JPH05331516A - Particle circulating device for circulating type fluidized bed pre-reduction furnace - Google Patents

Particle circulating device for circulating type fluidized bed pre-reduction furnace

Info

Publication number
JPH05331516A
JPH05331516A JP13871392A JP13871392A JPH05331516A JP H05331516 A JPH05331516 A JP H05331516A JP 13871392 A JP13871392 A JP 13871392A JP 13871392 A JP13871392 A JP 13871392A JP H05331516 A JPH05331516 A JP H05331516A
Authority
JP
Japan
Prior art keywords
fluidized bed
reduction furnace
particle
circulation device
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13871392A
Other languages
Japanese (ja)
Other versions
JP2659889B2 (en
Inventor
Kazuhiko Sato
和彦 佐藤
Hiroshi Itaya
宏 板谷
Teruo Kanetsuna
照夫 金綱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13871392A priority Critical patent/JP2659889B2/en
Publication of JPH05331516A publication Critical patent/JPH05331516A/en
Application granted granted Critical
Publication of JP2659889B2 publication Critical patent/JP2659889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To efficiently, stably and circulatively fluidize powdery ore without any fear of the development of back flow gas in a circulating type fluidized bed pre-reduction furnace operation. CONSTITUTION:In a grain circulating device 7 composed of a vertical type circulating device body 8 and an inlet side sloped tube 9 and an outlet side sloped tube 10 incliningly arranged at the lower part and the upper part of the circulating device body, the cross sectional shape of this device body 7 is made to be rectangle and ratio Ri (A/B) of the long side A and the short side B in the rectangular cross section is adjusted in the range of 1.2-5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、粉状鉱石の予備還元
に用いられる循環式流動層予備還元炉の粒子循環装置に
関し、特に循環流動層における粒子循環を効率良くかつ
安定して行うことにより、循環式流動層予備還元炉の操
業を安定化させると共に、生産性の向上を図ろうとする
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle circulation device for a circulating fluidized bed pre-reduction furnace used for preliminary reduction of powdery ores, and more particularly to efficient and stable particle circulation in a circulating fluidized bed. , It aims to stabilize the operation of the circulating fluidized bed preliminary reduction furnace and to improve the productivity.

【0002】[0002]

【従来の技術】循環流動層を利用した粉状鉱石の予備還
元方法として、竪型溶融還元炉で発生した高温の排ガス
を流動層予備還元炉(ライザー)に導入する場合に、流
動層のガス流速を粒子の飛び出し速度(粒子の終端速
度)よりも大きい速度で導入する一方、流動層予備還元
炉から飛び出した予備還元鉱石粉をサイクロンで捕集
し、この捕集した予備還元鉱石粉を、粒子溜め(ダウン
カマー)から粒子循環装置を介してクローズドサーキッ
トで流動層予備還元炉内へ連続的に戻し、かような循環
流動をさせる間に予備還元する方法が知られている(例
えば特開平1−306515号公報、特開平2−4909号公
報)。かかる循環式流動層予備還元炉にはいずれも、循
環量調整弁として粒子循環装置が設置されている。この
装置は、横断面が円筒形状の胴部の下部及び上部に入側
口及び出側口を、また底部には循環量調整用のガス吹込
み口を備え、循環量調整用ガスの増減により粉状鉱石粒
子の循環量を制御する仕組みになっている。
2. Description of the Related Art As a method for preliminarily reducing powdery ores using a circulating fluidized bed, when high temperature exhaust gas generated in a vertical smelting reduction furnace is introduced into a fluidized bed preliminary reduction furnace (riser), the gas in the fluidized bed is used. While introducing the flow velocity at a speed higher than the particle ejection velocity (particle termination velocity), the pre-reduced ore powder ejected from the fluidized bed pre-reduction furnace is collected by a cyclone, and the collected pre-reduced ore powder is A method is known in which particles are continuously returned from a particle reservoir (downcomer) to a fluidized bed preliminary reduction furnace in a closed circuit through a particle circulation device, and preliminary reduction is performed while such circulating flow is performed (for example, Japanese Patent Laid-Open Publication No. Hei 10 (1999) -264242). 1-306515, Japanese Patent Laid-Open No. 2-4909). In each of the circulating fluidized bed preliminary reduction furnaces, a particle circulation device is installed as a circulation amount control valve. This device is equipped with inlet and outlet ports at the bottom and top of the body with a cylindrical cross section, and a gas inlet for adjusting the amount of circulation at the bottom, so that the amount of gas for adjusting the amount of circulation can be increased or decreased. It has a mechanism to control the circulation amount of powdery ore particles.

【0003】図1に、上記した循環式流動層予備還元炉
の代表例を模式で示す。図中、番号1は流動層予備還元
炉、2は該炉内に導入される還元ガス、3は粉状鉱石の
ホッパー、4はフィーダー、5a,5bはそれぞれ粉状
鉱石の供給管、6は粒子溜め、そして7が粒子循環装置
であり、この粒子循環装置7は、循環装置本体8と、そ
の下部及び上部にそれぞれ斜設された入側斜管9及び出
側斜管10からなる。また11は循環装置本体8の底部に設
けられたガス導入口、12はガス分散板、13は流量調節
弁、14, 15はサイクロン、16は輸送管、17は排出装置、
18は粉体輸送管である。
FIG. 1 schematically shows a typical example of the circulating fluidized bed preliminary reduction furnace described above. In the figure, numeral 1 is a fluidized bed preliminary reduction furnace, 2 is a reducing gas introduced into the furnace, 3 is a hopper for powdered ore, 4 is a feeder, 5a and 5b are supply tubes for powdered ore, and 6 is The particle reservoir 7 is a particle circulation device, and the particle circulation device 7 is composed of a circulation device main body 8, and an inlet side oblique pipe 9 and an outlet side oblique pipe 10 which are obliquely provided at the lower part and the upper part thereof, respectively. Further, 11 is a gas inlet provided at the bottom of the circulation device body 8, 12 is a gas dispersion plate, 13 is a flow control valve, 14 and 15 are cyclones, 16 is a transport pipe, 17 is a discharge device,
18 is a powder transport pipe.

【0004】さて図1に示したところにおいて、流動層
予備還元炉1内には、ホッパー3から切り出された粉状
鉱石が供給管5aを介して該還元炉1の下部から供給さ
れると共に、溶融還元炉(図示省略)から排出される 8
00〜1100℃の高温排ガスが流動化還元ガス2として該還
元炉1の底部から導入され、該炉内において流動層が形
成される。なおホッパー3からは供給管5bを介して粒
子溜め6にもその上部から粉状鉱石が装入される。この
流動層予備還元炉1内で予備還元され、該炉1から飛び
出した予備還元鉱石粉19aは、その大半が1段目のサイ
クロン14で捕集され、粒子溜め6内に装入され、この粒
子溜め6から入側斜管9を経由して循環装置本体8に降
下する。循環装置本体8では、その底部から吹き込まれ
る粒子循環量制御ガス20によって、予備還元鉱石粉19b
を出側斜管10を通じて流動層予備還元炉1にクローズド
サーキットで連続的に循環供給することにより、流動層
予備還元が行われる。また1段目のサイクロン14で捕集
されない微細な予備還元鉱石粉19cは、2段目のサイク
ロン15で捕集され、順次に輸送管16を通して粒子溜め6
に戻し、粒子循環装置7で予備還元鉱石粉19bとして再
び流動層予備還元炉1に供給する。
Now, as shown in FIG. 1, powdered ore cut out from the hopper 3 is supplied into the fluidized bed preliminary reduction furnace 1 from the lower part of the reduction furnace 1 through the supply pipe 5a, and Emission from smelting reduction furnace (not shown) 8
High-temperature exhaust gas at 00 to 1100 ° C. is introduced as a fluidized reducing gas 2 from the bottom of the reduction furnace 1, and a fluidized bed is formed in the furnace. It should be noted that from the hopper 3 to the particle reservoir 6 via the supply pipe 5b, powdered ore is also charged from above. Most of the pre-reduced ore powder 19a that has been pre-reduced in the fluidized bed pre-reduction furnace 1 and jumped out of the furnace 1 is collected by the cyclone 14 in the first stage and charged into the particle reservoir 6, It descends from the particle reservoir 6 to the circulation device body 8 via the inlet side inclined pipe 9. In the circulator 8 main body, the pre-reduced ore powder 19b is supplied by the particle circulation amount control gas 20 blown from the bottom thereof.
Is continuously circulated in a closed circuit to the fluidized bed preliminary reduction furnace 1 through the outlet side oblique pipe 10, whereby the fluidized bed preliminary reduction is performed. The fine pre-reduced ore powder 19c which is not collected by the cyclone 14 in the first stage is collected by the cyclone 15 in the second stage, and is sequentially passed through the transport pipe 16 to collect particles 6
Then, it is supplied again to the fluidized bed preliminary reduction furnace 1 as the preliminary reduced ore powder 19b by the particle circulation device 7.

【0005】なお、流動層予備還元炉1内における粒子
の滞留量は、差圧発信器21で検知した信号に基づき、粒
子循環量制御ガス20を調節することにより、適宜に制御
することができる。そして、循環式流動層予備還元炉系
内の予備還元鉱石粉19は、粒子溜め6の下部から排出装
置17で切り出され、粉体輸送管18を経由させて溶融還元
炉に供給される。
The amount of particles retained in the fluidized bed preliminary reduction furnace 1 can be appropriately controlled by adjusting the particle circulation amount control gas 20 based on a signal detected by the differential pressure transmitter 21. .. Then, the preliminary reduced ore powder 19 in the circulation type fluidized bed preliminary reduction furnace system is cut out from the lower part of the particle reservoir 6 by the discharge device 17, and is supplied to the smelting reduction furnace via the powder transport pipe 18.

【0006】[0006]

【発明が解決しようとする課題】循環式流動層では、流
動層予備還元炉から飛び出した予備還元鉱石粉を、サイ
クロンで捕集し、クローズドサーキットで粒子循環装置
を介して連続的に流動層予備還元炉に戻す方式を採って
いるため、流動層予備還元炉内における鉱石粉滞留量を
一定水準は確保し、しかも変動させないことが操業安定
化の上で重要である。また、粉状鉱石を循環式流動層で
連続的に予備還元する場合には、サイクロンにおける予
備還元鉱石粉の集塵効率及び循環経路における安定した
鉱石粉の移動が、操業の安定化や生産性の維持の点で重
要である。さらに、粒子循環装置では、その機能とし
て、粒子循環系から流動層予備還元炉へ安定して粉状鉱
石を供給できることが必要とされる。その他、大きさも
コンパクトで効率的な粒子循環が可能な方が、設備コス
トの面でも有利となる。
In the circulation type fluidized bed, the pre-reduced ore powder jumped out from the fluidized bed preliminary reduction furnace is collected by a cyclone and continuously closed in a fluidized bed preliminary in a closed circuit through a particle circulation device. Since the method of returning to the reduction furnace is adopted, it is important for stable operation that the amount of ore powder retained in the fluidized bed preliminary reduction furnace is maintained at a certain level and is not changed. In the case of continuously pre-reducing powdered ore in a circulating fluidized bed, the dust collection efficiency of the pre-reduced ore powder in the cyclone and the stable movement of the ore powder in the circulation route stabilize the operation and improve the productivity. Is important in terms of maintenance. Further, the particle circulation device is required to have a function capable of stably supplying the powdery ore from the particle circulation system to the fluidized bed preliminary reduction furnace. In addition, it is advantageous in terms of equipment cost that the size is compact and efficient particle circulation is possible.

【0007】しかしながら、操業能率アップの観点から
粒子循環装置を大きくした場合、従来の粒子循環装置
は、本体及び入側、出側斜管ともその横断面が円筒形で
あったために、円筒の中央部近傍の粒子は必ずしも大型
化した装置規模に応じた粒子量を循環装置出側から排出
することができず、そのため必要以上に粒子循環装置を
大きくする必要があり、装置の単位断面積当たりの循環
効率は良好とは言えなかった。また、粉状鉱石の粒子径
が粗粒になると粗粒の鉱石が循環装置内に蓄積し易くな
り、安定な粒子循環に支障をきたす不利もあった。さら
に、円筒形状の胴部に円筒形状の入側口と出側口を備え
ていることもあって、流動層予備還元炉の還元ガスや循
環装置下部から導入される循環量調整用ガスが、粒子溜
めからサイクロンへ逆流ガスとして上昇し易くなるため
に、サイクロンの集塵効率が低下し粒子循環が不安定と
なり、循環式流動層予備還元炉の操業そのものにも悪影
響を及ぼす原因となっていた。
However, in the case of enlarging the particle circulation device from the viewpoint of improving the operating efficiency, the conventional particle circulation device has a cylindrical cross section in both the main body and the inlet and outlet slant pipes, so that the center of the cylinder is The amount of particles in the vicinity of the part cannot always be discharged from the circulation device outlet side according to the size of the enlarged device, so it is necessary to enlarge the particle circulation device more than necessary, and The circulation efficiency was not good. Further, if the particle size of the powdery ore becomes coarse, coarse ores easily accumulate in the circulation device, which is disadvantageous for stable particle circulation. Furthermore, since the cylindrical body has a cylindrical inlet and outlet, the reducing gas of the fluidized bed preliminary reduction furnace and the circulation amount adjusting gas introduced from the lower part of the circulation device, Since it was easy to rise as a backflow gas from the particle reservoir to the cyclone, the dust collection efficiency of the cyclone decreased and the particle circulation became unstable, which also adversely affected the operation itself of the circulating fluidized bed preliminary reduction reactor. .

【0008】この発明は、上記の問題を有利に解決する
もので、粉状鉱石を、効率良く、また逆流ガス発生のお
それなしに安定して循環流動させることができる粒子循
環装置を提案することを目的とする。
The present invention advantageously solves the above problems, and proposes a particle circulation device capable of efficiently circulating and circulating powdery ore efficiently and without fear of backflow gas generation. With the goal.

【0009】さて発明者らは、上記の問題の主要な原因
が、粒子循環装置の経路形状にあるとの考えに立脚し
て、経路の横断面形状について種々検討した。その結
果、循環装置本体、さらには入側、出側斜管の断面形状
を、所定縦横比の矩形断面とすることにより、所期した
目的が有利に達成されることの知見を得た。この発明
は、上記の知見に立脚するものである。
The present inventors have made various studies on the cross-sectional shape of the path, based on the idea that the main cause of the above problem is the path shape of the particle circulation device. As a result, it was found that the intended purpose can be advantageously achieved by making the cross-sectional shape of the circulation device main body, and further the inlet-side and outlet-side oblique pipes a rectangular cross-section with a predetermined aspect ratio. The present invention is based on the above findings.

【0010】[0010]

【課題を解決するための手段】すなわちこの発明は、還
元ガスを導入して粒状鉱石を循環流動させつつ予備還元
する循環式流動層予備還元炉の粒子循環装置であって、
竪型の循環装置本体とその下部及び上部にそれぞれ斜設
された入側斜管及び出側斜管とからなり、該循環装置本
体の横断面形状を矩形とし、かつこの矩形断面の長辺A
と短辺Bとの比R1 (A/B)が 1.2〜5の範囲を満足
することからなる循環式流動層予備還元炉の粒子循環装
置(第1発明)である。
Means for Solving the Problems That is, the present invention relates to a particle circulation device of a circulating fluidized bed pre-reduction furnace for introducing a reducing gas and pre-reducing while circulating and flowing a granular ore,
It is composed of a vertical circulation device main body, and an inlet side oblique pipe and an outlet side oblique pipe obliquely provided on the lower part and the upper part thereof, respectively, and the circulation device main body has a rectangular cross-sectional shape, and the long side A of the rectangular cross section.
And a short side B have a ratio R 1 (A / B) of 1.2 to 5 in the circulating fluidized bed preliminary reduction furnace (first invention).

【0011】またこの発明は、上記第1発明において、
入側斜管及び出側斜管の横断面形状を矩形とし、少なく
とも該斜管の入側口及び出側口の矩形断面の長辺Cが、
循環装置本体の矩形断面の長辺Aと等しく、かつ入側斜
管及び出側斜管の矩形断面の長辺Cと短辺Dとの比R2
(C/D)が 1.2〜5の範囲を満足することからなる循
環式流動層予備還元炉の粒子循環装置(第2発明)であ
る。
The present invention is the same as the first invention,
The cross-sectional shape of the inlet-side oblique pipe and the outlet-side oblique pipe is rectangular, and at least the long side C of the rectangular cross-section of the inlet-side outlet and the outlet-side outlet of the oblique pipe is
A ratio R 2 of the long side C of the rectangular cross section of the circulation device main body and the long side C and the short side D of the rectangular cross section of the inlet side oblique pipe and the outlet side oblique pipe.
(C / D) is a particle circulation device (second invention) of a circulating fluidized bed preliminary reduction furnace, which satisfies the range of 1.2 to 5.

【0012】[0012]

【作用】図2(a),(b)にそれぞれ、従来の粒子循
環装置を平面及び正面で示し、一方図3(a),(b)
には、この発明に従う粒子循環装置を同じく平面及び正
面でそれぞれ示す。さてこの発明に従い、循環装置本体
の矩形横断面の長辺Aと短辺Bとの比R1(A/B)を
1.2〜5とすれば、従来の円筒断面の場合に比較して、
横断面の断面積が両者で等しい場合、断面積当たりの循
環能力が20〜50%向上した。従って同等の循環能力でい
い場合には、その分、粒子循環装置のコンパクト化が可
能なことになる。またさらに、循環装置本体の入側及び
出側斜管についても、矩形横断面の長辺Cと短辺Dとの
比をR2 (C/D)を 1.2〜5の範囲に調整し、かつそ
れぞれの入側口及び出側口の長辺Cを装置本体の長辺A
と等しくしてやれば、流動層予備還元炉からの還元ガス
や循環装置の循環量調整ガスのサイクロンへの逆流ガス
量が低下し、粒子循環装置への粒子の降下が円滑となり
粒子循環も安定して行えることが明らかになったのであ
る。
2 (a) and 2 (b) show a conventional particle circulation device in plan view and front view, respectively, while in FIGS. 3 (a) and 3 (b).
Figure 1 also shows a particle circulation device according to the invention in plan and in front, respectively. Now, according to the present invention, the ratio R 1 (A / B) of the long side A and the short side B of the rectangular cross section of the circulation device body is
If it is 1.2-5, compared to the case of the conventional cylindrical cross section,
When the cross-sectional areas of both cross sections were the same, the circulation capacity per cross-sectional area was improved by 20-50%. Therefore, if the same circulation capacity is required, the particle circulation device can be made compact accordingly. Furthermore, for the inlet and outlet oblique tubes of the circulation device body, the ratio of the long side C and the short side D of the rectangular cross section is adjusted to R 2 (C / D) within the range of 1.2 to 5, and The long side C of each inlet and outlet is the long side A of the device body.
If it is made equal to, the amount of reducing gas from the fluidized bed preliminary reduction furnace and the amount of backflow gas of the circulation amount adjusting gas of the circulation device to the cyclone will decrease, and the particles will smoothly fall to the particle circulation device and the particle circulation will be stable. It became clear that it could be done.

【0013】[0013]

【実施例】前掲図1に示した循環式流動層予備還元炉の
粒子循環装置として、前掲図3に示したような装置を用
い、表1に示す条件で操業試験を行った。得られた操業
試験結果を、表1に併記する。なお循環式流動層予備還
元炉及び竪型溶融還元炉の仕様は、表2のとおりであ
る。
EXAMPLE An operation test was conducted under the conditions shown in Table 1 using the apparatus shown in FIG. 3 as the particle circulation apparatus of the circulation type fluidized bed preliminary reduction furnace shown in FIG. 1 above. The obtained operation test results are also shown in Table 1. Table 2 shows the specifications of the circulating fluidized bed preliminary reducing furnace and the vertical smelting reducing furnace.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 1)循環式流動層予備還元炉 炉径:0.7 m 高さ:7.3 m 2)竪型溶融還元炉 炉径:1.2 m 炉容積:7.7 m 上・下段羽口:各3本[Table 2] 1) Circulating fluidized bed preliminary reduction furnace Furnace diameter: 0.7 m Height: 7.3 m 2) Vertical smelting reduction furnace Furnace diameter: 1.2 m Furnace volume: 7.7 m Upper and lower tuyeres: 3 each

【0016】表1に示したとおり、粒子循環装置の本体
及び入側、出側斜管の横断面形状を適正な矩形断面とし
た適合例1及び2では、循環量変動が低減し、還元鉱石
粉の循環流動を安定して行うことができ、その結果、高
い予備還元率と生産性を得ることができたのに対し、循
環装置本体や斜管が円筒形の比較例では、トラブルが増
えて飛び還元率、生産性も低いものでしかなかった。
As shown in Table 1, in the conforming examples 1 and 2 in which the cross-sectional shapes of the main body of the particle circulation device and the inlet and outlet slant pipes are proper rectangular cross sections, the fluctuation of the circulation amount is reduced, and the reduction ore is reduced. It was possible to stably circulate the powder, and as a result, it was possible to obtain a high preliminary reduction rate and productivity, whereas in the comparative example where the circulation device body and the oblique pipe were cylindrical, troubles increased. The fly reduction rate and productivity were low.

【0017】[0017]

【発明の効果】かくしてこの発明によれば、還元鉱石粉
の循環流動を効率的かつ安定して行うことができるの
で、この粒子循環装置の適用により循環式流動層予備還
元炉操業の安定化及び生産性の向上を達成できる。
As described above, according to the present invention, the circulating flow of the reduced ore powder can be performed efficiently and stably. Therefore, the application of this particle circulation device stabilizes the operation of the circulating fluidized bed preliminary reducing furnace and It is possible to improve productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】代表的な循環式流動層予備還元炉の模式図であ
る。
FIG. 1 is a schematic view of a typical circulating fluidized bed preliminary reduction furnace.

【図2】従来の粒子循環装置を示した図である。FIG. 2 is a view showing a conventional particle circulation device.

【図3】この発明に従う粒子循環装置を示した図であ
る。
FIG. 3 is a diagram showing a particle circulation device according to the present invention.

【符号の説明】[Explanation of symbols]

1 流動層予備還元炉 2 還元ガス 3 粉状鉱石のホッパー 4 フィーダー 5a,5b 粉状鉱石の供給管 6 粒子溜め 7 粒子循環装置 8 循環装置本体8 9 入側斜管 10 出側斜管 11 ガス導入口 12 ガス分散板 13 流量調節弁 14, 15 サイクロン 16 輸送管 17 排出装置 18 粉体輸送管 19 予備還元鉱石粉 20 粒子循環量制御ガス 21 差圧発信器 1 fluidized bed preliminary reduction furnace 2 reducing gas 3 powdered ore hopper 4 feeder 5a, 5b powdered ore supply pipe 6 particle reservoir 7 particle circulation device 8 circulation device body 8 9 inlet side oblique pipe 10 outlet side inclined pipe 11 gas Inlet port 12 Gas dispersion plate 13 Flow control valve 14, 15 Cyclone 16 Transport pipe 17 Discharge device 18 Powder transport pipe 19 Pre-reduced ore powder 20 Particle circulation amount control gas 21 Differential pressure transmitter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 還元ガスを導入して粒状鉱石を循環流動
させつつ予備還元する循環式流動層予備還元炉の粒子循
環装置であって、竪型の循環装置本体とその下部及び上
部にそれぞれ斜設された入側斜管及び出側斜管とからな
り、該循環装置本体の横断面形状を矩形とし、かつこの
矩形断面の長辺Aと短辺Bとの比R1(A/B)が 1.2
〜5の範囲を満足することを特徴とする循環式流動層予
備還元炉の粒子循環装置。
1. A particle circulation device of a circulating fluidized bed pre-reduction furnace which introduces a reducing gas and circulates and fluidizes granular ore while preliminarily reducing the ore. The circulator has a rectangular cross-section, and the ratio R 1 (A / B) of the long side A and the short side B of the rectangular cross section is made up of an inlet side sloping tube and an outlet side sloping tube. Is 1.2
A particle circulation device of a circulating fluidized bed preliminary reduction furnace, characterized in that the range of 5 to 5 is satisfied.
【請求項2】 請求項1において、入側斜管及び出側斜
管の横断面形状を矩形とし、少なくとも該斜管の入側口
及び出側口の矩形断面の長辺Cが、循環装置本体の矩形
断面の長辺Aと等しく、かつ入側斜管及び出側斜管の矩
形断面の長辺Cと短辺Dとの比R2 (C/D)が 1.2〜
5の範囲を満足することを特徴とする循環式流動層予備
還元炉の粒子循環装置。
2. The circulation device according to claim 1, wherein the cross-sectional shape of the inlet side slant pipe and the outlet side slant pipe is rectangular, and at least the long side C of the rectangular cross section of the inlet side port and the outlet side port of the slant pipe. The length R is equal to the long side A of the rectangular cross section of the main body and the ratio R 2 (C / D) of the long side C and the short side D of the rectangular cross section of the inlet side oblique pipe and the outlet side oblique pipe is 1.2 to.
A particle circulation device for a circulating fluidized bed preliminary reduction furnace, characterized in that the range of 5 is satisfied.
JP13871392A 1992-05-29 1992-05-29 Particle circulation device of circulating fluidized bed pre-reduction furnace Expired - Lifetime JP2659889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13871392A JP2659889B2 (en) 1992-05-29 1992-05-29 Particle circulation device of circulating fluidized bed pre-reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13871392A JP2659889B2 (en) 1992-05-29 1992-05-29 Particle circulation device of circulating fluidized bed pre-reduction furnace

Publications (2)

Publication Number Publication Date
JPH05331516A true JPH05331516A (en) 1993-12-14
JP2659889B2 JP2659889B2 (en) 1997-09-30

Family

ID=15228391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13871392A Expired - Lifetime JP2659889B2 (en) 1992-05-29 1992-05-29 Particle circulation device of circulating fluidized bed pre-reduction furnace

Country Status (1)

Country Link
JP (1) JP2659889B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060203A (en) * 2008-09-03 2010-03-18 National Maritime Research Institute Fluidized bed apparatus equipped with function of improving heat transfer rate and fluidizing method of fluidized bed
US8292977B2 (en) 2007-03-02 2012-10-23 Ihi Corporation System for controlling circulatory amount of particles in circulating fluidized bed furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292977B2 (en) 2007-03-02 2012-10-23 Ihi Corporation System for controlling circulatory amount of particles in circulating fluidized bed furnace
JP2010060203A (en) * 2008-09-03 2010-03-18 National Maritime Research Institute Fluidized bed apparatus equipped with function of improving heat transfer rate and fluidizing method of fluidized bed

Also Published As

Publication number Publication date
JP2659889B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US6110413A (en) 3-Stage fluidized bed type fine iron ore reducing apparatus having x-shaped circulating tubes
JPH05331516A (en) Particle circulating device for circulating type fluidized bed pre-reduction furnace
CN113167534B (en) Fluidized bed furnace
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
KR970043093A (en) Two-stage fluidized bed preliminary reduction apparatus for iron ore and its method
JPH06122914A (en) Device for circulating particles in circulation type fluidized-bed pre-reduction furnace
KR20000038827A (en) Flow-type pre-reduction apparatus of powder iron ore and pre-reducing method with the same
JP2000510535A (en) Two-stage dual single fluidized bed prereduction apparatus and method for prereduction of fine iron ore
JP2536642B2 (en) Method of adjusting gas flow for preliminary reduction in smelting reduction equipment equipped with preliminary reduction furnace
JP2765737B2 (en) Operating method of fluidized bed prereduction furnace and fluidized bed prereduction furnace
JPH03138309A (en) Apparatus for reducing ore
JPH06145749A (en) Method for reducing ore by circulating fluidized bed
JPH0610021A (en) Fluidized bed reducing device and operating method thereof
JPH06192715A (en) Circuiting type fluidized bed pre-reduction furnace for powdery ore
JPH0372012A (en) Circulating fluidized bed pre-reduction furnace
JP2659589B2 (en) Circulating fluidized bed reduction device
JPH0649520A (en) Fluidized bed furnace
KR100213342B1 (en) Dual fludized-bed reactor for the reduction of fine ore
JPH059530A (en) Method for operating circulating fluidized bed pre-reduction furnace for powdery ore
JPH04366388A (en) Powder circulation fluidized bed reactor
JPH09159371A (en) Outside particle circulating device for circulating fluidized bed reducing device
JPH03215621A (en) Circulating fluidized bed prereduction for powdery iron ore
JPH0328305A (en) Fluidized bed type pre-reduction furnace for iron or nonferrous ore
JPH0754029A (en) Method for pre-reducing grain circulating fluidized bed and apparatus therefor
JPH04314832A (en) Method for reducing pulverized ore by circulating fluidized bed