JPH042643B2 - - Google Patents

Info

Publication number
JPH042643B2
JPH042643B2 JP62200910A JP20091087A JPH042643B2 JP H042643 B2 JPH042643 B2 JP H042643B2 JP 62200910 A JP62200910 A JP 62200910A JP 20091087 A JP20091087 A JP 20091087A JP H042643 B2 JPH042643 B2 JP H042643B2
Authority
JP
Japan
Prior art keywords
dust
ore
furnace
carbonaceous
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62200910A
Other languages
Japanese (ja)
Other versions
JPS6447820A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62200910A priority Critical patent/JPS6447820A/en
Publication of JPS6447820A publication Critical patent/JPS6447820A/en
Publication of JPH042643B2 publication Critical patent/JPH042643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は粉状鉱石を溶融還元して溶融金属を製
造する方法に関する。 〔従来の技術〕 上下2段の羽口を有する竪型炉で炉内に炭素質
固体還元材(以下、炭材と称す)を炉頂から装入
すると共に、上記の羽口から含酸素気体を吹込
み、炉の上部に炭材の流動層(以下、炭材流動層
と称す)を形成させ、この炭材流動層の下側に炭
材の充填層(以下、炭材充填層と称す)を形成さ
せ、上段羽口から粉状鉱石を炉内に供給して溶融
金属を製造するプロセスが知られている。 このプロセスでは、炉内に供給された粉状鉱石
は、羽口前の非常に温度の高い領域で一気に溶融
する。溶融した粉状鉱石は炭材充填層領域に沈降
する。一方、羽口前の高温領域で溶融しきれなか
つた鉱石は炭材流動層領域で炭材とともに流動化
しながら昇温と還元が進行する。流動化した鉱石
は還元の進行に伴い密度が大きくなり、これと同
時に還元された鉱石は交互に固着、融着を繰返
し、次第に粒径が増大するため炭材充填層領域に
沈降する。この炭材充填層領域を降下する間に鉱
石は最終的な還元を完了する。この最終還元過程
で出湯温度まで加熱昇温され、一方Si、Mn等の
メタロイド成分を吸収し、さらにはメタルとスラ
グへの分離が行われ、炉下部に溶融金属とスラグ
に分れて溜まることになる。 このように炭材充填層の温度は製造される溶融
金属の温度と成分を決定する上で極めて重要な役
割を果しており、この方法で安定した操業を維持
し、高品質の溶融金属を製造する場合には、炭材
充填層の温度を適切に制御することが極めて重要
である。 炭材流動層と炭材充填層を形成させて粉状鉱石
から溶融金属を製造する方法は特開昭62−56537
号により開示されている。この方法では長時間の
連続操業に際し、炭材充填層の温度を積極的に制
御することができないため、充填層温度の変動が
そのまま溶融金属の成分と温度の変動として表わ
れる問題点があつた。 さらにこの方法では、排ガスと共に炭材やスラ
グ成分調整用のフラツクスを多量に含むダストが
排出され、これを積極的に回収し再利用していな
いため炭材を十分に有効利用できないという欠陥
と、フラツクスの一部がダスト化するためにスラ
グ成分が変動し安定した排滓が維持しにくい欠陥
があつた。 〔発明が解決しようとする問題点〕 本発明は上下2段の羽口を有する堅型溶融還元
炉を用い、その下部に炭材充填層を形成するとと
もにこの炭材充填層の上方に炭材流動層を形成
し、上段羽口から粉状鉱石を炉内に供給して溶融
金属を製造する方法の改善に係るものであつて、
特に長時間の連続操業に際して、 炭材充填層の温度変動に起因する溶融金属の
成分と温度の変動を防止する方法を提供する 溶融還元炉排ガス中のダストとして失われる
炭材を有効に再利用する方法を提供する ダスト成分として失われるフラツクスを再利
用することによつてスラグ成分を安定化し、安
定した排滓を維持する方法を提供する ことを目的とするものである。 〔問題点を解決するための手段〕 本発明は上記のような堅型溶融還元炉を用いて
溶融金属を製造する方法において、溶融還元炉排
ガスに含まれるダストのうち (a) 鉱石とフラツクスとを主に含むダストを上段
羽口から炉内に吹込む。 (b) 炭素質分を主に含むダストは下段羽口から炉
内に吹込む。 上記の方法において、溶融還元炉排ガスが含ま
れるダストを粒径0.1〜0.5mmの範囲内の一定値よ
り小さい留分と大きい留分に分級することによ
り、鉱石とフラツクスを主に含むダストと、炭素
質分を主に含むダストに分けることができる。 この溶融還元炉排ガス中のダストを鉱石とフラ
ツクスを主に含むダストと炭素質分を含むダスト
に分ける過程は、ダスト捕集の後に行うと簡単に
精度よく分離を行うことができる。またこの溶融
還元炉排ガス中のダストを鉱石とフラツクスを主
に含むダストと炭素質分を含むダストに分ける過
程をダスト捕集の際に行うと気流分離を用いるこ
とができ、また分離物を直ちに高温のまま羽口に
戻して循環することができ好都合である。 〔作用〕 炭材充填層と炭材流動層を炉内に形成する堅型
炉では、炉内のガス流速によつて規定される流動
化臨界粒子径が存在し、この粒子径より小さな炭
材は流動化し、この臨界粒子径よりも大きな炭材
は沈降して充填層を形成する。 このため装入炭材の粒子径分布が変化したり、
上下段羽口からの含酸素気体の吹込み比率が変動
したりすると、流動化する炭材量と炭材充填層を
形成する炭材量の比が変化し、炭材流動層での伝
熱状態が変化する。この変化によつて、炭材充填
層の温度を安定に維持することができず、生成す
る溶融金属の成分と温度が変動する。 すなわち、装入炭材の平均粒子径が小さくなり
炭材充填層を形成すべき粒径の大きな炭材の比率
が減少し、炭材充填層の温度が低下して生成する
溶融金属の温度が低下し、成分を確保できない場
合には、下段羽口から吹込まれる含酸素気体によ
つて消費される粒子径の大きな炭材の消費速度を
下げ、粒径の大きな炭材の炉内滞留時間を延ばし
て炭材充填層の温度を上げる必要がある。 逆に装入炭材の平均粒子径が大きくなり、炭材
充填層を形成する粒径の大きな炭材の比率が増大
し、炭材充填層の温度が上昇して生成する溶融金
属の温度が高くなり過ぎ、成分も確保できない場
合によつて下段羽口から吹込まれる含酸素気体に
よつて消費される炭材の消費速度を上げ、粒径の
大きな炭材の炉内滞留時間を短くして炭材充填層
の温度を下げる必要がある。 一方、本発明者らは上記の装入炭材の粒径変化
に起因する生成溶融金属の温度と成分の変動防止
手段を種々検討した。この検討のなかで装入炭材
の粒径変化と溶融還元炉排ガスとともに炉外に排
出されるダストの量と成分の変化との間には密接
な関係があることを見出した。 すなわち、ダスト中の鉱石やフラツクスに由来
する成分は0.5mm以下の微粒ダスト中に集中して
おり、その量は羽口から吹込む含酸素気体の温度
と酸素含有率に強く依存し、装入炭材の粒子径に
依らないこと、さらにダスト中の炭材は0.1mm以
上の粒子径のダスト中に圧倒的に多く存在し、そ
の量は装入炭材の粒径変化に強く依存し、羽口か
ら吹込む含酸素気体の温度と酸素含有率には余り
影響されないことを発見した。 特にダスト中の炭材量は装入炭材の粒径が小さ
くなると多くなり、逆に小さくなると少なくなる
ことを見出した。第2図にダストの粒径と炭材含
有率および鉱石とフラツクスに由来する成分の含
有率の関係を示す。 本発明者らはこのダスト発生量と成分および装
入炭材の粒径との関係から、ダストを0.5〜0.1mm
の間の一定の粒径で、望ましくは0.3mmで分級し、
炭材を多く含む0.3mm以上のダストを下段羽口か
ら吹込み、鉱石とフラツクスを多く含む0.3mm未
満のダストを上段羽口から吹込めば、従来技術の
問題を全て解決できることを着想した。 上記粒径でダストを分級し、細粒側のダストを
上段羽口から吹込むのは本来、鉱石やフラツクス
は上段羽口から吹込み炭材充填層で溶融させるべ
きものであり、これを下段羽口から吹込むと炉下
部充填層の温度を低下させる効果を持つので、炭
材充填層の温度を上げなければならない場合には
逆に作用するためである。 すなわち、本発明を実施すれば装入炭材の粒径
低下により炭材充填層の温度が低下しても、この
ときは圧倒的に炭材を多く含む0.3mm以上のダス
トの量が増大しており、これを下段羽口から吹込
むため下段羽口から吹込まれる含酸素気体により
消費される粒径の大きな炭材の消費速度が低下
し、粒径の大きな炭材の炉内滞留時間が延びる。 従つて炭材充填層の温度を上げることが可能と
なつて生成する溶融金属の温度と成分を安定に維
持することができる。逆に装入炭材の粒子径が小
さくなつた場合は、全く逆の作用によつて生成す
る溶融金属の温度と成分を安定に維持することが
できる。 さらに、この方法では炉に供給した炭材は全て
炉内に消費されたダストによる損失がなくなり、
炭材消費量を低減することができる。 また、フラツクス成分も全て炉内で有効に利用
できるようになるためスラグ成分の変動もほとん
どなくなり安定した排滓の維持ができる。 〔実施例〕 第1図に示す内径1.2m、高さ約5m、溶銑製
造能力約10t/6日、(フエロクロムの場合は製造
能力は約5t/日)の堅型溶融還元炉1を用いて粉
状鉱石を溶融還元した。 竪型溶融還元炉1には上方に設けた炭材供給口
16から炭材を供給し、一方、含酸素気体供給用
配管9から分配装置8を経て上段羽口6、下段羽
口7から高温含酸素気体を吹込み、炉内に炭材流
動層2および炭材充填層3を形成する。 炉底にはスラグ層4、溶融金属層5が形成さ
れ、これらは適時出湯出滓口17から排出され
る。 鉱石供給管14を通して上段羽口6から含酸素
気体とともに粉状鉱石を炉内に供給し、炭材とし
て石炭を炭材供給口16から炉内に連続供給し
た。粉状鉱石としては第1表に示す豪州産の鉄鉱
石と南アフリカ産のクロム鉱石を使用して、それ
ぞれ銑鉄とフエロクロムを製造した。 溶融還元炉排ガス中のダストの排ガスダクト1
5の途中に設けた高温用集塵装置10で捕集し、
これをダスト分級器11で0.3mmで分級したのち、
0.3mm未満のダストは上段羽口へのダスト輸送管
12へ供給し、0.3mm以上のダストは下段羽口へ
の輸送管13へ供給し、それぞれ上段羽口6と下
段羽口7から炉内へ吹込み、連続2週間の操業を
行い、本発明の効果を確認した。 第2表に実施例1、2および比較例1、2の操
業状況を示した。比較例1、2は鉄鉱石とクロム
鉱石を用いて銑鉄とフエロクロムをそれぞれ製造
する際にダストを全く羽口に供給しない従来例を
示し、実施例1、2は本発明を用いて銑鉄とフエ
ロクロムをそれぞれ製造した場合を示したもので
ある。 比較例1、2では実績出湯温度は目標値に一致
せず、Si濃度、スラグ塩基度の変動幅も著しく大
であつた。実施例1、2では出湯温度は目標値に
合致するとともに変動幅も小さくなり、さらにSi
濃度、スラグ塩基度も目標値を挟む狭い範囲のば
らつきとなつた。さらに本発明により炭材消費量
も削減された。 なお、上記実施例ではダストを回収後分級して
上下段羽口に吹き込んだが、サイクロンなどで粗
粒のダストを回収し、次いでセラミツクフイルタ
ーやバグフイルターなどの細粒集塵に適した設備
により細粒ダストを回収し、各々を下段と上段の
羽口に吹込んでも上記実施例と同等の効果の得ら
れることは明らかである。
[Industrial Application Field] The present invention relates to a method for producing molten metal by melting and reducing powdered ore. [Prior art] A vertical furnace having two stages of upper and lower tuyere. Carbonaceous solid reducing material (hereinafter referred to as carbon material) is charged into the furnace from the top of the furnace, and oxygen-containing gas is introduced from the tuyere. is blown into the furnace to form a fluidized bed of carbonaceous material (hereinafter referred to as the carbonaceous material fluidized bed), and a packed bed of carbonaceous material (hereinafter referred to as the carbonaceous material packed bed) below this fluidized bed of carbonaceous material. ) and supplying powdered ore into the furnace from the upper tuyere to produce molten metal is known. In this process, the powdered ore fed into the furnace is melted all at once in a very hot area in front of the tuyere. The molten powder ore settles in the carbonaceous packed bed region. On the other hand, the ore that has not been completely melted in the high temperature region in front of the tuyeres is fluidized together with the carbonaceous material in the carbonaceous fluidized bed region, where the temperature rise and reduction proceed. The density of the fluidized ore increases as the reduction progresses, and at the same time, the reduced ore repeats alternate fixation and fusion, and as the particle size gradually increases, it settles in the carbonaceous packed bed region. The ore completes its final reduction while descending through this carbonaceous packed bed region. In this final reduction process, the temperature is raised to the tapping temperature, while metalloid components such as Si and Mn are absorbed, and further separated into metal and slag, which are separated into molten metal and slag and accumulate in the lower part of the furnace. become. In this way, the temperature of the carbonaceous packed bed plays an extremely important role in determining the temperature and composition of the molten metal produced, and in this way stable operation can be maintained and high quality molten metal produced. In some cases, it is extremely important to properly control the temperature of the carbonaceous packed bed. A method for producing molten metal from powdered ore by forming a carbonaceous fluidized bed and a carbonaceous packed bed is disclosed in JP-A-62-56537.
Disclosed by No. With this method, the temperature of the packed bed of carbonaceous material cannot be actively controlled during long-term continuous operation, so there is a problem that fluctuations in the temperature of the packed bed directly appear as fluctuations in the composition and temperature of the molten metal. . Furthermore, with this method, dust containing a large amount of carbonaceous material and flux for adjusting slag components is emitted along with the exhaust gas, and since this is not actively collected and reused, the carbonaceous material cannot be used effectively. As part of the flux turned into dust, the slag composition fluctuated, making it difficult to maintain stable slag discharge. [Problems to be Solved by the Invention] The present invention uses a vertical melting reduction furnace having two stages of upper and lower tuyeres, and forms a carbonaceous material packed bed in the lower part of the furnace, and also forms a carbonaceous material packed bed above the carbonaceous material packed bed. This invention relates to an improvement in a method for producing molten metal by forming a fluidized bed and supplying powdered ore into a furnace from an upper tuyere,
Provides a method to prevent fluctuations in the composition and temperature of molten metal caused by temperature fluctuations in the packed bed of carbonaceous material, especially during long-term continuous operation.Effectively recycles carbonaceous material that would otherwise be lost as dust in the exhaust gas of a smelting reduction furnace. It is an object of the present invention to provide a method for stabilizing slag components and maintaining stable slag drainage by reusing flux lost as dust components. [Means for Solving the Problems] The present invention provides a method for producing molten metal using a vertical smelting reduction furnace as described above, in which (a) ore and flux are The dust mainly containing (b) Dust containing mainly carbonaceous matter is blown into the furnace from the lower tuyere. In the above method, by classifying the dust containing the smelting reduction furnace exhaust gas into a fraction smaller than a certain value within the particle size range of 0.1 to 0.5 mm and a fraction larger than a certain value, the dust containing mainly ore and flux, It can be divided into dust that mainly contains carbonaceous matter. The process of separating the dust in the smelting reduction furnace exhaust gas into dust mainly containing ore and flux and dust containing carbonaceous components can be easily and accurately separated if carried out after dust collection. In addition, if the process of separating the dust in the smelting reduction furnace exhaust gas into dust containing mainly ore and flux and dust containing carbonaceous components is carried out during dust collection, air separation can be used, and the separated material can be immediately collected. This is advantageous because it can be returned to the tuyere and circulated at a high temperature. [Operation] In a vertical furnace in which a carbonaceous material packed bed and a carbonaceous material fluidized bed are formed in the furnace, there is a fluidization critical particle size determined by the gas flow rate in the furnace, and carbonaceous material smaller than this particle size exists. is fluidized, and carbonaceous material larger than this critical particle size settles to form a packed bed. As a result, the particle size distribution of the charged carbon material changes,
If the ratio of oxygen-containing gas injected from the upper and lower tuyeres changes, the ratio of the amount of fluidized carbonaceous material to the amount of carbonaceous material forming a packed bed of carbonaceous material changes, and heat transfer in the fluidized bed of carbonaceous material changes. Condition changes. Due to this change, the temperature of the carbonaceous material packed bed cannot be stably maintained, and the composition and temperature of the molten metal produced fluctuate. In other words, as the average particle size of the charged carbonaceous material becomes smaller, the ratio of carbonaceous materials with large particle sizes that should form the carbonaceous material packed bed decreases, and the temperature of the carbonaceous material packed bed decreases and the temperature of the molten metal produced increases. If the components cannot be secured, the consumption rate of the carbonaceous material with large particle size consumed by the oxygen-containing gas blown from the lower tuyere is reduced, and the residence time of the carbonaceous material with large particle size in the furnace is reduced. It is necessary to increase the temperature of the carbonaceous packed bed by increasing the length of time. Conversely, the average particle size of the charged carbonaceous material increases, the ratio of carbonaceous materials with large particle sizes forming the carbonaceous material packed bed increases, the temperature of the carbonaceous material packed bed increases, and the temperature of the molten metal produced increases. When the temperature is too high and the components cannot be secured, the rate of consumption of carbonaceous material consumed by the oxygen-containing gas blown from the lower tuyere can be increased, and the residence time of carbonaceous materials with large particle sizes in the furnace can be shortened. It is necessary to lower the temperature of the carbonaceous packed bed. On the other hand, the present inventors have studied various means for preventing fluctuations in the temperature and composition of the molten metal produced due to the change in particle size of the charged carbonaceous material. During this study, it was discovered that there is a close relationship between changes in the particle size of the charged carbonaceous material and changes in the amount and composition of dust discharged outside the furnace together with the smelting reduction furnace exhaust gas. In other words, components derived from ores and fluxes in the dust are concentrated in fine particles of 0.5 mm or less, and the amount strongly depends on the temperature and oxygen content of the oxygen-containing gas blown in from the tuyere. It does not depend on the particle size of the carbonaceous material, and furthermore, the carbonaceous material in dust is overwhelmingly present in dust with a particle size of 0.1 mm or more, and the amount strongly depends on the change in the particle size of the charged carbonaceous material. It was discovered that the temperature and oxygen content of the oxygen-containing gas blown in from the tuyere are not affected much. In particular, we found that the amount of carbon material in dust increases as the particle size of the charged carbon material becomes smaller, and conversely decreases as the particle size of the charged carbon material becomes smaller. Figure 2 shows the relationship between the particle size of dust and the content of carbonaceous material and the content of components derived from ore and flux. The present inventors determined that the dust should be 0.5 to 0.1 mm based on the relationship between the amount of dust generated, its components, and the particle size of the charged carbon material.
Classified with a constant particle size between, preferably 0.3mm,
We came up with the idea that all of the problems with conventional technology could be solved by injecting dust of 0.3 mm or more, which contains a lot of carbonaceous material, from the lower tuyere, and by blowing dust of less than 0.3 mm, which contains a lot of ore and flux, from the upper tuyere. Originally, the dust was classified according to the above particle size, and the fine-grained dust was blown into the upper tuyere.Ore and flux should be blown into the upper tuyere and melted in the packed bed of carbonaceous material. This is because blowing from the tuyere has the effect of lowering the temperature of the packed bed in the lower part of the furnace, so if it is necessary to raise the temperature of the packed bed of carbonaceous material, it will have the opposite effect. In other words, if the present invention is implemented, even if the temperature of the carbonaceous packed bed decreases due to a decrease in the particle size of the charged carbonaceous material, the amount of dust of 0.3 mm or more that contains a large amount of carbonaceous material will increase overwhelmingly. Since this gas is injected from the lower tuyere, the consumption rate of large particle size carbonaceous materials consumed by the oxygen-containing gas blown from the lower tuyeres decreases, and the residence time of large particle size carbonaceous materials in the furnace is reduced. extends. Therefore, it becomes possible to raise the temperature of the carbonaceous material packed bed, and the temperature and composition of the produced molten metal can be maintained stably. On the other hand, when the particle size of the charged carbonaceous material becomes smaller, the temperature and composition of the molten metal produced can be stably maintained by the completely opposite effect. Furthermore, with this method, all the carbonaceous material supplied to the furnace is not lost due to dust consumed in the furnace.
Carbon material consumption can be reduced. In addition, since all the flux components can be effectively utilized within the furnace, there is almost no fluctuation in the slag components, and stable slag can be maintained. [Example] A vertical smelting reduction furnace 1 shown in Fig. 1 with an inner diameter of 1.2 m, a height of about 5 m, a hot metal production capacity of about 10 tons/6 days (in the case of ferrochrome, the production capacity is about 5 tons/day) was used. Powdered ore was melted and reduced. Carbonaceous material is supplied to the vertical smelting reduction furnace 1 from a carbonaceous material supply port 16 provided above, while high-temperature gas is supplied from an oxygen-containing gas supply pipe 9 through a distribution device 8 to an upper tuyere 6 and a lower tuyere 7. Oxygen-containing gas is blown into the furnace to form a carbonaceous fluidized bed 2 and a carbonaceous packed bed 3. A slag layer 4 and a molten metal layer 5 are formed at the bottom of the furnace, and these are discharged from the tapping slag port 17 at a timely manner. Powdered ore was supplied into the furnace together with oxygen-containing gas from the upper tuyere 6 through the ore supply pipe 14, and coal as a carbon material was continuously supplied into the furnace from the carbon material supply port 16. As powdered ores, iron ore from Australia and chromium ore from South Africa shown in Table 1 were used to produce pig iron and ferrochrome, respectively. Exhaust gas duct 1 for dust in smelting reduction furnace exhaust gas
Collected by a high-temperature dust collector 10 installed in the middle of 5,
After classifying this by 0.3mm using dust classifier 11,
Dust of less than 0.3 mm is supplied to the dust transport pipe 12 to the upper tuyere, and dust of 0.3 mm or more is supplied to the transport pipe 13 to the lower tuyere, and the dust is transported into the furnace from the upper tuyere 6 and lower tuyere 7, respectively. The effect of the present invention was confirmed by blowing into the tank and operating for two consecutive weeks. Table 2 shows the operating conditions of Examples 1 and 2 and Comparative Examples 1 and 2. Comparative Examples 1 and 2 show conventional examples in which no dust is supplied to the tuyeres when producing pig iron and ferrochrome using iron ore and chromium ore, respectively. This figure shows the cases in which each of these was manufactured. In Comparative Examples 1 and 2, the actual tapping temperature did not match the target value, and the fluctuation range of the Si concentration and slag basicity was also extremely large. In Examples 1 and 2, the tapping temperature matched the target value and the fluctuation range was small, and Si
Concentration and slag basicity also varied within a narrow range surrounding the target values. Furthermore, the amount of carbon material consumed was also reduced by the present invention. In the above example, the dust was collected, classified, and blown into the upper and lower tuyeres, but the coarse dust was collected using a cyclone or the like, and then finely divided using equipment suitable for fine dust collection, such as a ceramic filter or bag filter. It is clear that the same effect as in the above embodiment can be obtained even if the grain dust is collected and blown into the lower and upper tuyeres.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明を実施することにより、装入炭材の変動
などに起因する溶融金属の温度と成分の変動を防
止できるばかりでなく、炭材消費量を削減でき、
またスラグ成分の安定化を達成することができ
る。
By implementing the present invention, it is possible not only to prevent fluctuations in the temperature and composition of molten metal due to changes in the charged carbon material, but also to reduce the amount of carbon material consumed.
Furthermore, stabilization of slag components can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、竪型溶融還元炉の模式的縦断面図、
第2図はダストの粒径と炭材含有率との関係およ
び鉱石とフラツクスに由来する成分の含有率の関
係を示すグラフである。 1……竪型溶融還元炉、2……炭材流動層、3
……炭材充填層、6……上段羽口、7……下段羽
口、10……集塵装置、11……分級器。
FIG. 1 is a schematic vertical cross-sectional view of a vertical smelting reduction furnace;
FIG. 2 is a graph showing the relationship between the particle size of dust and the content of carbonaceous material, and the relationship between the content of components derived from ore and flux. 1... Vertical melting reduction furnace, 2... Carbonaceous fluidized bed, 3
... Charcoal material packed bed, 6 ... Upper tuyere, 7 ... Lower tuyere, 10 ... Dust collector, 11 ... Classifier.

Claims (1)

【特許請求の範囲】 1 上下2段の羽口を有する竪型溶融還元炉を用
い、その下部に炭素質固体還元材の充填層を形成
するとともに該充填層の上方に炭素質固体還元材
の流動層を形成し、上段羽口から粉状鉱石を供給
して溶融金属を製造する方法において、溶融還元
炉排ガスに含まれるダストのうち鉱石とフラツク
スを主に含むダストを上段羽口から炉内に吹込む
とともに炭素質分を主に含むダストを下段羽口か
ら炉内に吹込むことを特徴とする粉状鉱石からの
溶融金属製造方法。 2 溶融還元炉排ガスに含まれるダストを粒径
0.1〜0.5mmの範囲内の一定値より小さい留分と大
きい留分に分級することにより鉱石とフラツクス
を主に含むダストと炭素質分を主に含むダストに
分けることを特徴とする特許請求の範囲第1項に
記載の粉状鉱石からの溶融金属製造方法。 3 溶融還元炉排ガス中のダストを鉱石とフラツ
クスを主に含むダストと炭素質分を含むダストに
分ける過程をダスト捕集の後に行うことを特徴と
する特許請求の範囲第1項又は第2項に記載の粉
状鉱石からの溶融金属製造方法。 4 溶融還元炉排ガス中のダストを鉱石とフラツ
クスを主に含むダストと炭素質分を含むダストに
分ける過程をダスト捕集の際に行うことを特徴と
する特許請求の範囲第1項又は第2項に記載の粉
状鉱石からの溶融金属製造方法。
[Claims] 1. A vertical melting reduction furnace having two upper and lower tuyere stages is used, and a packed bed of carbonaceous solid reducing material is formed in the lower part of the furnace, and a carbonaceous solid reducing material is placed above the packed bed. In a method of manufacturing molten metal by forming a fluidized bed and supplying powdered ore from the upper tuyere, the dust contained in the exhaust gas of the smelting reduction furnace, which mainly contains ore and flux, is fed into the furnace from the upper tuyere. A method for producing molten metal from powdered ore, characterized by blowing dust containing mainly carbonaceous matter into the furnace from the lower tuyere. 2 Particle size of dust contained in smelting reduction furnace exhaust gas
A patent claim characterized in that the dust is divided into dust mainly containing ore and flux and dust mainly containing carbonaceous components by classifying into a fraction smaller than a certain value in the range of 0.1 to 0.5 mm and a fraction larger than a certain value. A method for producing molten metal from powdered ore according to scope 1. 3. Claims 1 or 2, characterized in that the process of separating the dust in the exhaust gas from the smelting reduction furnace into dust mainly containing ore and flux and dust containing carbonaceous matter is carried out after collecting the dust. The method for producing molten metal from powdered ore described in . 4. Claims 1 or 2, characterized in that a process of separating the dust in the exhaust gas from the smelting reduction furnace into dust mainly containing ore and flux and dust containing carbonaceous components is carried out at the time of dust collection. A method for producing molten metal from powdered ore as described in .
JP62200910A 1987-08-13 1987-08-13 Production of molten metal from powdery ore Granted JPS6447820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62200910A JPS6447820A (en) 1987-08-13 1987-08-13 Production of molten metal from powdery ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62200910A JPS6447820A (en) 1987-08-13 1987-08-13 Production of molten metal from powdery ore

Publications (2)

Publication Number Publication Date
JPS6447820A JPS6447820A (en) 1989-02-22
JPH042643B2 true JPH042643B2 (en) 1992-01-20

Family

ID=16432300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62200910A Granted JPS6447820A (en) 1987-08-13 1987-08-13 Production of molten metal from powdery ore

Country Status (1)

Country Link
JP (1) JPS6447820A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406480B8 (en) * 1995-07-19 2000-07-25 Voest Alpine Ind Anlagen METHOD FOR THE PRODUCTION OF LIQUID PIPE IRON OR STEEL PRE-PRODUCTS AND SYSTEM FOR IMPLEMENTING THE METHOD
AT407052B (en) * 1998-08-13 2000-12-27 Voest Alpine Ind Anlagen METHOD FOR PRODUCING LIQUID PIG IRON

Also Published As

Publication number Publication date
JPS6447820A (en) 1989-02-22

Similar Documents

Publication Publication Date Title
RU1813099C (en) Method of producing liquid cast iron and installation for performing the method
JPH0348245B2 (en)
JPH042643B2 (en)
KR950005786B1 (en) Method for producing molten metal from powder state ore
NO822404L (en) PROCEDURE FOR MANUFACTURING METAL FROM THE FINE CORN METAL OXYME MATERIAL
US2846302A (en) Smelting finely divided iron ore processes
JPH066729B2 (en) Method for producing molten metal from powdered ore
US2846301A (en) Processes of smelting finely divided metallic ore
US4378243A (en) System for coal blowing in iron oxide reducing kilns
US2784078A (en) Process of smelting finely divided metallic ore
US4378241A (en) Method for achieving low sulfur levels in the DRI product from iron oxide reducing kilns
JPH11229007A (en) Operation of vertical shaft cupola, blast furnace and fusion furnace
JPS62227018A (en) Production of molten metal from powdery ore
JPH046765B2 (en)
US2876093A (en) Processes of smelting finely divided iron ore
US4174372A (en) Process for treatment of antimony-containing materials
JPH0637657B2 (en) Circulating fluidized bed pre-reduction method for powdered iron ore
JPH0715129B2 (en) Method for producing molten metal from powdered ore
JPH0774368B2 (en) Iron ore fluidized bed reduction device
JPH02175809A (en) Smelting reduction iron-making method
JPS62230907A (en) Production of molten metal from powdery ore
JPH0723500B2 (en) Smelting reduction method of powdery ore
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
JPH01118090A (en) Circulating fluidized-bed pre-reducing device
JPS61159519A (en) Converter operating method

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees