JPH01247519A - Outside circulating type fluidized bed furnace - Google Patents

Outside circulating type fluidized bed furnace

Info

Publication number
JPH01247519A
JPH01247519A JP7724688A JP7724688A JPH01247519A JP H01247519 A JPH01247519 A JP H01247519A JP 7724688 A JP7724688 A JP 7724688A JP 7724688 A JP7724688 A JP 7724688A JP H01247519 A JPH01247519 A JP H01247519A
Authority
JP
Japan
Prior art keywords
riser
gas
furnace
fine ore
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7724688A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Egashira
江頭 達彦
Kazuya Kunitomo
和也 国友
Tetsuaki Yamamoto
山本 哲明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7724688A priority Critical patent/JPH01247519A/en
Publication of JPH01247519A publication Critical patent/JPH01247519A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve treating efficiency by arranging plural number of baffle plates in a riser so as to cross rising of fluidized gas to interrupt granule rising while getting on the fluidized gas. CONSTITUTION:The plural number of baffle plats 11 crossing the rising stream of the gas in the inner part of the riser 1 parallel arranging a down comer 2, are arranged as zigzag-state to furnace height direction. Reducing gas blown into the riser 1 is flowed as showing with the arrow mark 13. The fire ore floated in the gas is collided to the bottom face of the baffle plate 11 and separated from the gas stream to circulate the inner part of the riser 1. In this result, the fire ore quantity discharged through derivating tube 3 is made to little and concn. of the fire ore in the furnace can be maintained to high. By this method, the fire ore is actively brought into contact with the fluidized gas and the treatment of preheating, drying, pre-reduction, etc., can be efficiently executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉鉱石等の粉粒状材料を加熱ガスによって処
理する場合に使用する外部循環式流動層炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an external circulation fluidized bed furnace used when treating particulate materials such as fine ore with heated gas.

〔従来の技術〕[Conventional technology]

従来の高炉による溶銑製造技術に代わるものとして、溶
融還元法が注目を浴びている。この方法で使用する溶融
還元炉は、使用する[$=lに制約を受けることなく、
より小規模な設備により鉄系合金の溶湯を製造すること
を目的として開発されたものである。また、溶融還元炉
で発生した排ガスの還元力及び熱を有効に利用するため
、流動化ガスとして流動層炉で原料鉱石を予熱、予備還
元する方法等も開発されている。
The smelting reduction method is attracting attention as an alternative to the conventional hot metal production technology using a blast furnace. The smelting reduction furnace used in this method can be used [without restrictions on $=l,
It was developed for the purpose of producing molten iron-based alloys using smaller-scale equipment. Furthermore, in order to effectively utilize the reducing power and heat of the exhaust gas generated in the smelting reduction furnace, a method has been developed in which raw ore is preheated and pre-reduced in a fluidized bed furnace as a fluidizing gas.

また、大きな空塔速度で流動化ガスを流動層炉を構成す
るライザーの内部に吹き込み、粉鉱石の予熱、予備還元
等を高速で行う炉外循環式流動層炉が知られている(特
開昭56−105409号公報)。この場合、流動化ガ
スの空塔速度が大きくなるに従って、ライザーから外部
に飛散する粉鉱石の割合も大きくなる。そこで、飛散し
た粉鉱石は、炉外循環経路を構成するダウンカマーに設
けられたサイクロンで排ガスから分離・捕捉されて、流
動層炉に戻される。
In addition, an external circulation type fluidized bed furnace is known in which fluidizing gas is blown into the riser constituting the fluidized bed furnace at a high superficial velocity to perform preheating, preliminary reduction, etc. of fine ore at high speed (Unexamined Japanese Patent Publication No. Publication No. 56-105409). In this case, as the superficial velocity of the fluidizing gas increases, the proportion of fine ore that is scattered to the outside from the riser also increases. Therefore, the scattered fine ore is separated and captured from the exhaust gas by a cyclone provided in a downcomer that constitutes an extra-furnace circulation path, and is returned to the fluidized bed furnace.

この種の流動層炉に関して、本発明者等は、ライザーの
内部で粉粒体と流動化ガスとの接触状態を改善するため
、複数の突起物を炉内に円周方向に設けたものを開発し
、特願昭61−288672号として出願した。また、
炉内に炉高方向に複数個の拡大縮小部を設けたものを、
特願昭61−286600号として出願した。
Regarding this type of fluidized bed furnace, the present inventors have developed a furnace in which a plurality of protrusions are provided in the circumferential direction in order to improve the contact state between the powder and the fluidizing gas inside the riser. It was developed and filed as Japanese Patent Application No. 61-288672. Also,
A furnace with multiple expansion/contraction parts in the direction of the furnace height,
It was filed as Japanese Patent Application No. 1986-286600.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、特願昭61−288672号で提案した突起
物は炉高方向に延びているために、隣接する突起物に挟
まれた部分に袋状の空間部が生じる。そして、流動化ガ
スとして炉内に吹き込まれた還元ガスは、炉!近傍では
この袋状空間部に沿った流れとなり、炉壁近傍のガス流
を整流化しやすく、炉壁近傍に生じる粒子の下降流が少
なくなり、ライザー内の内部循illが増大する傾向が
抑えられ、粉粒体が新鮮な流動化ガスに接触する機会が
少なくなる。
However, since the protrusions proposed in Japanese Patent Application No. 61-288672 extend in the direction of the furnace height, a bag-like space is created between adjacent protrusions. The reducing gas that is blown into the furnace as a fluidizing gas is the furnace! In the vicinity, the flow follows this bag-like space, making it easier to rectify the gas flow near the furnace wall, reducing the downward flow of particles generated near the furnace wall, and suppressing the tendency for internal circulation in the riser to increase. , the opportunity for the granular material to come into contact with fresh fluidizing gas is reduced.

また、特願昭61−286600号におけるう゛イザー
では、縮小部及び拡大部の断面積変化率を2倍以上にし
、且つ還元ガスの流れを充分に縮小・拡大流にしなけれ
ば、粒子の内部循環量を増加させることが望めない。す
なわち、縮小部では、粒子が還元ガスと大きくスリップ
するように、還元ガスの速度を急速に高める必要がある
。他方、拡大部では、還元ガスの流れを充分に拡大して
ガス速度を低下させ、粒子搬送能力を下げる必要がある
。このため、ライザーの径及び高さが非常に大きなもの
となる。
Furthermore, in the evaporator disclosed in Japanese Patent Application No. 61-286600, if the rate of change in cross-sectional area of the contracting part and the expanding part is doubled or more, and if the flow of the reducing gas is not made into a sufficiently contracted/expanded flow, the internal circulation of particles will be prevented. It is not possible to increase the amount. That is, in the reduction section, it is necessary to rapidly increase the speed of the reducing gas so that the particles have a large slip with the reducing gas. On the other hand, in the expansion section, it is necessary to sufficiently expand the flow of the reducing gas to reduce the gas velocity and reduce the particle transport ability. Therefore, the diameter and height of the riser become very large.

ところで、炉外循環経路を備えた流動層炉に装入された
粉鉱石は、還元ガスによって流動化した状態でライザー
内を上昇する。このとき、ライザーの上部付近で、粉鉱
石と還元ガスとの速度差、すなわちスリップ速度はほぼ
零となる。そのために、粉鉱石はガスに同伴されてライ
ザー内から速やかに排出され、ライザー内部における粒
子循環量が少ないものとなる。このように、ライザー内
の粒子濃度が低く、しかも粒子滞留時間が短いため、粉
鉱石の還元速度が遅く、還元ガスの利用効率も悪いもの
であった。ここで、粉鉱石の循環量を増加させることに
より、ライザー内にある粉鉱石の濃度をある程度まで高
めることができる。しかし、このためには外部循環装置
を大規模なものとすることが必要になる。
Incidentally, fine ore charged into a fluidized bed furnace equipped with an extra-furnace circulation path rises within the riser in a state where it is fluidized by reducing gas. At this time, near the top of the riser, the speed difference between the fine ore and the reducing gas, that is, the slip speed, becomes almost zero. Therefore, the fine ore is quickly discharged from the riser along with the gas, and the amount of particles circulating inside the riser is reduced. As described above, since the particle concentration in the riser is low and the particle residence time is short, the reduction rate of fine ore is slow and the efficiency of reducing gas utilization is poor. Here, by increasing the circulation amount of fine ore, the concentration of fine ore in the riser can be increased to a certain extent. However, this requires a large-scale external circulation device.

このような問題は、粉鉱石の予備還元に限ったものでは
なく、粉粒体の予熱、乾燥や石炭焚の高速流動層炉等の
炉外循環系を備えた流動層炉に共通するものである。
These problems are not limited to the preliminary reduction of fine ore, but are common to preheating and drying of powder and granules, and to fluidized bed furnaces equipped with an external circulation system, such as coal-fired high-speed fluidized bed furnaces. be.

そこで、本発明は、流動化ガスの上昇流を横切る邪魔板
を炉内に設けることにより、流動化ガスに乗って炉内を
上昇しようとする粉粒体を遮り、粉粒体を新鮮な流動化
ガスに積極的に接触させて処理効率を高めることを目的
とする。
Therefore, the present invention provides a baffle plate in the furnace that crosses the upward flow of the fluidizing gas, thereby blocking the powder and granules from rising inside the furnace on the fluidizing gas, and moving the powder and granules into a fresh flow. The purpose is to increase treatment efficiency by actively contacting the chemical gas.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の外部循環式流動層炉は、その目的を達成するた
めに、ダウンカマーが併設されたライザーの内部空間に
、流動化ガスに随伴された粉粒体の上昇を阻止する複数
の邪魔板を、前記流動化ガスの上昇流を横切るように設
けたことを特徴とする。
In order to achieve this objective, the external circulation type fluidized bed furnace of the present invention has a plurality of baffle plates installed in the internal space of the riser provided with the downcomer to prevent the powder and granules accompanied by the fluidizing gas from rising. is provided so as to cross the upward flow of the fluidizing gas.

〔実施例〕〔Example〕

以下、図面を参照しながら、実施例により本発明の特徴
を具体的に説明する。
Hereinafter, the features of the present invention will be specifically explained using examples with reference to the drawings.

第1図は、本発明を粉鉱石の予備還元に適用した第1実
施例の流動層炉を示す概略図である。
FIG. 1 is a schematic diagram showing a first embodiment of a fluidized bed furnace in which the present invention is applied to preliminary reduction of fine ore.

この流動層炉は、流動層本体を構成するライザーlにダ
ウンカマー2を併設している。このダウンカマー2は、
上部が導出管3で下部が導入管4でライザー1に接続さ
れている。そして、装入管5からライザー1内に装入さ
れた粉鉱石は、ライザー1の底部に開口したガス吹込み
羽口6から吹き込まれる還元ガスによって流動化され、
ライザ−1内部を上昇する。
In this fluidized bed furnace, a downcomer 2 is attached to a riser l that constitutes a fluidized bed main body. This downcomer 2 is
The upper part is connected to the riser 1 by an outlet pipe 3 and the lower part by an inlet pipe 4. The fine ore charged into the riser 1 from the charging pipe 5 is fluidized by the reducing gas blown from the gas injection tuyere 6 opened at the bottom of the riser 1.
Rise inside riser-1.

ガスに随伴されてライザー1から排出された粉鉱石は、
導出管3を経てサイクロン7に送り込まれる。サイクロ
ン7で固気分離された粉鉱石は、ダウンカマー2を通っ
て導入管4からライザー1に返送される。他方、サイク
ロン7で粉鉱石から分離されたガスは、排ガスとして排
気管8を介して系外に放出される。
The fine ore discharged from riser 1 accompanied by gas is
It is fed into the cyclone 7 through the outlet pipe 3. The fine ore separated into solid and gas by the cyclone 7 is returned to the riser 1 from the introduction pipe 4 through the downcomer 2. On the other hand, the gas separated from the fine ore by the cyclone 7 is discharged to the outside of the system via the exhaust pipe 8 as exhaust gas.

このライザー1→導出管3→サイクロン7→ダウンカマ
ー2→導入管4→ライザーlを循環する粉鉱石の循環経
路において、ダウンカマー2の途中に細粒取出し管9を
設け、溶融還元炉の操業状態に応じて細粒の還元鉱を連
続的に又は間歇的に取り出す。また、ライザー1の下部
に粗粒取出し管IOを設け、ライザー1内に滞留する粗
粒粉鉱石の量が多くなった場合に、その粗粒粉鉱石を適
宜ライザー1から取り出す。
In the circulation path of the fine ore that circulates through the riser 1 → outlet pipe 3 → cyclone 7 → downcomer 2 → introduction pipe 4 → riser 1, a fine particle extraction pipe 9 is installed in the middle of the downcomer 2, and the melting and reduction furnace is operated. Depending on the condition, fine-grained reduced ore is extracted continuously or intermittently. Further, a coarse grain removal pipe IO is provided at the lower part of the riser 1, and when the amount of coarse grain powder ore staying in the riser 1 increases, the coarse grain powder ore is taken out from the riser 1 as appropriate.

本実施例の流動層炉においては、ライザー1の内部にガ
スの上昇流を横切って複数の邪魔板11が設けられてい
る。この邪魔板11としては、ガスに随伴されて上昇す
る粉鉱石が衝突し易く、また上面に堆積した粉鉱石の成
長がないように、はぼ三角形状の断面をもっている。ま
た、第2図の平断面図で示すように、ライザーlの内壁
と同心円状になった環状断面をもっている。そして、ラ
イザー1の内壁に対して、支持腕12等の適宜の手段に
よって固定されている。
In the fluidized bed furnace of this embodiment, a plurality of baffle plates 11 are provided inside the riser 1 across the upward flow of gas. The baffle plate 11 has a substantially triangular cross section so that the fine ore that rises with the gas easily collides with it and prevents the growth of the fine ore deposited on the upper surface. Further, as shown in the plan sectional view of FIG. 2, it has an annular cross section that is concentric with the inner wall of the riser l. It is fixed to the inner wall of the riser 1 by appropriate means such as a support arm 12.

邪魔板11は、第1図に示すようにライザー1の炉高方
向に多段に配置されている。そして、上下方向に関して
千鳥状に邪魔板11を設けることにより、下役の邪魔板
11が上段の邪魔板11と重ならないようにしている。
The baffle plates 11 are arranged in multiple stages in the furnace height direction of the riser 1, as shown in FIG. By providing the baffle plates 11 in a staggered manner in the vertical direction, the lower baffle plates 11 are prevented from overlapping with the upper baffle plates 11.

これによって、ライザーlに吹き込まれた還元ガスは、
炉内を矢印13で示したように流れる。そのため、ガス
に浮遊している粉鉱石は、邪魔板11の底面に衝突して
ガス流から分離し、ライザー1の内部を循環する。その
結果、導出管3を経由して排出される粉鉱石の量が少な
くなり、炉内における粉鉱石の濃度を高く維持すること
ができる。
As a result, the reducing gas blown into the riser l is
It flows in the furnace as shown by arrow 13. Therefore, the fine ore floating in the gas collides with the bottom surface of the baffle plate 11, is separated from the gas flow, and circulates inside the riser 1. As a result, the amount of fine ore discharged via the outlet pipe 3 is reduced, and the concentration of fine ore in the furnace can be maintained high.

この邪魔板11の位置は、ライデー1の内径をRとする
とき、ライザー1の中心から0.8XRまでの範囲とす
ることが好ましい。すなわち、この範囲では、還元ガス
の流れに乗って粉鉱石が上昇している。そこで、この粉
鉱石の上昇を邪魔板11で阻止し、重力落下させること
により、ライザー1内の粉鉱石濃度が高くなる。なお、
0.8XRから炉壁までの範囲は、炉壁内面に沿って粉
鉱石が下降しており、ここの邪魔板11を設けても粉鉱
石の上昇を阻止する面から効果的でない。また、第1図
に示すように、炉高方向に邪魔板11を千鳥状に設ける
ことにより、ライザー1の断面全体にわたって粉鉱石の
落下が生じ、粉鉱石濃度が一様に高められる。
The position of this baffle plate 11 is preferably within a range of 0.8XR from the center of the riser 1, where R is the inner diameter of the riser 1. That is, in this range, fine ore is rising along with the flow of reducing gas. Therefore, the concentration of fine ore in the riser 1 is increased by preventing the fine ore from rising with the baffle plate 11 and allowing it to fall by gravity. In addition,
In the range from 0.8XR to the furnace wall, fine ore descends along the inner surface of the furnace wall, and even if the baffle plate 11 is provided here, it is not effective in preventing the fine ore from rising. Further, as shown in FIG. 1, by providing the baffle plates 11 in a staggered manner in the direction of the furnace height, the fine ore falls over the entire cross section of the riser 1, and the fine ore concentration is uniformly increased.

第3図は、ライザー1に対する導出管3の接続部3aの
近傍に邪魔板11を設けた第2実施例を説明するための
図である。ライザー1の上部、すなわち接続f13a近
傍では、スリップ速度がほぼ零となるため、ガスに浮遊
している粉鉱石はガス流にのってライザー1から持ち出
され易い。そこで、この部分に邪魔板11を設けること
によって、粉鉱石を邪魔板11に衝突させ、固気分離を
促進させている。
FIG. 3 is a diagram for explaining a second embodiment in which a baffle plate 11 is provided near the connecting portion 3a of the outlet pipe 3 to the riser 1. In the upper part of the riser 1, that is, in the vicinity of the connection f13a, the slip speed is almost zero, so the fine ore suspended in the gas is easily carried out from the riser 1 by the gas flow. Therefore, by providing the baffle plate 11 in this portion, the fine ore is allowed to collide with the baffle plate 11, thereby promoting solid-gas separation.

ライザー1とサイクロン7との間を、第4図に示すよう
に、漢方向に延びる導出管3によって連絡する場合もあ
る。この例においては、ライザーlに対する導出管3の
接続部に、傾斜板を邪魔板11として配置している。こ
の邪魔板11により、導出管3の流路断面積が絞られ、
導出管3に流れ込むガスに浮遊している粉鉱石が邪魔板
11に衝突する。その結果、粉鉱石は、ガス流から分離
され、邪魔板11から落下してライザー1内に戻される
As shown in FIG. 4, the riser 1 and the cyclone 7 may be connected by an outlet pipe 3 extending in the Chinese direction. In this example, an inclined plate is arranged as a baffle plate 11 at the connection portion of the outlet pipe 3 to the riser l. This baffle plate 11 narrows the flow path cross-sectional area of the outlet pipe 3,
Fine ore floating in the gas flowing into the outlet pipe 3 collides with the baffle plate 11. As a result, the fine ore is separated from the gas stream and falls from the baffle plate 11 back into the riser 1.

第5図は、この邪魔板11の効果を具体的に表したグラ
フである。なお、この場合の邪魔板11は、第1図に示
した位置関係でライザーl内に配置した。第5図から明
らかなように、邪魔板11を設けることにより、ライデ
ー1内の空隙率を約5%下げることができた。なお、こ
こで空隙率は、粒子の存在率を表すものであり、ライザ
ー1の内容積に対して炉内で粒子の占める空間を除いた
ものの割合で示している。この空隙率の減少に伴ってラ
イザーl内の粉鉱石濃度が高まり、吹き込まれた還元ガ
スとの接触反応が効率良く行われる。
FIG. 5 is a graph specifically showing the effect of this baffle plate 11. Note that the baffle plate 11 in this case was arranged within the riser l in the positional relationship shown in FIG. As is clear from FIG. 5, by providing the baffle plate 11, it was possible to reduce the porosity inside the lid 1 by about 5%. Note that the porosity here represents the existence rate of particles, and is expressed as a ratio of the internal volume of the riser 1 excluding the space occupied by the particles in the furnace. As the porosity decreases, the concentration of fine ore in the riser 1 increases, and the catalytic reaction with the injected reducing gas is efficiently carried out.

たとえば、断面積比60%で邪魔板11を3段配置した
ライザー1内に、酸化度lO%の還元ガスを2Nm’/
分の流量で吹き込み、炉外循環量を150kg/m′秒
として、平均粒径130戸の粉鉱石を還元したところ、
処理時間2.5時間で還元率60%の還元鉱が得られた
。また、排気管8から排出された排ガスの酸化度は、約
30%であった。これに対し、邪魔板11を設けずに同
様な条件の下で粉鉱石を還元したところ、60%還元率
の還元鉱を得るのに約3時間が必要であり、排ガスの酸
化度は25%であった。
For example, a reducing gas with an oxidation degree of 10% is introduced at 2Nm'/
When fine ore with an average particle size of 130 units was reduced by blowing at a flow rate of 150 kg/m's and an external circulation rate of 150 kg/m's,
Reduced ore with a reduction rate of 60% was obtained after a treatment time of 2.5 hours. Further, the degree of oxidation of the exhaust gas discharged from the exhaust pipe 8 was about 30%. On the other hand, when fine ore was reduced under the same conditions without providing the baffle plate 11, it took about 3 hours to obtain reduced ore with a reduction rate of 60%, and the degree of oxidation of the exhaust gas was 25%. Met.

この対比から明らかなように、本実施例によるとき、粉
鉱石の予備還元が迅速に行われ、しかも還元ガスの利用
効率が高いものであった。
As is clear from this comparison, in this example, the preliminary reduction of the fine ore was carried out quickly and the efficiency of use of the reducing gas was high.

なお、本発明は、以上に説明した粉鉱石の予備還元に限
らず、粉粒体の予熱、乾燥1石炭焚の高速流動層炉等に
対しても同様に適用されることは勿論である。
It goes without saying that the present invention is not limited to the preliminary reduction of fine ore described above, but is similarly applicable to preheating of powder or granules, drying, and a single coal-fired high-speed fluidized bed furnace.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、ライザーの
内部に設けた邪魔板によって、流動化ガスに随伴された
粉粒体の上昇を阻止している。そのため、ライザー内の
粉粒体濃度を高く維持し、流動化ガスと盛んに接触させ
、予熱、乾燥、予備還元等の処理が効率良く行われる。
As explained above, in the present invention, the baffle plate provided inside the riser prevents the powder and granules accompanied by the fluidizing gas from rising. Therefore, the concentration of the powder in the riser is maintained high, the powder is brought into frequent contact with the fluidizing gas, and processes such as preheating, drying, preliminary reduction, etc. are performed efficiently.

また、ライザ〜から排出される粉粒体の量が少なくなる
ため、ダウンカマーに設けるサイクロンとして、流動層
炉の能力に比較して小型のものを使用することが可能と
なる。
Furthermore, since the amount of powder discharged from the riser is reduced, it is possible to use a cyclone provided in the downcomer that is smaller than the capacity of the fluidized bed furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例における流動層炉を示す概
略図であり、第2図はライデ一部の平断面図、第3図及
び第4図は他の実施例を説明するだめの図であり、第5
図は本発明の効果を具体的に表したグラフである。 ■=ライザー       2:ダウンカマー3:導出
管       3a:接続部4:導入管      
 5:装入管 6:ガス吹込み羽口   7:サイクロン8;排気管 
      9:細粒取出し管10:粗粒取出し管  
  11:邪魔板12:支持腕       13:ガ
スの流れ特許出願人    新日本製鐵 株式會社代 
 理  人      小  堀   益 (ばか2名
)第1図   第2図 第3図   第4図 第5図 ガス流速(m15 )
FIG. 1 is a schematic diagram showing a fluidized bed furnace in a first embodiment of the present invention, FIG. 2 is a plan cross-sectional view of a part of the leide, and FIGS. 3 and 4 are for explaining other embodiments. , and the fifth
The figure is a graph specifically expressing the effects of the present invention. ■=Riser 2: Downcomer 3: Outlet pipe 3a: Connection part 4: Inlet pipe
5: Charge pipe 6: Gas blowing tuyere 7: Cyclone 8; Exhaust pipe
9: Fine grain extraction pipe 10: Coarse grain extraction pipe
11: Baffle plate 12: Support arm 13: Gas flow patent applicant Nippon Steel Corporation representative
Masu Kobori (2 idiots) Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Gas flow velocity (m15)

Claims (1)

【特許請求の範囲】[Claims] 1、ダウンカマーが併設されたライザーの内部空間に、
流動化ガスに随伴された粉粒体の上昇を阻止する複数の
邪魔板を、前記流動化ガスの上昇流を横切るように設け
たことを特徴とする外部循環式流動層炉。
1. In the internal space of the riser where the downcomer is attached,
1. An external circulation type fluidized bed furnace, characterized in that a plurality of baffle plates are provided across the upward flow of the fluidizing gas to prevent the powder particles accompanying the fluidizing gas from rising.
JP7724688A 1988-03-29 1988-03-29 Outside circulating type fluidized bed furnace Pending JPH01247519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7724688A JPH01247519A (en) 1988-03-29 1988-03-29 Outside circulating type fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7724688A JPH01247519A (en) 1988-03-29 1988-03-29 Outside circulating type fluidized bed furnace

Publications (1)

Publication Number Publication Date
JPH01247519A true JPH01247519A (en) 1989-10-03

Family

ID=13628502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7724688A Pending JPH01247519A (en) 1988-03-29 1988-03-29 Outside circulating type fluidized bed furnace

Country Status (1)

Country Link
JP (1) JPH01247519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094114A1 (en) * 2006-02-14 2007-08-23 Kureha Corporation Continuous particulate high-temperature gas treatment apparatus and method of treating
JP2017141997A (en) * 2016-02-08 2017-08-17 三菱日立パワーシステムズ株式会社 Fluidized bed boiler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094114A1 (en) * 2006-02-14 2007-08-23 Kureha Corporation Continuous particulate high-temperature gas treatment apparatus and method of treating
US7939028B2 (en) 2006-02-14 2011-05-10 Kureha Corporation Apparatus and method for continuous high temperature gas treatment of particulate matter
JP5178503B2 (en) * 2006-02-14 2013-04-10 株式会社クレハ Continuous powder high temperature gas processing apparatus and processing method
KR101271275B1 (en) * 2006-02-14 2013-06-04 가부시끼가이샤 구레하 Continuous particulate high temperature gas treatment apparatus and method of treating
US8840862B2 (en) 2006-02-14 2014-09-23 Kureha Corporation Apparatus and method for continuous high temperature gas treatment of particulate matter
JP2017141997A (en) * 2016-02-08 2017-08-17 三菱日立パワーシステムズ株式会社 Fluidized bed boiler

Similar Documents

Publication Publication Date Title
US5330556A (en) Method for treating gas and particulate solids in a fluid bed
RU2158769C2 (en) Three-stage gear for reduction of fine-grain iron ore in fluidized layer
JP5095082B2 (en) Method and equipment for transporting fine solids
US3266788A (en) Fluidized bed reactor and method of operating same
US5585071A (en) Method and apparatus for treating hot gases
AU2003296631B2 (en) Method and plant for the heat treatment of sulfidic ores using annular fluidized bed
US3511616A (en) Fluidized bed reactor windbox with scavenging jets
JPH01247519A (en) Outside circulating type fluidized bed furnace
WO2005080616A1 (en) Process for reducing solids containing copper in a fluidized bed
JPH10506960A (en) Two-stage fluidized bed furnace for pre-reduction of fine iron ore and method for pre-reduction of fine iron ore using the furnace
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
AU655930B2 (en) Method and apparatus for treating gases and/or solid material in a circulating fluidized bed reactor
JPH01247520A (en) Outside circulating type fluidized bed furnace
JPH01247521A (en) Outside circulating type fluidized bed furnace
JPS59196730A (en) Ore catalyst method
JPH01247988A (en) External circulation type fluidized-bed furnace
WO2007137330A1 (en) A horizontal fluidised bed reactor
JP3204917B2 (en) Fluidized bed furnace
JPH01247518A (en) Outside circulating type fluidized bed furnace
JPH03138309A (en) Apparatus for reducing ore
JP3045408B2 (en) Powder circulating fluidized bed reactor
JPH0561323B2 (en)
JPH0372012A (en) Circulating fluidized bed pre-reduction furnace
JPH01242724A (en) Circulation fluidized bed reactor for powder
JPH0649520A (en) Fluidized bed furnace