JPH0715129B2 - Method for producing molten metal from powdered ore - Google Patents

Method for producing molten metal from powdered ore

Info

Publication number
JPH0715129B2
JPH0715129B2 JP61070458A JP7045886A JPH0715129B2 JP H0715129 B2 JPH0715129 B2 JP H0715129B2 JP 61070458 A JP61070458 A JP 61070458A JP 7045886 A JP7045886 A JP 7045886A JP H0715129 B2 JPH0715129 B2 JP H0715129B2
Authority
JP
Japan
Prior art keywords
reducing agent
carbon
furnace
based solid
solid reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61070458A
Other languages
Japanese (ja)
Other versions
JPS62227017A (en
Inventor
英司 片山
尚夫 浜田
至康 高田
勝利 井川
忍 竹内
和彦 佐藤
崇 牛島
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP61070458A priority Critical patent/JPH0715129B2/en
Publication of JPS62227017A publication Critical patent/JPS62227017A/en
Publication of JPH0715129B2 publication Critical patent/JPH0715129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属酸化物を含有する粉状鉱石からの溶融金
属製造方法に関し、さらに詳しくは、上段に流動層を形
成し、下段に炭素系固体還元剤の充填層を形成した竪型
溶融還元炉の充填層に吹込む気体がつくるレースウエイ
空間の深さ(ジェット深さと呼ぶ)の制御による操業方
法に関する。
TECHNICAL FIELD The present invention relates to a method for producing molten metal from powdered ore containing a metal oxide, and more specifically, a fluidized bed is formed in the upper stage and carbon is formed in the lower stage. The present invention relates to an operating method by controlling the depth (called jet depth) of a raceway space created by gas blown into a packed bed of a vertical smelting reduction furnace in which a packed bed of a solid reducing agent is formed.

〔従来の技術〕[Conventional technology]

鉄鋼石その他の金属鉱石資源は粉鉱石が多くなり、今後
益々粉鉱石の割合が増加する傾向にある。特に、低品位
粉鉱石の品位を向上させるために浮選、磁選などの選鉱
が行われ、粉鉱の比率が増加することが予想される。粉
鉱石を塊成化した後、これを還元して溶融金属を得る方
法は塊成化のためのコストが必要であるため、塊成化を
省略し粉状鉱石をそのまま流動層を用いて溶融還元する
方法および装置が開発されている。
Iron ore and other metal ore resources are made up of powdered ores, and the ratio of powdered ores tends to increase in the future. Especially, in order to improve the quality of low-grade powdered ore, flotation, magnetic separation, etc. are performed, and it is expected that the ratio of fine ore will increase. The method of agglomerating powdered ore and then reducing it to obtain molten metal requires the cost for agglomeration, so agglomeration is omitted and powdered ore is directly melted using a fluidized bed. Methods and devices for reduction have been developed.

特公昭60-45682には流動層を用いて粉状鉱石を溶融還元
する技術が開示され、10〜30mmの粒度を有するコークス
粒子によって実質的に形成される第2流動床域および吹
込みノズルの取付位置、角度などの記述はあるが、吹き
込まれた気体のジェット深さについては説明されていな
い。
Japanese Patent Publication No. 60-45682 discloses a technique for smelting and reducing powdery ore using a fluidized bed, which includes a second fluidized bed region and a blowing nozzle which are substantially formed by coke particles having a particle size of 10 to 30 mm. Although there is a description of the mounting position, angle, etc., the jet depth of the blown gas is not explained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような竪型還元炉内に炭素系固体還元剤の充填層と
その上方に流動層とを炉上部より炭素系固体還元剤を装
入するとともに、粉状鉱石を酸素とともに炭素系固体還
元剤の流動層に装入し、炉下部の充填層形成部に隣接す
る炉壁に設けられた羽口から酸素を含む気体を炭素系固
体還元剤の充填層に吹き込んで粉状鉱石を溶融還元する
溶融金属製造方法の場合、炭素系固体還元剤の充填層の
上方に流動層を維持するため、炉内上昇ガス流速の分布
はより重要になり、羽口から吹き込まれた気体の炉内分
散(分配)が不適当な場合、部分的に流動化状態が悪化
し、炉の操業が不安定になることが明らかとなった。流
動層が不安定になると流動層内の温度変動が大となり温
度の不均一性が生ずるため、溶融金属やスラグの部分的
な固化を生じ操業不能となったり、ガス流が変動し、生
産の低下、歩留低下、還元率低下などをもたらす。
In such a vertical reduction furnace, a packed bed of carbon-based solid reducing agent and a fluidized bed above it are charged from the top of the furnace with the carbon-based solid reducing agent, and powdered ore together with oxygen is added to the carbon-based solid reducing agent. In a fluidized bed, and the gas containing oxygen is blown into the packed bed of the carbon-based solid reducing agent from the tuyere provided on the furnace wall adjacent to the packed bed forming section in the lower part of the furnace to melt and reduce the powdery ore. In the case of the molten metal production method, since the fluidized bed is maintained above the packed bed of the carbon-based solid reducing agent, the distribution of the rising gas flow rate in the furnace becomes more important, and the distribution of the gas blown from the tuyere in the furnace ( It was found that if the distribution was not appropriate, the fluidization condition would partially deteriorate and the furnace operation would become unstable. When the fluidized bed becomes unstable, temperature fluctuations in the fluidized bed become large and non-uniformity of temperature occurs, resulting in partial solidification of the molten metal and slag, making it impossible to operate or changing the gas flow, Decrease, yield, and reduction rate.

通常の気固系流動層の場合には、流動層の底面に分散板
を設置し、流動層への上昇ガスの分散を平均化している
が、上記溶融金属製造方法の場合、炭材充填層は高温で
あり、溶融金属やスラグが降下するので、このような分
散板を設けることが不可能である。
In the case of a normal gas-solid fluidized bed, a dispersion plate is installed on the bottom surface of the fluidized bed to average the dispersion of rising gas into the fluidized bed. Since the temperature is high and molten metal and slag fall, it is impossible to provide such a dispersion plate.

このような溶融還元炉では流動層を形成するための分散
板の役割りをするのは炭材充填層であり、羽口から炭材
充填層内に吹く込まれた気体によって形成されるジェッ
ト深さによって、ガス分散状態が大きく左右され、この
ジェット深さが流動層溶融還元炉の操業の安定にとって
極めて重要である。
In such a smelting reduction furnace, it is the carbonaceous material packed bed that plays the role of the dispersion plate to form the fluidized bed, and the jet depth formed by the gas blown into the carbonaceous material packed bed from the tuyere As a result, the gas dispersion state is greatly influenced, and the jet depth is extremely important for the stable operation of the fluidized bed smelting reduction furnace.

本発明はこのジェット深さを適切に規制することによ
り、安定した均一な流動層を形成し、粉状鉱石を効率的
に溶融還元する方法を提供する。
The present invention provides a method for forming a stable and uniform fluidized bed by appropriately controlling the jet depth, and efficiently smelting and reducing powdery ore.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、竪型還元炉内に炭素系固体還元剤の充填層と
流動層とを上下に維持し、炉上部より炭素系固体還元剤
を装入するとともに、粉状鉱石を酸素とともに炭素系固
体還元剤の流動層に吹込み、炉下部の充填層形成部に隣
接する炉壁に設けられた羽口から酸素を含む気体を炭素
系固体還元剤の充填層に吹き込んで粉状鉱石を溶融還元
する溶融金属製造方法において、炭素系固体還元剤の充
填層に吹き込まれた気体のジェット深さを下記の式によ
り制御することを特徴とする粉状鉱石からの溶融金属製
造方法である。
The present invention maintains a packed bed and a fluidized bed of a carbon-based solid reducing agent vertically in a vertical reduction furnace, and while charging the carbon-based solid reducing agent from the upper part of the furnace, the powdery ore is mixed with oxygen to form a carbon-based solid reducing agent. Blow into the fluidized bed of solid reducing agent, and blow gas containing oxygen from the tuyere provided on the furnace wall adjacent to the packed bed forming section at the bottom of the furnace to blow into the packed bed of carbon-based solid reducing agent to melt powdered ore. In the method for producing molten metal for reduction, the jet depth of the gas blown into the packed bed of the carbon-based solid reducing agent is controlled by the following formula, which is a method for producing molten metal from powdered ore.

0.1<J/D<0.3 但し、 J:炭素系固体還元剤の充填層に羽口から吹き込まれた気
体のジェット深さ(m) D:羽口取付部の炉内径(m) 〔作用〕 本発明者らは、内径1.2mで炉壁に耐火物を施した装置を
用いて炭素系固体還元剤の充填層に羽口から吹き込んだ
気体が形成するジェット深さがその上方に形成される流
動層に与える影響を検討した。
0.1 <J / D <0.3 where J: Jet depth of gas blown from tuyere into packed bed of carbon-based solid reducing agent (m) D: Furnace inner diameter of tuyere attachment part (m) The inventors used a device with a refractory on the furnace wall with an inner diameter of 1.2 m to form a jet depth formed above it by the gas blown from the tuyere into the packed bed of carbon-based solid reducing agent. The effect on the layers was investigated.

第1図は竪型溶融還元炉1本体の要部を示す模式的縦断
面図である。
FIG. 1 is a schematic vertical sectional view showing a main part of a vertical smelting reduction furnace 1 main body.

還元炉1は上方から炭素系固体還元剤が供給され、炉下
部に充填層2、炉上部に流動層3を形成し、流動層には
粉状鉱石4が酸素含有気体と共に供給され、充填層2に
隣接する炉壁に開口した羽口5から酸素含有気体6が吹
き込まれる。この羽口から吹込みジェットは充填層内2
にジェット深さJのレースウエイを形成し、この酸素含
有気体は充填層の固体還元剤を燃焼し、その高温還元ガ
スは充填層2を通って上昇しながら分散されて流動層の
流動化ガスとなる。このガスにより粉状鉱石は還元され
溶融されて充填層を滴下して溶鉄10、溶融スラグ9とし
て炉底に溜まる。
The reduction furnace 1 is supplied with a carbon-based solid reducing agent from above, forms a packed bed 2 in the lower part of the furnace, and forms a fluidized bed 3 in the upper part of the furnace. The oxygen-containing gas 6 is blown from the tuyere 5 opened in the furnace wall adjacent to the No. 2 furnace. The jet injected from this tuyere is in the packed bed 2
A raceway having a jet depth J is formed on the inside of the bed, and this oxygen-containing gas burns the solid reducing agent in the packed bed, and the high-temperature reducing gas is dispersed while rising through the packed bed 2 and is fluidized gas in the fluidized bed. Becomes The powdered ore is reduced and melted by this gas, and the packed bed is dropped to collect molten iron 10 and molten slag 9 at the bottom of the furnace.

出銑口11は溶融金属を排出する開口である。なお、図中
Dは羽口5の取付部の炉内部を示すものである。
The tap hole 11 is an opening for discharging the molten metal. In addition, D in the figure shows the inside of the furnace at the attachment portion of the tuyere 5.

適当なジェット深さJは、その時の羽口取付部の炉内径
Dに最も関連が深い。従って、実験室での結果とパイロ
ットプラントでの結果とを統一的に解析すれば、例えば
工業的規模の竪型還元炉のように炉内径が3m以上の場合
にも設計と操業に有効である。
The appropriate jet depth J is most closely related to the furnace inner diameter D of the tuyere mounting portion at that time. Therefore, if the results in the laboratory and the results in the pilot plant are analyzed in a unified manner, it is effective for design and operation even when the inner diameter of the furnace is 3 m or more, such as an industrial scale vertical reduction furnace. .

ただ、この場合に注意が必要なのは、本発明の溶融金属
製造方法の場合、炉上部の炭素系固体還元剤の流動層中
へ粉状鉱石を酸素含有気体とともに吹き込むため、粉状
鉱石は流動層中で溶融し流動する炭素系固体還元剤の粒
子表面に溶着するため、粒子の1個当りの重量が重くな
り、また粒子同士の貼着性も増すので、通常の気固系流
動層の場合よりも、流動化ガスに対する条件が厳しくな
ることである。
However, in this case, it should be noted that in the case of the molten metal production method of the present invention, the powdery ore is blown into the fluidized bed of the carbon-based solid reducing agent in the upper part of the furnace together with the oxygen-containing gas, so that the powdered ore is fluidized bed. In the case of a normal gas-solid fluidized bed, since the carbon-based solid reducing agent that melts and flows in the interior is deposited on the particle surface, the weight per particle becomes heavier and the adhesiveness between particles also increases. Rather, the conditions for fluidizing gas will be more severe.

実験に用いた粉状鉄鉱石の銘柄はMBR-PB(ペレットフィ
ードのMBR〔銘柄名〕鉱石;通常粒度は44μm以下が60
〜70%の微粉末)でこれを580kg/Hで炭素固体還元剤を
装入した流動層に装入した。
The powder iron ore used in the experiment is MBR-PB (pellet feed MBR [brand name] ore;
˜70% fine powder) was charged at 580 kg / H into a fluidized bed charged with carbon solid reducing agent.

炭素系固体還元剤としてコークスとチャーの混合物を用
い、その粒径分布は0.5〜20mmで、コークスは比較的粗
粒であり、チャーは比較的細粒であった。羽口からの吹
込み酸素流量は650〜850Nm3/minで、これを4本の羽口
から均等に吹き込んだ。
A mixture of coke and char was used as a carbon-based solid reducing agent, and the particle size distribution was 0.5 to 20 mm, the coke was relatively coarse particles, and the char was relatively fine particles. The flow rate of oxygen blown from the tuyere was 650 to 850 Nm 3 / min, and this was blown evenly from the four tuyere.

ジェットの深さは羽口の内径を25〜45mmに変化させるこ
とによって調節した。同一羽口系で酸素流量を変更する
と炉内熱レベルが変わるので、装入粉状鉱石、コーク
ス、チャー及び酸素の予熱温度などを調整して熱レベル
の変化をなるべく少なくした。
The depth of the jet was adjusted by changing the inner diameter of the tuyere from 25 to 45 mm. Since changing the oxygen flow rate in the same tuyere system changes the heat level in the furnace, the changes in the heat level were adjusted as much as possible by adjusting the preheating temperature of the charged powdered ore, coke, char and oxygen.

第2図に結果を示した。第2図は横軸に送風量をとり、
縦軸にジェット深さと炉内径との比J/Dをとって羽口径2
5、30、45mmφの場合についてそれぞれ示した。ここに
Jは観察により測定したジェット深さ(m)、Dは炉内
径(m)である。ジェット深さは、同一条件の試験操業
が終了した後に、羽口後方よりレースウエイ内に金棒を
装入し、羽口先端から充填層までの距離として測定し
た。炉頂の覗き窓から見た炉内観察から図中に流動状況
が良好な区間として記入したJ/Dの範囲0.1〜0.3が流動
状況が良好であった。
The results are shown in FIG. In Fig. 2, the horizontal axis is the air flow rate,
Take the ratio J / D between the jet depth and the furnace inner diameter on the vertical axis and set the tuyere diameter 2
The cases of 5, 30, and 45 mmφ are shown. Here, J is the jet depth (m) measured by observation, and D is the furnace inner diameter (m). The jet depth was measured as the distance from the tip of the tuyere to the packed bed by inserting a gold rod into the raceway from behind the tuyere after the test operation under the same conditions was completed. From the observation inside the furnace through the peephole on the top of the furnace, the flow condition was good in the J / D range of 0.1 to 0.3, which was entered as the section where the flow condition was good in the figure.

J/Dが0.3以上では流動層の中心流が強すぎて、流動層の
中央部に吹き抜けを生じ、流動層が不安定となり、J/D
が0.1以下では中心部の流動化状態が悪く、どちらも操
業が不安定となる。J/Dを0.1超乃至0.3未満に制御する
と安定な均一な流動層を得ることができ、さらに最も好
ましい状態はJ/D=0.2〜0.25であった。
When J / D is 0.3 or more, the central flow of the fluidized bed is too strong and blow-through occurs in the central part of the fluidized bed, making the fluidized bed unstable and
When the ratio is less than 0.1, the fluidization of the center is poor, and the operation becomes unstable in both cases. When the J / D was controlled to be more than 0.1 and less than 0.3, a stable and uniform fluidized bed could be obtained, and the most preferable condition was J / D = 0.2 to 0.25.

〔発明の効果〕〔The invention's effect〕

炭素系固体還元剤の充填層とその上部に流動層を形成
し、上記のように粉状鉱石から溶融金属を製造する方法
において、吹込ガスのジェット深さを制御することによ
って流動層の安定性が得られ操業を長期間安定して行う
ことができる。
Stability of the fluidized bed by controlling the jet depth of the blowing gas in the method for producing molten metal from powdered ore by forming a fluidized bed above the packed bed of carbon-based solid reducing agent and above it Is obtained and the operation can be stably performed for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の適用される竪型還元炉の模式断面図、
第2図は実験結果を示すグラフである。 1……竪型還元炉、2……炭素系固体還元剤の充填層、
3……炭素系固体還元剤の流動層、4……粉状鉱石、5
……羽口、6……酸素を含む気体、9……溶融スラブ、
10……溶融銑鉄、11……出銑口、J……ジェット深さ、
D……羽口取付部の炉内径
FIG. 1 is a schematic sectional view of a vertical reduction furnace to which the present invention is applied,
FIG. 2 is a graph showing the experimental results. 1 ... Vertical reduction furnace, 2 ... Packing bed of carbon-based solid reducing agent,
3 ... Fluidized bed of carbon-based solid reducing agent, 4 ... Powdered ore, 5
...... Tuyere, 6 ... Oxygen-containing gas, 9 ... Molten slab,
10 …… Melted pig iron, 11 …… Leading tap, J …… Jet depth,
D …… Inner diameter of the tuyere attachment

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井川 勝利 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 竹内 忍 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 佐藤 和彦 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 牛島 崇 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (56)参考文献 特開 昭59−133307(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Ikawa 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Shinobu Takeuchi 1 Kawasaki-cho, Chiba-shi Kawasaki Steel Co., Ltd. Research headquarters (72) Inventor Kazuhiko Sato 1 Kawasaki-cho, Chiba-shi, Chiba Technical Research Division, Kawasaki Steel Co., Ltd. (72) Inventor Takashi Ushijima 1 Kawasaki-cho, Chiba, Chiba Technical Research Division, Kawasaki Steel ( 56) References JP-A-59-133307 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】竪型還元炉内に炭素系固体還元剤の充填層
とその上方に流動層とを維持し、炉上部より炭素系固体
還元剤を装入するとともに、粉状鉱石を酸素とともに炭
素系固体還元剤の流動層に装入し、炉下部の充填層形成
部に隣接する炉壁に設けられた羽口から酸素を含む気体
を炭素系固体還元剤の充填層に吹き込んで粉状鉱石を溶
融還元する溶融金属製方法において、炭素系固体還元剤
の充填層に吹き込まれた気体のジェット深さを下記の式
の範囲内に制御することを特徴とする粉状鉱石からの溶
融金属製造方法。 0.1<J/D<0.3 但し、 J:炭素系固体還元剤の充填層に羽口から吹き込まれた気
体のジェット深さ(m) D:羽口取付部の炉内径(m)
1. A vertical reduction furnace is provided with a packed bed of carbon-based solid reducing agent and a fluidized bed above it, the carbon-based solid reducing agent is charged from the upper part of the furnace, and powdered ore is mixed with oxygen. It is charged into a fluidized bed of carbon-based solid reducing agent, and a gas containing oxygen is blown into the packed bed of carbon-based solid reducing agent from the tuyere provided on the furnace wall adjacent to the packed bed forming section in the lower part of the furnace to form a powder. In the method for producing a molten metal for smelting or reducing an ore, the molten metal from a powdered ore characterized by controlling the jet depth of a gas blown into a packed bed of a carbon-based solid reducing agent within the range of the following formula Production method. 0.1 <J / D <0.3 where J: Depth of gas blown from tuyere into packed bed of carbon-based solid reducing agent (m) D: Inner diameter of tuyere attachment part (m)
JP61070458A 1986-03-28 1986-03-28 Method for producing molten metal from powdered ore Expired - Fee Related JPH0715129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61070458A JPH0715129B2 (en) 1986-03-28 1986-03-28 Method for producing molten metal from powdered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61070458A JPH0715129B2 (en) 1986-03-28 1986-03-28 Method for producing molten metal from powdered ore

Publications (2)

Publication Number Publication Date
JPS62227017A JPS62227017A (en) 1987-10-06
JPH0715129B2 true JPH0715129B2 (en) 1995-02-22

Family

ID=13432091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61070458A Expired - Fee Related JPH0715129B2 (en) 1986-03-28 1986-03-28 Method for producing molten metal from powdered ore

Country Status (1)

Country Link
JP (1) JPH0715129B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777311B2 (en) * 1992-08-25 1998-07-16 川崎製鉄株式会社 Operation method of two-stage tuyere type smelting reduction furnace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT378970B (en) * 1982-12-21 1985-10-25 Voest Alpine Ag METHOD AND DEVICE FOR THE PRODUCTION OF LIQUID PIPE IRON OR STEEL PRE-PRODUCTS

Also Published As

Publication number Publication date
JPS62227017A (en) 1987-10-06

Similar Documents

Publication Publication Date Title
SU1169995A1 (en) Method of producing pig iron and reducing gas in melting gasifier and device for effecting same
CA1160056A (en) Method of, and arrangement for, producing molten pig iron or steel pre-material
JPS59133307A (en) Manufacture of molten pig iron and blast furnace
CA1301453C (en) Metal-making apparatus involving the smelting reduction of metallic oxides
CA1228234A (en) Process and an arrangement for producing molten pig iron or steel pre-products
US5948139A (en) Process for the production of molten pig iron or steel pre-products and a plant for carrying out the process
JP4811812B2 (en) Method for reducing non-ferrous metal components of slag produced during production of non-ferrous metals in a floating blast furnace
KR100240810B1 (en) A process for the production of molten pig iron or steel pre-products and a plant for carrying out the process
JPS648044B2 (en)
AU615535B2 (en) Method for the production of metals, particularly ferroalloys, by direct reduction and a column for treating particulate materials with gas
JPH0715129B2 (en) Method for producing molten metal from powdered ore
US6454833B1 (en) Process for producing liquid pig iron or semifinished steel products from iron-containing materials
JPH0429732B2 (en)
US2846302A (en) Smelting finely divided iron ore processes
CA2258748A1 (en) Melting gasifier for producing molten metals
KR940008449B1 (en) Making method &amp; device of ingot iron
RU2092564C1 (en) Blast furnace charging method
JPS6256537A (en) Manufacture of molten metal from powdery ore containing metal oxide
JP2765734B2 (en) Operation method of iron bath reactor
JPH046765B2 (en)
JPH062892B2 (en) Method for producing molten metal from powdered ore
JPH042643B2 (en)
JPH01247516A (en) Method for supplying raw material in smelting reduction
JPS62227018A (en) Production of molten metal from powdery ore
JPS62230907A (en) Production of molten metal from powdery ore

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees