉱石量が増加した場合は炉の
側壁から粉状鉱石を抜き出してサイクロンの入側に導入
することを特徴とする循環型流動層予備還元炉の操業方
法。
[Claims] 1. High-temperature fluidized reducing gas is introduced into the fluidized bed pre-reduction furnace at a speed higher than the ejecting speed of powdered ore or pre-reduced ore powder to form a fluidized bed. The pre-reduced ore powder that has flown out from the top of the layer is collected by a cyclone, and the collected ore powder is returned to the reduction furnace through the circulation path, thereby circulating and fluidizing the pre-reduced ore powder while pre-reducing it. A method for operating a circulating fluidized bed pre-reduction furnace, characterized in that when the amount of accumulated ore in the fluidized bed pre-reduction furnace increases, powdered ore is extracted from the side wall of the furnace and introduced into the inlet side of a cyclone.
JP63247499A 1988-10-03 1988-10-03 Operation of circulation type fluidized bed preliminary reducing furnace Pending JPH0297888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247499A JPH0297888A (en) 1988-10-03 1988-10-03 Operation of circulation type fluidized bed preliminary reducing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247499A JPH0297888A (en) 1988-10-03 1988-10-03 Operation of circulation type fluidized bed preliminary reducing furnace

Publications (1)

Publication Number Publication Date
JPH0297888A true JPH0297888A (en) 1990-04-10

Family

ID=17164376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247499A Pending JPH0297888A (en) 1988-10-03 1988-10-03 Operation of circulation type fluidized bed preliminary reducing furnace

Country Status (1)

Country Link
JP (1) JPH0297888A (en)

Similar Documents

Publication Publication Date Title
US4886246A (en) Metal-making apparatus involving the smelting reduction of metallic oxides
RU2158769C2 (en) Three-stage gear for reduction of fine-grain iron ore in fluidized layer
JPH0297888A (en) Operation of circulation type fluidized bed preliminary reducing furnace
US6235079B1 (en) Two step twin-single fluidized bed pre-reduction apparatus for pre-reducing fine iron ore, and method therefor
JPH0735525B2 (en) Smelting reduction method of powdery ore and smelting reduction apparatus
JP2765737B2 (en) Operating method of fluidized bed prereduction furnace and fluidized bed prereduction furnace
JPH03215621A (en) Circulating fluidized bed prereduction for powdery iron ore
JPH0264390A (en) Operation of circulation type fluidized bed pre-reduction furnace
US4378241A (en) Method for achieving low sulfur levels in the DRI product from iron oxide reducing kilns
JPH11310814A (en) Smelting reduction furnace
JP2765734B2 (en) Operation method of iron bath reactor
JP2981015B2 (en) Operating method of circulating fluidized bed reactor
JP2895520B2 (en) Method and apparatus for supplying carbon material to smelting reduction furnace
JPH0723500B2 (en) Smelting reduction method of powdery ore
WO2000037687A1 (en) Complex fluidized bed type fine iron ore reducing apparatus, and method therefor
KR940007490B1 (en) Equipment of pre-reduction
JPH059530A (en) Method for operating circulating fluidized bed pre-reduction furnace for powdery ore
JPH062893B2 (en) Method for producing molten metal from powdered ore
JPH0730378B2 (en) Circulating fluidized-ore reduction furnace operation method and reduction furnace
JPH06192715A (en) Circuiting type fluidized bed pre-reduction furnace for powdery ore
JPH05311253A (en) Method and device for regulating raw material for smelting/reducing blow-in from steel-making dust
JPH042643B2 (en)
JPH03138309A (en) Apparatus for reducing ore
JPH01195221A (en) Method for prereducing ore
JPH01247515A (en) Method for pre-reducing fine ore and out-of-furnace circulating type fluidized bed reduction furnace