JPH059530A - Method for operating circulating fluidized bed pre-reduction furnace for powdery ore - Google Patents

Method for operating circulating fluidized bed pre-reduction furnace for powdery ore

Info

Publication number
JPH059530A
JPH059530A JP16674191A JP16674191A JPH059530A JP H059530 A JPH059530 A JP H059530A JP 16674191 A JP16674191 A JP 16674191A JP 16674191 A JP16674191 A JP 16674191A JP H059530 A JPH059530 A JP H059530A
Authority
JP
Japan
Prior art keywords
riser
particle
ore
cyclone
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16674191A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sato
和彦 佐藤
Hiroshi Itaya
宏 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16674191A priority Critical patent/JPH059530A/en
Publication of JPH059530A publication Critical patent/JPH059530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To achieve the stabilization of an operation by executing the operation in the suitable range of particle circulating speed in a circulating fluidized bed pre-reduction method for powdery ore. CONSTITUTION:In the operation of a circulating fluidized bed pre-reduction furnace composed of a riser 1, cyclones 10, 11, a downcomer 6 and a particle circulating device 7 for circulating the particles from the downcomer 6 to the riser 1, difference between the particle circulating speed at the inlet side of the first step of cyclone 10 and the particle fly-out speed at the outside of a final cyclone 11, is obtd., and the flow rate of circulating gas 8 blown into the particle circulating device 7 is controlled so that the difference Gs becomes 5-50kg/m<2> (cross sectional area of the riser)&Nsec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉状鉱石の循環流動層
予備還元炉の操業方法に関し、特に流動層予備還元炉の
操業の安定化及び生産性の向上を図ろうとするものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a circulating fluidized bed preliminary reduction furnace for powdered ores, and particularly to stabilize the operation of the fluidized bed preliminary reduction furnace and improve productivity.

【0002】[0002]

【従来の技術】還元ガスを導入して粉状鉱石を循環流動
化させつつ予備還元する流動層予備還元炉(以下ライザ
と記す)と、このライザから排ガスと共に排出された予
備還元鉱石粉を捕集する一段以上のサイクロンと、この
一段以上のサイクロンで捕集した予備還元鉱石粉を貯め
て排出するダウンカマと、このダウンカマから予備還元
鉱粉をライザに循環させる粒子循環装置とからなる循環
流動層予備還元装置を用いて粉状鉱石を予備還元する方
法が知られている。このような循環流動層による粉状鉱
石の予備還元方法としては溶融還元炉で発生する高温の
排ガスをライザに導入する場合に、流動層のガス流速を
粒子の飛び出し速度(粒子終端速度)よりも大きい速度
で導入する一方、ライザから飛び出した予備還元鉱石粉
(以下、予備還元鉱と略す)はサイクロンで捕集し、捕
集した予備還元鉱はクローズドサーキットで粒子循環経
路を介して連続的にライザに戻し、循環流動させつつ予
備還元する方法が特開平1−306515号公報や特開
平2−4909号公報に開示されている。
2. Description of the Related Art A fluidized bed preliminary reduction furnace (hereinafter referred to as a riser) that introduces a reducing gas to circulate and fluidize a powdery ore, and a preliminary reduced ore powder discharged together with exhaust gas from the riser. A circulating fluidized bed consisting of one or more cyclones to collect, a downcomer that stores and discharges the preliminary reduced ore powder collected by the one or more cyclones, and a particle circulation device that circulates the preliminary reduced ore powder from the downcomers to the riser. A method of pre-reducing powdery ore using a pre-reduction device is known. As a method of preliminary reduction of powdery ore by such a circulating fluidized bed, when introducing high-temperature exhaust gas generated in a smelting reduction furnace into a riser, the gas flow velocity in the fluidized bed is more important than the particle ejection velocity (particle termination velocity). While introduced at a high speed, the pre-reduced ore powder (hereinafter abbreviated as pre-reduced ore) that has flown out of the riser is collected by a cyclone, and the collected pre-reduced ore is continuously closed in a closed circuit via a particle circulation path. A method of returning to the riser and performing preliminary reduction while circulating and flowing is disclosed in JP-A-1-306515 and JP-A-2-4909.

【0003】[0003]

【発明が解決しようとする課題】循環流動層で粉状鉱石
を予備還元する際には循環流動層におけるサイクロンで
の予備還元還元鉱の捕集効率の向上が、操業安定や生産
性維持の点で重要となる。ところが、従来の循環流動層
技術ではライザガス流速、鉱石銘柄によっては、鉱石の
粉化が発生し、サイクロンでの捕集効率が低下した。そ
れらの原因は主としてライザのガス流速、予備還元鉱の
粒子径やライザ内の鉱石滞留量が大きく影響を及ぼすラ
イザの粒子循環速度を適正範囲で操作していないためで
ある。従来、ライザの粒子循環速度が過大の場合は鉱石
の摩耗や熱割れによる著しい粉化が起こりサイクロンの
粒子捕集低下に起因する予備還元率の低下や、サイクロ
ンの摩耗の問題があった。逆にライザの粒子循環速度が
過小の場合には予備還元率が低下したり、ライザ下部か
らの落鉱が多くなり操業が不安定になる問題があった。
そこで本発明は循環流動層を用いる予備還元鉱の粉化抑
制とサイクロン捕集効率向上ならびに生産性を安定化し
得る循環流動層予備還元方法を提供するのを目的とす
る。
[Problems to be Solved by the Invention] When preliminarily reducing powdery ore in a circulating fluidized bed, improvement of trapping efficiency of pre-reducing reduced ore in cyclone in the circulating fluidized bed is important for stable operation and maintenance of productivity. Will be important. However, in the conventional circulating fluidized bed technology, depending on the riser gas flow rate and the ore brand, ore pulverization occurred, and the collection efficiency in the cyclone decreased. These are mainly because the gas flow rate of the riser, the particle size of the pre-reduction ore, and the ore retention amount in the riser have a large influence on the particle circulation speed of the riser, and they are not operated within an appropriate range. Conventionally, when the particle circulation speed of the riser is excessively high, there was a problem that the ore was worn or markedly pulverized due to thermal cracking, resulting in a decrease in the preliminary reduction rate due to a decrease in particle collection of the cyclone and wear of the cyclone. On the other hand, if the particle circulation speed of the riser is too small, the pre-reduction rate will decrease, or there will be a large amount of ore falling from the lower part of the riser, resulting in unstable operation.
Therefore, an object of the present invention is to provide a circulating fluidized bed pre-reduction method capable of suppressing pulverization of a pre-reduced ore using a circulating fluidized bed, improving cyclone collection efficiency, and stabilizing productivity.

【0004】[0004]

【課題を解決するための手段】本発明は、還元ガスを導
入して粉状鉱石を循環流動化させつつ予備還元するライ
ザと、このライザから排ガスと共に排出された予備還元
鉱石粉を捕集する一段以上のサイクロンと、この一段以
上のサイクロンで捕集した予備還元鉱石粉を貯めて排出
するダウンカマと、このダウンカマから予備還元鉱粉を
ライザに循環させる粒子循環装置とからなる循環流動層
予備還元装置を用いて粉状鉱石を予備還元する方法に適
用される。
According to the present invention, a riser which introduces a reducing gas to circulate and fluidize a powdery ore to preliminarily reduce it and a prereduced ore powder discharged from the riser together with the exhaust gas are collected. Circulating fluidized bed pre-reduction consisting of one or more cyclones, a downcomer that stores and discharges pre-reduced ore powder collected by the one or more cyclones, and a particle circulation device that circulates the pre-reduced ore powder from this downcomer to a riser It is applied to a method of pre-reducing powdery ore using an apparatus.

【0005】本発明はこのような循環流動層予備還元炉
法において、予備還元鉱の粉化によるサイクロンの粒子
捕集効率の低下を解消する技術であって、初段サイクロ
ンの入側の粒子循環速度と最終段サイクロンの出側にお
ける粒子飛出速度との差を求め、この差が5〜50kg
/m2 (ライザ断面積)・secになるように粒子循環
装置の循環量を制御することを特徴とするものである。
この循環量の制御は粒子循環装置に吹込むガス量を制御
することによって達成される。
The present invention is a technique for eliminating the reduction in cyclone particle collection efficiency due to the pulverization of the pre-reducing ore in such a circulating fluidized bed preliminary reduction furnace method, which is the particle circulation speed on the inlet side of the first-stage cyclone. And the particle ejection speed at the exit side of the final stage cyclone, the difference is 5 to 50 kg.
It is characterized in that the circulation amount of the particle circulation device is controlled so that / m 2 (riser cross-sectional area) · sec.
This control of the circulation amount is achieved by controlling the amount of gas blown into the particle circulation device.

【0006】[0006]

【作用】本発明の作用を図2を用いて説明する。図2は
本発明の適用される循環流動層予備還元炉のフローシー
トである。図示しない溶融還元炉からの還元ガス2はラ
イザ1内の粉状鉱石を流動化還元しつつライザ1から排
出され、サイクロン10、11で同伴粉体を分離して排
出される。分離された粉体はダウンカマ6に貯留され、
一部は系外に排出され、一部は循環装置7を経てライザ
1に循環される。この循環量は循環用ガス8を調整する
ことによって制御される。図2においてライザ1内の粒
子循環速度Gsはサイクロン10、サイクロン11での
粒子補集効率が100%の条件では、ライザ出側の粉体
量、すなわち初段サイクロン入側粒子循環速度Gsaで
代表される。実際の操業ではサイクロン10、サイクロ
ン11での粒子補集効率が100%ではなく、ライザ1
からサイクロン10を経てダウンカマ6、循環装置7を
連続的に循環する粒子循環速度は初段サイクロンの入側
粒子循環速度Gsaから最終段サイクロン側粒子飛出速
度Gsbを差し引いた循環速度はGsが正味の循環流動
層予備還元炉系内での粒子循環速度となる。また粒子循
環速度Gsはライザ1の還元ガス2の量すなわちライザ
1のガス流速や、鉱石の粒子径の影響を受けるものの、
ライザ1への粒子循環量は粒子循環装置7からライザ1
への鉱石循環量そのものが律速する。そのため、ライザ
1への粒子循環量は粒子循環装置7の粒子循環用ガス8
の量で制御する。一方、鉱石粒子の粉化の要因は粒子間
の摩耗やライザ、サイクロンなど循環系内の耐火物と鉱
石粒子の接触による磨砕などである。それらの要因によ
る鉱石粉化は正味の粒子循環速度Gsをなるべく低く維
持すれば抑制され、サイクロンの補集効率も向上する。
しかし、粉子循環速度Gsが低いとライザ内での鉱石滞
留量を確保することが困難となり生産性の面では不利と
なる。逆に、粒子循環速度Gsが大きすぎる場合は鉱石
粉化が進行しサイクロンの補集効率が低下し操業が不安
定となる。
The operation of the present invention will be described with reference to FIG. FIG. 2 is a flow sheet of a circulating fluidized bed preliminary reduction furnace to which the present invention is applied. The reducing gas 2 from a smelting reduction furnace (not shown) is discharged from the riser 1 while fluidizing and reducing the powdery ore in the riser 1, and the cyclones 10 and 11 separate and discharge entrained powder. The separated powder is stored in the downcomer 6,
A part is discharged out of the system, and a part is circulated to the riser 1 through the circulation device 7. This circulation amount is controlled by adjusting the circulation gas 8. In FIG. 2, the particle circulation speed Gs in the riser 1 is represented by the amount of powder on the outlet side of the riser, that is, the particle circulation speed Gsa on the first stage cyclone, under the condition that the particle collection efficiency in the cyclone 10 and the cyclone 11 is 100%. It In actual operation, the particle collection efficiency of cyclone 10 and cyclone 11 is not 100%, but riser 1
The particle circulation speed that continuously circulates through the downcomer 6 and the circulation device 7 via the cyclone 10 is the inlet side particle circulation speed Gsa of the first stage cyclone minus the final stage cyclone side particle ejection velocity Gsb Circulating fluidized bed The particle circulation speed in the preliminary reduction furnace system. Further, although the particle circulation speed Gs is affected by the amount of the reducing gas 2 in the riser 1, that is, the gas flow velocity in the riser 1 and the particle diameter of the ore,
The amount of particle circulation to the riser 1 is from the particle circulation device 7 to the riser 1.
The rate of ore circulation itself to (1) is rate limiting. Therefore, the amount of particles circulated to the riser 1 is determined by the particle circulation gas 8 of the particle circulation device 7.
Controlled by the amount of. On the other hand, the cause of pulverization of ore particles is abrasion between particles and grinding due to contact of refractory materials such as risers and cyclones with ore particles in the circulation system. Ore pulverization due to these factors is suppressed by maintaining the net particle circulation velocity Gs as low as possible, and the cyclone collecting efficiency is also improved.
However, when the particle circulation speed Gs is low, it is difficult to secure the amount of ore retained in the riser, which is disadvantageous in terms of productivity. On the other hand, if the particle circulation speed Gs is too high, ore powdering proceeds, cyclone collection efficiency decreases, and operation becomes unstable.

【0007】そのため、発明者らの研究によればライザ
内の粒子循環速度Gs=5〜50kg/m2 ・secが
適正範囲となる。ここにm2 はライザの断面積である。
粉状鉱石を使用する循環流動層は、ライザから飛び出し
た予備還元鉱を1段以上のサイクロンで捕集し、クロー
ズドサーキットで粒子循環装置を介して連続的にライザ
に戻す方式をとっているため、ライザ内の予備還元鉱の
滞留量を一定水準に確保し変動させないこと、したがっ
て、サイクロンの捕集効率を低下させないことが重要と
なる。そして、循環流動層においてはライザ内のガス流
速、予備還元鉱の粒子径やライザ内の滞留量がライザ内
の粒子循環速度Gsに大きな影響を及ぼす。さらに循環
流動層ではライザ内で鉱石の摩耗や熱割れ、還元粉化等
により予備還元鉱に粉化が起こり細粒化する現象があ
る。特に、ライザ内のガス流速が速く、滞留量も多い場
合はライザ内の粒子循環速度Gsも過大となりGsが5
0(kg/m2 ・sec)を越えると予備還元鉱の粉化
が一層助長され、サイクロンでの粒子捕集効率が低下す
ると同時に還元があまり進行していない還元鉱が多量に
系外に飛び出すため全体として予備還元率が向上しな
い。
Therefore, according to the research by the inventors, the particle circulation velocity Gs in the riser = 5 to 50 kg / m 2 · sec is an appropriate range. Here, m 2 is the cross-sectional area of the riser.
The circulating fluidized bed using powdered ore has a method of collecting the pre-reduced ore that has flown out of the riser with one or more stages of cyclones and continuously returning it to the riser through a particle circulation device in a closed circuit. , It is important that the amount of pre-reduction ore retained in the riser is kept at a certain level and does not fluctuate, and therefore the cyclone collection efficiency is not reduced. In the circulating fluidized bed, the gas flow velocity in the riser, the particle size of the pre-reduction ore and the amount of retention in the riser have a great influence on the particle circulation speed Gs in the riser. Further, in the circulating fluidized bed, there is a phenomenon in which the pre-reduced ore is pulverized due to abrasion or thermal cracking of the ore in the riser, reduction pulverization, etc. In particular, when the gas flow velocity in the riser is high and the amount of stay is large, the particle circulation velocity Gs in the riser is too high and Gs is 5
If it exceeds 0 (kg / m 2 · sec), the pulverization of the pre-reduced ore will be further promoted, and the particle collection efficiency in the cyclone will decrease, and at the same time, a large amount of reduced ore that has not been much reduced will fly out of the system. Therefore, the preliminary reduction rate is not improved as a whole.

【0008】さらに、ライザ内の粒子循環速度Gsが過
大であるとサイクロンの摩耗も大きくなり設備維持の点
で問題があった。逆にライザ内の粒子循環速度Gsが過
小で5(kg/m2 ・sec)未満の場合はライザのガ
ス流速が小さいか、もしくはライザ内の滞留量が少ない
ため予備還元率が向上しない。また、ガス流速が小さい
とライザ下部から下方のガス入口部への落鉱量も多くな
り、操業が不安定となる問題があった。そこで本発明は
少なくとも初段のサイクロン入側の粒子循環速度と最終
段サイクロンの出側における粒子飛出速度の差を求め、
この差が5〜50kg/m2 (ライザ断面積)・sec
の適正範囲になるように、粒子循環装置に吹き込む循環
用ガス流量を制御することにより、予備還元鉱石の粉化
を抑制し、サイクロンの粒子捕集効率及び予備還元率の
向上ならびに操業の安定化を図ることができる。
Further, if the particle circulation velocity Gs in the riser is excessively large, the cyclone is greatly worn and there is a problem in maintaining the equipment. On the contrary, when the particle circulation velocity Gs in the riser is too small and is less than 5 (kg / m 2 · sec), the gas flow velocity in the riser is low, or the amount of staying in the riser is small, and the preliminary reduction rate is not improved. Further, when the gas flow velocity is low, the amount of ore falling from the lower part of the riser to the lower gas inlet part is large, which causes a problem of unstable operation. Therefore, the present invention at least determines the difference between the particle circulation speed on the inlet side of the first-stage cyclone and the particle ejection velocity on the outlet side of the final-stage cyclone,
This difference is 5 to 50 kg / m 2 (riser cross-sectional area) sec
By controlling the flow rate of the circulating gas blown into the particle circulation device so that it falls within the appropriate range, the powdering of the pre-reduction ore is suppressed, the particle collection efficiency and pre-reduction rate of the cyclone are improved, and the operation is stabilized. Can be planned.

【0009】[0009]

【実施例】本発明に係る実施例を図1に示す。ライザ1
には図示しない溶融還元炉から排出される800〜11
00℃の還元ガス2が導入される。粉状鉱石はホッパ3
によりフィーダ4で切り出され、一部は供給管5aを介
してライザ1の下部に、一部は供給管5bを介してダウ
ンカマ6に装入される。ダウンカマ6内の粉状鉱石は粒
子循環装置7に循環用ガス8を吹き込むことによりダウ
ンカマ6からライザ1に連続的に供給される。ライザ1
内で予備還元された予備還元鉱9aはライザ1から飛び
出しその大半は初段サイクロン10で捕集してダウンカ
マ6に装入される。ダウンカマ6から循環用ガス8が吹
き込まれる粒子循環装置7を介して、ライザ1に再び導
入することでクローズドサーキットで連続的に循環し、
予備還元を行う。さらに初段サイクロン10で捕集でき
なかった微粉の予備還元鉱9bは2段目(最終段)のサ
イクロン11で捕集され輸送管12を経てダウンカマ7
に導入される。2段目(最終段)のサイクロン11で捕
集できなかった微粉の予備還元鉱9bは排ガスと共に系
外に飛び出す。次に、初段サイクロン10の入側と2段
目(最終段)サイクロン11の出側にそれぞれサンプリ
ング管13a、13bを設置し、予備還元鉱9a、9b
を採取し、それぞれのサンプリング装置14a、14b
で各測定点位置での予備還元鉱採取量を求めた後に演算
・制御装置15により各測定点位置における予備還元鉱
9a、9bの通過量を演算し、各サンプリング地点にお
ける粒子循環速度Gsa、Gsbを求め、これからライ
ザ内の粒子循環速度GsをGsa−Gsbから求め、こ
の求めたGsが5〜50kg/m2 ・secの範囲に入
るように粒子循環装置7内に吹き込む循環用ガス8を循
環ガス制御装置16でコントロールしながら循環流動層
予備還元を行う。また、循環流動層予備還元炉系内にあ
る予備還元鉱はダウンカマ6の下部から排出装置17で
切り出され、排出管18を介して溶融還元炉へ供給され
る。
FIG. 1 shows an embodiment according to the present invention. Riser 1
800 to 11 discharged from a smelting reduction furnace (not shown)
The reducing gas 2 at 00 ° C. is introduced. Powdered ore is hopper 3
Is cut out by the feeder 4, part of which is inserted into the lower portion of the riser 1 via the supply pipe 5a, and part of which is inserted into the downcomer 6 via the supply pipe 5b. The powdered ore in the downcomer 6 is continuously supplied from the downcomer 6 to the riser 1 by blowing a circulation gas 8 into the particle circulation device 7. Riser 1
The pre-reduced ore 9a that has been pre-reduced therein jumps out from the riser 1 and most of it is collected by the first-stage cyclone 10 and charged into the downcomer 6. Through the particle circulation device 7 in which the circulation gas 8 is blown from the downcomer 6, it is re-introduced into the riser 1 to continuously circulate in a closed circuit,
Perform preliminary reduction. Furthermore, the fine powder pre-reduction ore 9b that could not be collected by the first-stage cyclone 10 is collected by the second-stage (final-stage) cyclone 11 and passed through the transport pipe 12 to the downcomer 7
Will be introduced to. The fine powder pre-reduction ore 9b that could not be collected by the cyclone 11 in the second stage (final stage) jumps out of the system together with the exhaust gas. Next, sampling pipes 13a and 13b are installed on the inlet side of the first-stage cyclone 10 and the outlet side of the second-stage (final-stage) cyclone 11, respectively, and the preliminary reduction ores 9a and 9b are provided.
And sampling devices 14a and 14b, respectively.
After obtaining the amount of pre-reduced ore collected at each measurement point position, the calculation / control device 15 calculates the passing amount of the pre-reduced ore 9a, 9b at each measurement point position, and the particle circulation velocity Gsa, Gsb at each sampling point. Then, the particle circulation velocity Gs in the riser is calculated from Gsa-Gsb, and the circulation gas 8 blown into the particle circulation device 7 is circulated so that the obtained Gs falls within the range of 5 to 50 kg / m 2 · sec. The circulating fluidized bed preliminary reduction is performed while controlling with the gas control device 16. Further, the preliminary reduction ore in the circulating fluidized bed preliminary reduction furnace system is cut out from the lower part of the downcomer 6 by the discharge device 17, and is supplied to the smelting reduction furnace via the discharge pipe 18.

【0010】次に、炉径:0.7m、高さ:7.3mの
ライザを有する図1に示した予備還元装置を用いて粉状
鉱石の予備還元を行い、この予備還元鉱を炉径:1.2
m、炉容積:7.7m3 、上下段羽口:各3本を有する
溶融還元炉に供給して溶融還元した。この操業試験結果
を試験条件と合わせて表1に示す。表1に示すように、
ライザ内の粒子循環速度Gsを適正範囲に制御して操業
した適合例1、2では予備還元鉱の粉化が抑制され初段
及び2段目(最終段)サイクロンの粒子捕集効率が向上
して高い予備還元率を得ることができた。これに反し、
適正でないライザ内の粒子循環速度Gsで操業した比較
例1、2では予備還元鉱の粉化が大きくなり初段及び2
段目(最終段)のサイクロンの粒子捕集効率が低下し、
予備還元率が低くなった。また、サイクロン内の摩耗が
大きくなることやライザからの落鉱量が多くなる等の不
都合が生じた。
Next, the powdery ore is preliminarily reduced by using the preliminary reducing apparatus shown in FIG. 1 having a riser having a diameter of 0.7 m and a height of 7.3 m. : 1.2
m, furnace volume: 7.7 m 3 , upper and lower tuyeres: each was supplied to a smelting reduction furnace having 3 to perform smelting reduction. The results of this operation test are shown in Table 1 together with the test conditions. As shown in Table 1,
In the conforming examples 1 and 2 in which the particle circulation speed Gs in the riser was controlled to be in an appropriate range, the pre-reduction ore pulverization was suppressed, and the particle collection efficiency of the first-stage and second-stage (final-stage) cyclones was improved. A high preliminary reduction rate could be obtained. Contrary to this,
In Comparative Examples 1 and 2 which were operated at the particle circulation velocity Gs in the riser which was not appropriate, the pulverization of the pre-reduced ore became large and the first stage and 2
Particle collection efficiency of the cyclone at the stage (final stage) decreases,
The pre-reduction rate became low. In addition, there were inconveniences such as large wear in the cyclone and a large amount of ore falling from the riser.

【0011】[0011]

【発明の効果】本発明はライザの粒子循環速度Gsを適
正範囲に制御することにより予備還元鉱の粉化を抑制し
サイクロンの捕集効率を向上することができるため、操
業の安定化が可能で、予備還元鉱の生産性の向上を達成
し得る効果がある。
According to the present invention, by controlling the particle circulation speed Gs of the riser within an appropriate range, it is possible to suppress the pulverization of the pre-reduced ore and improve the cyclone collection efficiency, so that the operation can be stabilized. Therefore, there is an effect that the productivity of the pre-reduction ore can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る循環流動層予備還元装置
を示す模式図である。
FIG. 1 is a schematic diagram showing a circulating fluidized bed preliminary reduction device according to an embodiment of the present invention.

【図2】本発明の作用を説明するフローシートである。FIG. 2 is a flow sheet illustrating the operation of the present invention.

【符号の説明】[Explanation of symbols]

1 ライザ 2 還元ガス 3 鉱石ホッパ 4 フィーダ 5a、5b 鉱石供給管 6 ダウンカマ 7 粒子循環装置 8 循環用ガス 9a、9b 予備還元鉱 10 初段サイクロン 11 最終段サイクロン 12 輸送管 13a、13b サンプリング装置 14a、14b サンプリング装置 15 演算・制御装置 16 循環ガス制御装置 17 排出装置 18 排出管 1 riser 2 reducing gas 3 ore hopper 4 feeder 5a, 5b ore supply pipe 6 downcomer 7 particle circulation device 8 circulation gas 9a, 9b preliminary reduction ore 10 first stage cyclone 11 final stage cyclone 12 transport pipe 13a, 13b sampling device 14a, 14b Sampling device 15 Arithmetic / control device 16 Circulating gas control device 17 Discharge device 18 Discharge pipe

Claims (1)

【特許請求の範囲】 【請求項1】 還元ガスを導入して粉状鉱石を循環流動
化させつつ予備還元するライザと、このライザから排ガ
スと共に排出された予備還元鉱石粉を捕集する一段以上
のサイクロンと、この一段以上のサイクロンで捕集した
予備還元鉱石粉を貯めて排出するダウンカマと、このダ
ウンカマから予備還元鉱粉をライザに循環させる粒子循
環装置とからなる循環流動層予備還元炉の操業におい
て、初段サイクロンの入側の粒子循環速度と最終段サイ
クロンの出側における粒子飛出速度との差を求め、この
差が5〜50kg/m2 (ライザ断面積)・secにな
るように前記粒子循環装置の循環量を制御することを特
徴とする粉状鉱石の循環流動層予備還元炉の操業方法。
Claim: What is claimed is: 1. A riser for introducing a reducing gas to preliminarily reduce while circulating and fluidizing a powdery ore, and one or more stages for collecting the preliminary reduced ore powder discharged from the riser together with the exhaust gas. Cyclone, a downcomer that stores and discharges the pre-reduced ore powder collected by this one or more cyclones, and a particle circulation device that circulates the pre-reduced ore powder to the riser from this downcomer. In operation, find the difference between the particle circulation velocity on the inlet side of the first-stage cyclone and the particle ejection velocity on the outlet side of the final-stage cyclone, and make this difference 5 to 50 kg / m 2 (riser cross-sectional area) · sec. A method for operating a circulating fluidized bed preliminary reduction furnace for powdery ores, comprising controlling the amount of circulation of the particle circulation device.
JP16674191A 1991-07-08 1991-07-08 Method for operating circulating fluidized bed pre-reduction furnace for powdery ore Pending JPH059530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16674191A JPH059530A (en) 1991-07-08 1991-07-08 Method for operating circulating fluidized bed pre-reduction furnace for powdery ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16674191A JPH059530A (en) 1991-07-08 1991-07-08 Method for operating circulating fluidized bed pre-reduction furnace for powdery ore

Publications (1)

Publication Number Publication Date
JPH059530A true JPH059530A (en) 1993-01-19

Family

ID=15836894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16674191A Pending JPH059530A (en) 1991-07-08 1991-07-08 Method for operating circulating fluidized bed pre-reduction furnace for powdery ore

Country Status (1)

Country Link
JP (1) JPH059530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42478E1 (en) 1994-04-12 2011-06-21 Sca Hygiene Products Aktiebolag Method of manufacturing a pants-type diaper of a sanitary panty, and one such absorbent article
US8034039B2 (en) 2004-12-07 2011-10-11 Livedo Corporation Disposable pants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42478E1 (en) 1994-04-12 2011-06-21 Sca Hygiene Products Aktiebolag Method of manufacturing a pants-type diaper of a sanitary panty, and one such absorbent article
US8034039B2 (en) 2004-12-07 2011-10-11 Livedo Corporation Disposable pants

Similar Documents

Publication Publication Date Title
CZ292000B6 (en) Apparatus for reducing iron ores and method for making the same
JPH059530A (en) Method for operating circulating fluidized bed pre-reduction furnace for powdery ore
JP2659889B2 (en) Particle circulation device of circulating fluidized bed pre-reduction furnace
JP2562172B2 (en) Iron ore fluidized bed reduction device
JPH04293709A (en) Circulating fluidized bed pre-reducing device for powdery ore
JPH06192715A (en) Circuiting type fluidized bed pre-reduction furnace for powdery ore
JPH06172837A (en) Circulating fluidized reduction method of powdery ore
JP2765737B2 (en) Operating method of fluidized bed prereduction furnace and fluidized bed prereduction furnace
JPH06145749A (en) Method for reducing ore by circulating fluidized bed
JPS61279636A (en) Charging apparatus of sintered ore cooling machine
JPH0324213A (en) Treatment of drop ore of preliminary reduction furnace
JPH0610021A (en) Fluidized bed reducing device and operating method thereof
JPH03215621A (en) Circulating fluidized bed prereduction for powdery iron ore
JP2659589B2 (en) Circulating fluidized bed reduction device
JPH10238957A (en) Circulating fluidized bed reducing equipment
JPH05311253A (en) Method and device for regulating raw material for smelting/reducing blow-in from steel-making dust
JPH04314832A (en) Method for reducing pulverized ore by circulating fluidized bed
JPH062893B2 (en) Method for producing molten metal from powdered ore
JPH03173709A (en) Method and apparatus for fluidized bed reduction
JPH0735525B2 (en) Smelting reduction method of powdery ore and smelting reduction apparatus
JPH04325613A (en) Method for operating smelting reduction iron-making device
JPH01111808A (en) Iron ore fluidized bed reduction apparatus
JPH05171233A (en) Method for charging collected dust in smelting reduction equipment
JPH04362110A (en) Prereduction equipment for ciculative fluidized layer of powdery ore
JPH02107710A (en) Method for operating circulating type fluidized bed

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990914