JPH0372012A - Circulating fluidized bed pre-reduction furnace - Google Patents

Circulating fluidized bed pre-reduction furnace

Info

Publication number
JPH0372012A
JPH0372012A JP20792089A JP20792089A JPH0372012A JP H0372012 A JPH0372012 A JP H0372012A JP 20792089 A JP20792089 A JP 20792089A JP 20792089 A JP20792089 A JP 20792089A JP H0372012 A JPH0372012 A JP H0372012A
Authority
JP
Japan
Prior art keywords
fluidized bed
reduction furnace
reduction
ore
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20792089A
Other languages
Japanese (ja)
Inventor
Hajime Suzuki
一 鈴木
Takashi Ushijima
牛島 崇
Kazuhiko Sato
和彦 佐藤
Hideyuki Momokawa
桃川 秀行
Eiji Katayama
英司 片山
Hiroshi Itaya
板谷 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20792089A priority Critical patent/JPH0372012A/en
Publication of JPH0372012A publication Critical patent/JPH0372012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To suppress flow velocity of a reduction gas to slow and to prevent the pulverization of an ore by arranging a coarse grain discharging tube at the outer circumference of a reduction furnace and feeding the grains retaining a furnace to a downcomer through a conveying tube from a lower discharging hole in the coarse grain discharging tube. CONSTITUTION:The concentric circular type-coarse grain discharging tube 2 is arranged at the outer circumference of reduction furnace 1 for forming a fluidized bed to constitute a circulating fluidized bed pre-reduction furnace. The fluidized bed part providing a lower discharging hole 12 at a lower end part of the coarse grain discharging tube 2 is formed. The grains, which is likely to retain in the reduction furnace 1, come into between the reduction furnace 1 and the coarse grain discharging tube 2 and are fed into a downcomer 7 connectedly arranged with a granular collector 6 with a screw feeder 8 from the lower discharging hole 12 through the conveying tube 9. The retained grains in the fluidized bed are efficiently discharged. By this method, the pre-reduction can be efficiently executed to iron ore over the wide range of grain diameters.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、鉄鉱石の溶融還元において、生産性の向上、
製品の還元率の向上および溶融還元炉の耐火物原単位、
炭材原単位の低減を達成できる鉄鉱石の循環流動層予備
還元炉(以下予OI還元炉と略す)に関するものである
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to improving productivity,
Improving the reduction rate of products and reducing the basic unit of refractories in smelting reduction furnaces,
This invention relates to an iron ore circulating fluidized bed pre-reduction furnace (hereinafter abbreviated as pre-OI reduction furnace) that can achieve a reduction in carbon material consumption per unit.

〈従来の技術〉 流動層において良好な粒子循環をえるためには、還元性
ガス流速を粒子の終末速度(粒子が流動層から飛び出す
ガス流速)以上にすることが重要である。広い粒径範囲
の粉鉱石を予m還元炉で予備還元するには、ガス流速を
最大粒子の終末速度以上に保つ必要がある。しかしガス
流速の壜加に伴い、サイクロンなどの捕集器での粉鉱石
の捕集効率が低下しわ)鉱石の歩留りを低下させ、捕集
効率を保持するためには捕集器の増強が必要となり設@
費が嵩む、一方、粉鉱石を予備還元炉で予備還元する際
に、急速加熱による熱割れ、衝突、摩耗による割れ、m
m変化による割れなどによって鉱石の粉化がおこり溶融
還元炉への装入歩留りおよび生産性の低下を招くが、ガ
ス流速の増加は鉱石の粉化を促進させる。従って鉱石の
粉化を防ぎ、所望の生産性と還元率をえるためにはガス
流速は極力遅いことが望まれる。
<Prior Art> In order to obtain good particle circulation in a fluidized bed, it is important to make the reducing gas flow rate higher than the terminal velocity of the particles (the gas flow rate at which the particles fly out of the fluidized bed). In order to pre-reduce fine ore with a wide particle size range in a pre-reduction furnace, it is necessary to maintain the gas flow rate above the terminal velocity of the largest particle. However, as the gas flow rate increases, the efficiency of collecting fine ore in collectors such as cyclones decreases (wrinkles), which reduces the yield of ore and requires reinforcement of collectors to maintain collection efficiency. Tonari Set @
On the other hand, when pre-reducing fine ore in a pre-reducing furnace, thermal cracking due to rapid heating, collision, cracking due to abrasion, etc.
Powdering of the ore occurs due to cracking caused by the change in m, leading to a decrease in the charging yield to the smelting reduction furnace and productivity, but an increase in the gas flow rate promotes the pulverization of the ore. Therefore, in order to prevent pulverization of the ore and obtain the desired productivity and reduction rate, it is desirable that the gas flow rate be as slow as possible.

しかし、ガス流速を最大粒子の終末速度以下にすると、
実ガス流速よりも大きい終末速度である粒子は流動層内
に永久滞留し、粒子循環が不安定になったり、最悪の場
合には粒子循環が停止し、操業ができなくなる。
However, if the gas flow velocity is lower than the terminal velocity of the largest particle,
Particles whose terminal velocity is higher than the actual gas flow rate remain permanently in the fluidized bed, making particle circulation unstable or, in the worst case, stopping particle circulation, making operation impossible.

そこで、この様な条f′ト下で予備還元する場合には、
予備還元炉内に永久滞留する粗粒子のみを選択的かつ効
率的に炉外に排出することが必要となる。この様な問題
に対し、本発明者らは特願昭63117328号、特願
昭63−241499号に、予備還元炉の高さ方向に複
数の鉱石抜き出し口を設け、炉内鉱石の滞留量を調整し
、広い粒径範囲の鉱石の予備還元が達成されることを報
告し、特願昭63−247500号に予備還元炉内に軸
方向にのびる仕切り板を設置して炉内を複数に区画し、
区画室毎に異なる流速の還元ガスを導入することにより
、粒径の異なる粉鉱石を同時に処理できる技術を報告し
た。
Therefore, in the case of preliminary reduction under such provision f',
It is necessary to selectively and efficiently discharge only the coarse particles that remain permanently inside the pre-reduction furnace to the outside of the furnace. In order to solve this problem, the inventors of the present invention proposed in Japanese Patent Application No. 63117328 and No. 63-241499 that they provided a plurality of ore extraction ports in the height direction of the preliminary reduction furnace to reduce the amount of ore accumulated in the furnace. They reported that pre-reduction of ores with a wide range of particle sizes could be achieved through adjustment, and in Japanese Patent Application No. 63-247500, a partition plate extending in the axial direction was installed inside the pre-reduction furnace to divide the inside of the furnace into multiple sections. death,
We reported a technology that can simultaneously process fine ore with different particle sizes by introducing reducing gas at different flow rates in each compartment.

また、特公昭55−9048号公報に、流動層内滞留物
から粗粒を選択的に取り出し細粒を再び流動層に戻して
造粒を継続する方法が開示されている。
Further, Japanese Patent Publication No. 55-9048 discloses a method in which coarse particles are selectively taken out from the material retained in the fluidized bed and fine particles are returned to the fluidized bed to continue granulation.

さらに、特開昭63−11609号公報に、複数個の予
備還元炉を設置し、一方の還元炉から排出される鉱石を
他方の還元炉に導く経路を設けて、粗粒と微粒の鉱石を
各々の予備還元炉で効率良く予OI還元する方法が開示
され、特開昭63−11610号公報に、流動層予熱炉
で粉鉱石を予熱した後、細粒を外部の循環経路途中で粗
粒を予熱炉底部から各々別個に設けた予(lIl還元炉
に導き還元して、広い粒度範囲の粉鉱石の効率的な予備
還元する方法が開示されている。
Furthermore, in JP-A No. 63-11609, a plurality of preliminary reduction furnaces are installed, and a path is provided to guide the ore discharged from one reduction furnace to the other reduction furnace, thereby separating coarse and fine ore. A method for efficient pre-OI reduction in each pre-reduction furnace is disclosed, and Japanese Patent Application Laid-Open No. 11610/1983 discloses that after preheating fine ore in a fluidized bed preheating furnace, fine particles are converted to coarse particles in the middle of an external circulation path. A method is disclosed for efficiently pre-reducing fine ore having a wide particle size range by introducing and reducing the fine ore from the bottom of the pre-heating furnace into separate pre-(lIl reduction furnaces).

〈発明が解決しようとする課題〉 前述の従来技術の問題点を以下に示す。<Problem that the invention seeks to solve> Problems with the above-mentioned conventional technology are shown below.

特願昭63−117328号、特願昭63−24749
9号で報告した技術は、ライザー内に永久滞留している
粒子の排出に対し適切な技術であり、広い粒径範囲の粉
鉱石を予備還元できるが、滞留粒子の抜き出し効率が低
く、従って予備還元の効率に改善点を残していた。また
、特願昭63−247500号に示された技術も広い粒
径範囲の粉鉱石を予備還元できるが、細粒を処理する側
の流動層のガス流速を微粒側に比較して早くせざるを得
ないため、鉱石粉化を防止することは不可能である。ま
た、特公昭55−9048号公報に開示された技術には
、上述の特開昭63417328号の技術と同じ問題が
あり、さらに予備還元炉の他に分級装置を必要とし、設
備高さが高くなり、設備費の点から好ましくない、さら
に、特開昭63−11609号公報、特開昭63−11
610号公報の技術ではいずれも複数個の予備還元炉を
必要とすることから設備上不利である。
Patent Application No. 117328/1983, Patent Application No. 24749/1983
The technology reported in No. 9 is an appropriate technology for discharging particles that are permanently retained in the riser, and can pre-reduce fine ore with a wide range of particle sizes, but the efficiency of extracting the accumulated particles is low, so There was still room for improvement in the efficiency of reduction. In addition, the technology shown in Japanese Patent Application No. 63-247500 can pre-reduce fine ore with a wide range of particle sizes, but the gas flow rate in the fluidized bed on the side that processes fine particles must be made higher than that on the fine particle side. Therefore, it is impossible to prevent ore pulverization. In addition, the technology disclosed in Japanese Patent Publication No. 55-9048 has the same problems as the technology of Japanese Patent Application Publication No. 63417328 mentioned above, and furthermore, it requires a classification device in addition to a preliminary reduction furnace, and the height of the equipment is high. Therefore, it is not preferable from the point of view of equipment cost.
The technique disclosed in Japanese Patent No. 610 requires a plurality of preliminary reduction furnaces, which is disadvantageous in terms of equipment.

本発明は、前述の問題を解決し、さらに流動層を形成せ
しめる還元性ガスの流速を小さく抑え、鉄鉱石の粉化を
極力防止しつつ、広い粒径範囲の鉄鉱石を一度に効率的
に予備還元することができる予備還元炉を提(」(する
ためになされたものである。
The present invention solves the above-mentioned problems and further suppresses the flow rate of the reducing gas that forms the fluidized bed to a low level, thereby preventing iron ore from being pulverized as much as possible, while efficiently processing iron ore in a wide range of particle sizes at once. This was done in order to provide a pre-reduction furnace capable of pre-reduction.

く課題を解決するための手段〉 本発明者らは、前述の問題解決のために鋭意研究を重ね
た結果以下の知見を得た。流動層内での永久滞留粒子の
挙動は、層内の内部循環によるものであり層中心位置で
の上昇粒子と層壁近傍での下降粒子から形成されること
、また下降粒子波の発生場所と粒子供給管との位置関係
は一定ではなく変動していること、さらに下降粒子流の
発生位置は炉内鉱石滞留量、ガス流速、粒子循環速度等
により変化すること等である。これらの知見を基に、層
内永久滞留粒子が、効率的に排出されるように、流動層
の周囲すべてが排出口となるようにされた2重管構造の
予備還元炉を発明するに至った。
Means for Solving the Problems> The present inventors have made the following findings as a result of intensive research to solve the above problems. The behavior of permanently retained particles in a fluidized bed is due to internal circulation within the bed, and is formed from rising particles at the center of the bed and descending particles near the bed wall. The positional relationship with the particle supply pipe is not constant but fluctuates, and the position where the descending particle flow is generated changes depending on the amount of ore retained in the furnace, gas flow rate, particle circulation rate, etc. Based on these findings, we came up with the invention of a pre-reduction furnace with a double-tube structure in which the entire periphery of the fluidized bed serves as a discharge port so that particles permanently resident in the bed can be efficiently discharged. Ta.

本発明は、還元ガスによって粉粒体をNfL動層動態状
態る流動層部と、流動層部上部から排出する粉粒体を1
ift集する捕集器と、捕集した粉粒体を流動層部に戻
す斜管とからなるw4環流動層予備還元炉であって、流
動層を形成する円筒状の還元炉とその外周に配設される
それより長い同心円状の粗粒排出管とで構成され、粗粒
排出管下端部に下部排出口を具えた流動層部と、流動層
部上部から排出する粉粒体を捕集する捕集器と連接した
ダウンカマーとからなり、かつ前記下部排出口とダウン
カマーとは輸送管を介して接続されている循環流動層予
備還元炉である。
The present invention has a fluidized bed section in which powder and granules are brought into a NfL fluidized bed dynamic state by reducing gas, and a powder and granules discharged from the upper part of the fluidized bed section.
This is a W4 ring fluidized bed pre-reduction furnace consisting of a collector for collecting particles and a diagonal pipe for returning the collected powder to the fluidized bed section. It consists of a longer concentric coarse particle discharge pipe, and a fluidized bed section with a lower discharge port at the bottom end of the coarse particle discharge pipe, and a fluidized bed section that collects the powder discharged from the upper part of the fluidized bed section. This is a circulating fluidized bed pre-reduction furnace, which is composed of a collector and a downcomer connected to each other, and the lower discharge port and the downcomer are connected via a transport pipe.

〈作用〉 本発明に係る予備還元炉の一例を第1図に示した。主要
部は、流動層を形成するための還元炉1の内筒の周囲に
、円筒と同心円状に粗粒排出管2を備えている。流動層
内の粒子の挙動を第2図に模式的に示したが、下降粒子
は下降粒子流15にのって、層壁に沿って流れ、下降粒
子流の発生位置は鉱石滞留量、ガス流速などによって変
化することが、前述のとおり本発明者らの研究によっ°
ζ見い出されている。還元炉内で永久滞留しようとする
粒子は還元炉の層壁に沿って下降する傾向にあり、この
周囲にある粗粒わ1出管との間に入り込み、下部排出口
12から輸送管9を介してスクリューフィダー8によっ
てダウンカマー7に送られる。従って、本発明に係る装
置によると流動層内の永久滞留粒子が効率的に排出され
る。流動層内のガス流速を遅くするとサイクロン等での
捕集率が向上するが、粒子の終末速度がガス流速よりも
遅い細かい粒子も一部相粒排出管に入る割合が多くなり
、粉鉱石全体の還元率が低くなることが悲念されるが輸
送管9、斜管4を介して還元炉1に循環されるので問題
はない。
<Operation> An example of the preliminary reduction furnace according to the present invention is shown in FIG. The main part includes a coarse particle discharge pipe 2 arranged concentrically around the inner cylinder of a reduction furnace 1 for forming a fluidized bed. The behavior of particles in the fluidized bed is schematically shown in Figure 2. The descending particles flow along the bed wall along the descending particle flow 15, and the position of the descending particle flow is determined by the amount of ore retention and the gas As mentioned above, the inventors' research has shown that it changes depending on the flow rate, etc.
ζ has been found. Particles that tend to remain permanently in the reduction furnace tend to descend along the layered wall of the reduction furnace, get between the surrounding coarse grains 1 and the outlet pipe, and flow through the transport pipe 9 from the lower discharge port 12. It is sent to the downcomer 7 by the screw feeder 8 via the screw feeder 8. Therefore, according to the device according to the present invention, permanently resident particles in the fluidized bed can be efficiently discharged. Slowing down the gas flow rate in the fluidized bed improves the collection rate with cyclones, etc., but some of the fine particles whose final velocity is slower than the gas flow rate also enter the phase particle discharge pipe, increasing the amount of fine ore as a whole. Although it is regrettable that the reduction rate of the reactor will be low, there is no problem because it is circulated to the reduction furnace 1 via the transport pipe 9 and the inclined pipe 4.

〈実施例〉 第1図に示した本発明に係る装置で粒度−5+nの豪州
系鉱石の予備還元を実施した。実施条件を第1表に示す
、また第4図に比較例として実施した際に用いた装置を
示す、比較例の装置の寸法は第1図の装置と同じである
。さらに他の条件も本発明の実施例と等しくした。
<Example> Preliminary reduction of Australian ore having a particle size of -5+n was carried out using the apparatus according to the present invention shown in FIG. The implementation conditions are shown in Table 1, and FIG. 4 shows the device used in the comparative example. The dimensions of the device in the comparative example are the same as the device in FIG. Furthermore, other conditions were also the same as in the examples of the present invention.

循環流動層予備還元炉への鉱石補給と排出は、捕集器を
除く循環経路のいずれかの位置に粉粒状鉱石補給管と粉
粒状鉱石排出管を独立に接続し、これらを介して行う、
これらの管の接続位置は、循環流動層の原理上、捕集器
を除く粉粒状鉱石の循環経路であればいずれの箇所でも
その作用は同等であるが、補給した未還元のむ)粒状鉱
石がそのまま排出されるのを防止する必要がある。
Ore replenishment and discharge to the circulating fluidized bed pre-reduction furnace is carried out via a granular ore supply pipe and a granular ore discharge pipe that are independently connected to any position in the circulation path except for the collector.
Due to the principle of a circulating fluidized bed, the connection positions of these pipes have the same effect at any point in the circulation path for granular ore, excluding the collector; It is necessary to prevent it from being discharged as is.

具体的には、粉粒状鉱石補給管は、還元炉下部。Specifically, the powder ore supply pipe is located at the bottom of the reduction furnace.

還元炉最上部又はダウンカマー上部に接続され、排出管
は還元炉下部又はダウンカマー下部に接続されることが
多い。後述の実施例では補給管をダウンカマー上部に接
続し、排出管をダウンカマー下部に接続した場合につい
て触れたが、上述のようにその他の部位に接続した場合
でも本発明装置の作用は同等である。
It is connected to the top of the reduction furnace or the top of the downcomer, and the discharge pipe is often connected to the bottom of the reduction furnace or the bottom of the downcomer. In the embodiment described later, the case is described in which the supply pipe is connected to the upper part of the downcomer and the discharge pipe is connected to the lower part of the downcomer, but the effect of the device of the present invention is the same even if it is connected to other parts as described above. be.

第2表に実施例と比較例との流動層内の粒子滞留量、粒
子Va環速度、抜き出し粒子の平均還元率と製品排出速
度を示す、比較例1では、実施例と粒子滞留量を等しく
操作したが、粒子循環速度と排出された製品の平均還元
率が小さくなる。すなわち比較例1の場合は実施例に比
べ、実ガス流速以上の終末速度を存する粗粒の抜き出し
速度が小さいために、粒子WJ環速度が小さくなってし
まい、生産性が劣ることがわかった。
Table 2 shows the amount of particles retained in the fluidized bed, the particle Va ring velocity, the average reduction rate of extracted particles, and the product discharge rate for Examples and Comparative Examples. operation, but the particle circulation rate and the average reduction rate of the discharged product are reduced. That is, in the case of Comparative Example 1, it was found that the extraction speed of coarse particles having a terminal velocity equal to or higher than the actual gas flow velocity was lower than that of the example, so that the particle WJ ring velocity became small, resulting in poor productivity.

さらに比較例2として第4図の装置で高ガス流速での操
作を行った0粒子循環速度と製品の平均還元率は実施例
の場合と同程度となった0本発明に係る装置を用いた場
合の製品の粒度構成と、第4図の装置で高ガス流速での
操作をした場合の製品の粒度構成を原鉱石の粒度構成と
ともに第3図に示す。
Furthermore, as Comparative Example 2, the device according to the present invention was operated at a high gas flow rate using the device shown in FIG. FIG. 3 shows the particle size structure of the product in this case, and the particle size structure of the product when the apparatus shown in FIG. 4 is operated at a high gas flow rate, together with the particle size structure of the raw ore.

第4図の装置を高ガス流速で操作した場合には、本発明
に係る装置と同程度の生産性を得ることは可能であるけ
れども、第3図に示されたように鉱石の粉化が著しく、
さらにサイクロンでの油集効率も低下した0本実施例で
は粗粒排出管2のわ)鉱石はスクリューフィーダー8、
輸送管9を通してダウンカマー7に戻し循環させたが、
循環させずに別途処理してもよい。第3図に示された2
種類の予備還元鉱石(実施例の処理鉱石、比較例の処理
鉱石)を公称100 tの鉄浴式溶融還元炉の炉口から
IL/winの投入速度で上添加した。鉄浴の温度、送
酸速度、ランスハイド等は両者共等しくした0両者の添
加歩留りを第3表に示したが、明らかに本発明に係る装
置で処理した平均径の大きな予備還元鉱石の方が添加歩
留りが高く、本発明に係る装置の効果が認められる。
If the device of FIG. 4 is operated at a high gas flow rate, it is possible to obtain productivity comparable to that of the device according to the present invention, but as shown in FIG. Remarkably,
Furthermore, the oil collection efficiency in the cyclone has also decreased. In this embodiment, the ore is fed to the screw feeder 8,
It was returned to the downcomer 7 through the transport pipe 9 and circulated,
It may be processed separately without being circulated. 2 shown in Figure 3
Different types of pre-reduced ores (treated ores of Examples and treated ores of Comparative Examples) were added from the furnace mouth of a nominally 100 t iron bath type smelting reduction furnace at a charging rate of IL/win. Table 3 shows the addition yields of both with the same iron bath temperature, acid delivery rate, lance hide, etc., but it is clear that the pre-reduced ore with a larger average diameter treated with the apparatus according to the present invention has a higher yield. The addition yield was high, and the effect of the apparatus according to the present invention was recognized.

第1表 〈発明の効果〉 本発明によると、還元ガス流速を小さく抑え、鉄鉱石の
粉化を極力防止しつつ、広い粒径範囲の鉄鉱石を効率的
に予備還元することができる。
Table 1 <Effects of the Invention> According to the present invention, iron ore having a wide particle size range can be efficiently pre-reduced while reducing the reducing gas flow rate to a low level and preventing the iron ore from being powdered as much as possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る装置の模式図、第2図は、流動
層内での粒子の挙動の模式図、第3図は、処理方法側の
処理鉱石の粒度構成を示す特性図、第4図は、比較例と
して実施した装置の模式図である。 1・・・還元炉、   2・・・粗粒排出管、3・・・
定W1供給装置、4・・・斜管、5・・・排出管、  
  6・・・油集2L7・・・ダウンカマー、8・・・
スクリューフィーダー9・・・輸送管、   IO・・
・粉鉱石補給管、11・・・粉鉱石排出管、12・・・
下部排出口、13・・・ガス、    14・・・鉱石
、15・・・下降粒子流、 16・・・上昇粒子流、1
7・・・粒子偶給管。
FIG. 1 is a schematic diagram of the apparatus according to the present invention, FIG. 2 is a schematic diagram of the behavior of particles in the fluidized bed, and FIG. 3 is a characteristic diagram showing the particle size structure of the treated ore in the treatment method. FIG. 4 is a schematic diagram of an apparatus implemented as a comparative example. 1... Reduction furnace, 2... Coarse particle discharge pipe, 3...
Constant W1 supply device, 4... Oblique pipe, 5... Discharge pipe,
6...Oil collection 2L7...Downcomer, 8...
Screw feeder 9...transport pipe, IO...
・Fine ore supply pipe, 11...Fine ore discharge pipe, 12...
Lower discharge port, 13...Gas, 14...Ore, 15...Downward particle flow, 16...Upward particle flow, 1
7...Particle conjunctive tube.

Claims (1)

【特許請求の範囲】[Claims] 還元ガスによって粉粒体を流動層状態にする流動層部と
、流動層部上部から排出する粉粒体を捕集する捕集器と
、捕集した粉粒体を流動層部に戻す斜管とからなる循環
流動層予備還元炉であって、流動層を形成する円筒状の
還元炉とその外周に配設されるそれより長い同心円状の
粗粒排出管とで構成され、粗粒排出管下端部に下部排出
口を具えた流動層部と、流動層部上部から排出する粉粒
体を捕集する捕集器と連接したダウンカマーとからなり
、かつ前記下部排出口とダウンカマーとは輸送管を介し
て接続されている循環流動層予備還元炉。
A fluidized bed section that turns the powder into a fluidized bed using reducing gas, a collector that collects the powder discharged from the top of the fluidized bed, and a diagonal pipe that returns the collected powder to the fluidized bed. A circulating fluidized bed pre-reduction furnace consisting of a cylindrical reduction furnace forming a fluidized bed and a longer concentric coarse particle discharge pipe arranged around the outer circumference of the cylindrical reduction furnace. It consists of a fluidized bed section with a lower discharge port at the lower end, and a downcomer connected to a collector that collects powder and granules discharged from the upper part of the fluidized bed section, and the lower discharge port and downcomer are A circulating fluidized bed pre-reduction furnace connected via a transport pipe.
JP20792089A 1989-08-14 1989-08-14 Circulating fluidized bed pre-reduction furnace Pending JPH0372012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20792089A JPH0372012A (en) 1989-08-14 1989-08-14 Circulating fluidized bed pre-reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20792089A JPH0372012A (en) 1989-08-14 1989-08-14 Circulating fluidized bed pre-reduction furnace

Publications (1)

Publication Number Publication Date
JPH0372012A true JPH0372012A (en) 1991-03-27

Family

ID=16547745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20792089A Pending JPH0372012A (en) 1989-08-14 1989-08-14 Circulating fluidized bed pre-reduction furnace

Country Status (1)

Country Link
JP (1) JPH0372012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014402A (en) * 2001-06-28 2003-01-15 Shikoku Doki:Kk Unwinding and rewinding device for lengthy matter and tape measure
CN109402313A (en) * 2018-10-31 2019-03-01 中国冶集团有限公司 A kind of blast furnace down-comer is laid bricks inner lining material transportation system and construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014402A (en) * 2001-06-28 2003-01-15 Shikoku Doki:Kk Unwinding and rewinding device for lengthy matter and tape measure
CN109402313A (en) * 2018-10-31 2019-03-01 中国冶集团有限公司 A kind of blast furnace down-comer is laid bricks inner lining material transportation system and construction method

Similar Documents

Publication Publication Date Title
JP3264330B2 (en) Fluidized bed reduction apparatus for iron ore particles and method for reducing iron ore particles using the apparatus
JP3185058B2 (en) Three-stage fluidized bed type fine iron ore reduction apparatus having an X-shaped circulation tube
JPH0372012A (en) Circulating fluidized bed pre-reduction furnace
JPH10506960A (en) Two-stage fluidized bed furnace for pre-reduction of fine iron ore and method for pre-reduction of fine iron ore using the furnace
WO2000034531A1 (en) Fluidized bed type fine iron ore reducing apparatus, and method therefor
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
JPH06220513A (en) Circulation layer type preliminary reducing furnace for powdery iron ore
JPH03138309A (en) Apparatus for reducing ore
JPH09159371A (en) Outside particle circulating device for circulating fluidized bed reducing device
JP2659589B2 (en) Circulating fluidized bed reduction device
JP2003502503A (en) Two-stage fluidized bed type fine iron ore reduction device and reduction method using the device
JPH06145749A (en) Method for reducing ore by circulating fluidized bed
JP2002533642A (en) Compound fluidized bed type fine iron ore reduction apparatus and method therefor
CN101117665A (en) Fluid-bed reactor for oxido-reduction sintering of high calcium magnesium titanium slag
JPH10238957A (en) Circulating fluidized bed reducing equipment
JPH05331516A (en) Particle circulating device for circulating type fluidized bed pre-reduction furnace
JPH01247519A (en) Outside circulating type fluidized bed furnace
JPH03100112A (en) Method for operating circulating fluidized reduction furnace of powdery ore and reduction furnace
JPH01247520A (en) Outside circulating type fluidized bed furnace
JPH01247987A (en) External circulation type fluidized-bed furnace
JPH0649520A (en) Fluidized bed furnace
JPH0610021A (en) Fluidized bed reducing device and operating method thereof
JPH0754029A (en) Method for pre-reducing grain circulating fluidized bed and apparatus therefor
JPH0637657B2 (en) Circulating fluidized bed pre-reduction method for powdered iron ore
JPH03173709A (en) Method and apparatus for fluidized bed reduction