JPH01247988A - External circulation type fluidized-bed furnace - Google Patents

External circulation type fluidized-bed furnace

Info

Publication number
JPH01247988A
JPH01247988A JP7257188A JP7257188A JPH01247988A JP H01247988 A JPH01247988 A JP H01247988A JP 7257188 A JP7257188 A JP 7257188A JP 7257188 A JP7257188 A JP 7257188A JP H01247988 A JPH01247988 A JP H01247988A
Authority
JP
Japan
Prior art keywords
riser
furnace
inner tube
fine ore
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7257188A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Egashira
江頭 達彦
Yoichi Hayashi
洋一 林
Tetsuaki Yamamoto
山本 哲明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7257188A priority Critical patent/JPH01247988A/en
Publication of JPH01247988A publication Critical patent/JPH01247988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To restrain the amount of granular bodies, flowing through the external circulation system of a furnace, to maintain the density of the granular bodies, floating in the furnace, in high density and increase granular body processing capacity per unit volume of the furnace, by constituting the fluidized- bed furnace with a double structure, in which an inner tube is arranged in a riser. CONSTITUTION:A tapered part 6 is provided at the lower end of a riser 1 and an inner tube 7, having a diameter larger than or equal to the inner diameter of the tapered part 6, is provided. Reduction gas 12 fluidizes powder ore 8, supplied to the bottom 11 of the riser 1, then, ascends through the inner tube 7 as ascending stream 15. When the powder ore is discharged out of the inner tube 7, the powder ore stalls and flows down as descending flow 16. The powder ore falls to the bottom 11 comparatively freely from the accumulating part 17 thereof due to the proper size of the inner tube 7 and becomes circulating flow, riding on ascending flow 15. The accompanied flow 19 of the powder ore is sent into a cyclone 5 through a delivery pipe 2 and solid particles are separated from gas, thereafter, the solid particles are sent into an introducing pipe 3 through a down commer 4 and are sent into the riser 1 again.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉鉱石等の粉粒状材料を加熱ガスによって処
理する場合に使用する外部循環式流動層炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an external circulation fluidized bed furnace used when treating particulate materials such as fine ore with heated gas.

〔従来の技術〕[Conventional technology]

従来の高炉による溶銑製造技術に代わるものとして、溶
融還元法が注目を浴びている。この方法で使用する溶融
還元炉は、使用する原料に制約を受けることなく、より
小規模な設備により鉄系合金の溶湯を製造することを目
的として開発されたものである。また、溶融還元炉で発
生した排ガスの還元力及び熱を有効に利用するため、流
動化ガスとして流動層炉で原料鉱石を予熱、予備還元す
る方法等も開発されている。
The smelting reduction method is attracting attention as an alternative to the conventional hot metal production technology using a blast furnace. The smelting reduction furnace used in this method was developed for the purpose of producing molten iron-based alloys using smaller-scale equipment without being restricted by the raw materials used. Furthermore, in order to effectively utilize the reducing power and heat of the exhaust gas generated in the smelting reduction furnace, a method has been developed in which raw ore is preheated and pre-reduced in a fluidized bed furnace as a fluidizing gas.

また、大きな空塔速度で流動化ガスを炉内に吹き込み、
粉鉱石の予熱、予備還元等を高速で行う形式の炉外循環
式流動層炉が知られている。この場合、流動化ガスの空
塔速度が大きくなるに従って、流動層炉から外部に飛散
する粉鉱石の割合も大きくなる。そこで、飛散した粉鉱
石は、炉外循環経路に設けられたサイクロンで排ガスか
ら分離・捕捉されて、流動層炉に戻される。
In addition, fluidizing gas is blown into the furnace at a high superficial velocity,
BACKGROUND ART An external circulation type fluidized bed furnace is known that performs preheating, preliminary reduction, etc. of fine ore at high speed. In this case, as the superficial velocity of the fluidizing gas increases, the proportion of fine ore scattered outside from the fluidized bed furnace also increases. Therefore, the scattered fine ore is separated and captured from the exhaust gas by a cyclone installed in the external circulation path, and returned to the fluidized bed furnace.

流動層炉における予熱、予備還元等の効率を上げるため
には、炉内に浮遊する粉鉱石の密度を大きくし、これに
流動化ガスを充分に接触させることが必要である。とこ
ろが、炉内の一部に粉鉱石が集中し易く、その他の部分
では粉鉱石の密度が小さな領域が生じる。この粉鉱石の
分布密度が小さな領域を通過するガスは、粉鉱石と充分
に接触しないため、予熱、予備還元等に消費されずに炉
外に排気される。その結果、設計通りの能力を発揮する
ことができなくなる。
In order to increase the efficiency of preheating, preliminary reduction, etc. in a fluidized bed furnace, it is necessary to increase the density of fine ore floating in the furnace and to bring the fluidizing gas into sufficient contact with the fine ore. However, the fine ore tends to concentrate in one part of the furnace, and in other parts there are areas where the density of the fine ore is small. The gas passing through the region where the distribution density of the fine ore is small does not come into sufficient contact with the fine ore, so it is exhausted outside the furnace without being consumed for preheating, preliminary reduction, etc. As a result, it becomes impossible to demonstrate the capabilities as designed.

そこで、本発明者等は、流動層炉内における粉鉱石の分
散状態を改善すべく、種々の手段を開発している。たと
えば、特願昭61−286600号においては、流動層
還元炉内の炉高方向に複数個の拡大縮小部を設け、炉内
に送り込まれる還元ガスを脈動させている。また、特願
昭61−288672号では、流動層還元炉内に突起物
を円周方向に数個所配設している。
Therefore, the present inventors have developed various means to improve the state of dispersion of fine ore in a fluidized bed furnace. For example, in Japanese Patent Application No. 61-286600, a plurality of enlargement/contraction sections are provided in the direction of the furnace height in a fluidized bed reduction furnace to pulsate the reducing gas fed into the furnace. Further, in Japanese Patent Application No. 61-288672, protrusions are provided at several locations in the circumferential direction within the fluidized bed reduction furnace.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この外部循環式流動層炉においては、粉鉱石を積極的に
炉外に飛散させるため、炉内の粒子濃度が薄くなる。そ
のため、たとえば還元ガスと接触する粉鉱石の割合が小
さくなり、還元効率が低下する。この還元効率を上げる
ためには、多量の粉鉱石が炉内に浮遊する状態を維持す
るように、炉外循重量を大きくすることが必要となる。
In this external circulation type fluidized bed furnace, the fine ore is actively scattered outside the furnace, so the particle concentration inside the furnace is reduced. Therefore, for example, the proportion of fine ore that comes into contact with the reducing gas decreases, and the reduction efficiency decreases. In order to increase this reduction efficiency, it is necessary to increase the weight of the extra-furnace circulation so that a large amount of fine ore remains suspended in the furnace.

このような方法を採用するとき、炉外循環系が大きくな
り、その分だけ設備負担が増大する。また、この炉外循
環系では、粉鉱石の還元反応が進まないため、設備の有
効性及び生産性が劣るものとなる。
When such a method is adopted, the extra-core circulation system becomes larger, and the load on the equipment increases accordingly. Furthermore, in this extra-furnace circulation system, the reduction reaction of the fine ore does not proceed, resulting in poor equipment effectiveness and productivity.

このような問題は、粉鉱石の予備還元や予熱に限ったも
のではなく、たとえば石炭燃焼用高速流動層炉等の外部
循環系を備えた流動層炉に共通する問題である。
Such problems are not limited to preliminary reduction and preheating of fine ore, but are common to fluidized bed furnaces equipped with an external circulation system, such as high-speed fluidized bed furnaces for burning coal.

そこで、本発明は、ライザー内に内筒を配置した二重構
造で流動層炉本体を構成することによって、炉外循環系
に流れる粉粒体の量を多くすることなく、炉内に浮遊す
る粉粒体の密度を大きく維持し、流動層炉内容積光たり
の粉粒体処理能力を高めることを目的とする。
Therefore, the present invention constructs the fluidized bed furnace main body with a double structure in which an inner cylinder is placed inside the riser, thereby reducing the amount of powder and granules floating in the furnace without increasing the amount flowing into the external circulation system. The purpose is to maintain a high density of powder and granule and increase the processing capacity of powder and granule based on the internal volume of the fluidized bed furnace.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の外部循環式流動層炉は、その目的を達成するた
め、ライザーの上端近傍及び下端近傍にそれぞれ開口さ
れた導出管及び導入管と、これら導出管及び導入管とを
接続するダウンカマーと、該ダウンカマーの途中に設け
たサイクロンとを備えており、前記ライザーの内壁から
離間して内筒を垂直方向に設け、該内筒の径よりも前記
ライザーの下端部内径を前記内筒の径に等しいか又は小
さくなるように、前記ライザーの下端部を下に向かって
傾斜させたことを特徴とする。
In order to achieve the objective, the external circulation fluidized bed furnace of the present invention has an outlet pipe and an inlet pipe that are opened near the upper end and the lower end of the riser, respectively, and a downcomer that connects these outlet pipes and the inlet pipe. , and a cyclone provided in the middle of the downcomer, and an inner cylinder is provided vertically apart from the inner wall of the riser, and the inner diameter of the lower end of the riser is smaller than the diameter of the inner cylinder. The riser is characterized in that the lower end of the riser is inclined downward so as to be equal to or smaller than the diameter.

〔作用〕[Effect]

この外部循環式流動層炉においては、流動層炉本体は、
ライザーとその内部に配置された二重構造をもっている
。そして、流動層に供給された粉粒体は、下部から吹き
込まれる流動化ガスによって浮遊状態にされ、内筒で囲
まれた内部空間を上昇する。この内筒から出た個所では
急激な圧力変動があるため、流動化ガスに随伴された粉
粒体は失速する。その結果、粉粒体の一部は、ライザー
と内筒との間の間隙を落下する。落下した粉粒体は、再
び流動化ガスによって吹き上げられ、内筒の内部を上昇
する循環流となる。また、内筒を上昇した粉粒体の一部
は、流動化ガスの流れに乗って炉外循環経路に送り込ま
れる。
In this external circulation type fluidized bed furnace, the fluidized bed furnace main body is
It has a riser and a double structure placed inside it. The powder and granular material supplied to the fluidized bed is made to float by the fluidizing gas blown from the lower part, and rises in the internal space surrounded by the inner cylinder. Since there is a sudden pressure fluctuation at the point where the fluidized material exits the inner cylinder, the powder and granular material entrained by the fluidizing gas stalls. As a result, part of the powder falls through the gap between the riser and the inner cylinder. The fallen powder is blown up again by the fluidizing gas, forming a circulating flow that ascends inside the inner cylinder. Further, a part of the granular material that has risen up the inner cylinder is sent into the external circulation path along with the flow of the fluidizing gas.

すなわち、内筒をライザー内に設けることによって、粉
粒体の循環路を炉内に形成している。したがって、流動
化ガスの空塔速度を大きくした場合にあっても、従来の
ように粉鉱石の大半が炉外循環経路に流出することがな
く、炉内における粉粒体の密度を高く維持することがで
きる。この高密度の粉粒体に流動化ガスが接触するので
、粉粒体の乾燥、予熱、予備還元等の処理を効率良く行
うことが可能となる。
That is, by providing the inner cylinder in the riser, a circulation path for the powder and granular material is formed in the furnace. Therefore, even when the superficial velocity of the fluidizing gas is increased, most of the fine ore does not flow out into the circulation path outside the furnace, unlike in the past, and the density of the powder and granules in the furnace is maintained high. be able to. Since the fluidizing gas comes into contact with this high-density granular material, it becomes possible to efficiently perform processes such as drying, preheating, and preliminary reduction of the granular material.

〔実施例〕〔Example〕

第1図に示した外部循環式流動層炉を粉鉱石の予備還元
に使用した実施例として説明する。
An example will be described in which the external circulation type fluidized bed furnace shown in FIG. 1 is used for preliminary reduction of fine ore.

この外部循環式流動層炉は、ライザー1の上部に導出管
2を介して接続され、ライブ−1の下部に導入管3を介
して接続されたダウンカマー4を備えている。また、ダ
ウンカマー4の途中には、サイクロン5が設けられてい
る。
This external circulation type fluidized bed furnace includes a downcomer 4 connected to the upper part of the riser 1 via an outlet pipe 2 and to the lower part of the live-1 via an inlet pipe 3. Further, a cyclone 5 is provided in the middle of the downcomer 4.

このライザー1は、図示するように、その下端部が下方
に向かって縮径する傾斜部6とされている。そして、ラ
イザー1の内部には、内筒7が垂直方向に設けられてい
る。この内筒7の径は、傾斜部6の内径に等しいか、そ
の内径よりも大きくしている。
As shown in the figure, this riser 1 has a lower end portion formed into an inclined portion 6 whose diameter decreases downward. An inner cylinder 7 is vertically provided inside the riser 1. The diameter of this inner cylinder 7 is equal to or larger than the inner diameter of the inclined portion 6.

予備還元される粉鉱石8は、流量調整弁9を備えた供給
管10からライザー1の底部11に送り込まれる。この
底部11には、たとえば溶融還元炉で発生した排ガス等
の還元ガス12が、流量調整弁13を備えたガス吹込み
管14から吹き込まれている。還元ガス12は、底部1
1に供給されている粉鉱石8を流動化させ、上昇流15
となって内筒7の内部空間を上昇する。このとき、粉鉱
石8も上昇流15に随伴されて、内筒7内を上昇する。
The fine ore 8 to be prereduced is fed into the bottom 11 of the riser 1 through a supply pipe 10 equipped with a flow rate regulating valve 9 . A reducing gas 12 such as exhaust gas generated in a smelting reduction furnace is blown into the bottom 11 from a gas blowing pipe 14 equipped with a flow rate regulating valve 13 . The reducing gas 12 is supplied to the bottom 1
The fine ore 8 supplied to 1 is fluidized and the upward flow 15
and rises in the internal space of the inner cylinder 7. At this time, the fine ore 8 is also accompanied by the upward flow 15 and rises inside the inner cylinder 7.

内筒7を出たところで、炉内圧が急激に低下する。その
ため、上昇流15に乗って上昇して来た粉鉱石は、失速
して、内筒7とライザー1との間の隙間を下降流16と
して流下する。流下した粉鉱石は、内筒7下部とライザ
ー1の傾斜部6との間の堆積部17に堆積する。ここに
堆積している粉粒体は、堆積部17の下部から順次重力
落下して底部11に送られ、還元ガス12の上昇流15
に乗り内筒7内を再び上昇する。
After exiting the inner cylinder 7, the pressure inside the furnace drops rapidly. Therefore, the fine ore that has risen on the upward flow 15 stalls and flows down through the gap between the inner cylinder 7 and the riser 1 as a downward flow 16. The fine ore that has flowed down is deposited in a depositing section 17 between the lower part of the inner cylinder 7 and the inclined section 6 of the riser 1. The powder and granules deposited here fall sequentially by gravity from the lower part of the depositing section 17 and are sent to the bottom section 11, where they are fed by the upward flow 15 of the reducing gas 12.
and climb inside the inner cylinder 7 again.

ここで、内筒7の径を、傾斜部6の底部内径に等しく或
いは大きくしているので、吹き込まれた還元ガス12は
圧力損失の関係から内筒7内に流れ込み、堆積部17に
堆積している粉鉱石に直接光たることが避けられる。し
たがって、粉鉱石は、堆積部17から比較的自由に底部
11に落下して、上昇流15に乗った循環流となる。
Here, since the diameter of the inner cylinder 7 is made equal to or larger than the inner diameter of the bottom part of the inclined part 6, the blown reducing gas 12 flows into the inner cylinder 7 due to pressure loss and is deposited in the deposition part 17. It is possible to avoid shining the light directly on the powder ore. Therefore, the fine ore falls relatively freely from the depositing section 17 to the bottom section 11 and becomes a circulating flow riding on the upward flow 15.

なお、堆積部17からの粉鉱石の落下を促進させるため
、この堆積部17にガス吹込み管を開口させることもで
きる。第1図における点線部分は、この落下促進用のガ
ス導入経路を示すものである。
In addition, in order to promote the falling of fine ore from the depositing part 17, a gas blowing pipe can be opened in the depositing part 17. The dotted line in FIG. 1 shows the gas introduction route for promoting the fall.

すなわち、分岐管18を介して還元ガス12の一部を堆
積部17に送り込み、堆積している粉鉱石を流動化させ
る。これによって、粉鉱石は、スティッキングを生じる
ことなく、傾斜部6の傾斜面に沿って底部11に重力落
下する。
That is, a part of the reducing gas 12 is sent into the deposition section 17 via the branch pipe 18 to fluidize the deposited fine ore. As a result, the fine ore falls by gravity to the bottom 11 along the slope of the slope 6 without causing sticking.

内筒7の上方に送られた粉鉱石の一部は、ガスの流れに
乗って、粉鉱石随伴流19として導出管2からサイクロ
ン5に送り込まれる。そして、サイクロン5で固気分離
された後、ダウンカマー4を通って導入管3に送られ、
ライザー1内に再度送り込まれる。この導入管3からラ
イザー1の底部11に粉鉱石を切り出すため、ガス吹込
み管14から分岐した分岐管20を導入管3の内部に開
口させている。また、分岐管20には流量調整弁21が
設けられており、分岐管20から導入管3に吹き込まれ
るガスの流量を調整している。これによって、導入管3
から底部11に切り出される粉粒体の量が制御される。
A part of the fine ore sent above the inner cylinder 7 is carried by the gas flow and sent from the outlet pipe 2 to the cyclone 5 as a fine ore accompanying flow 19. After being separated into solid and gas by the cyclone 5, it is sent to the introduction pipe 3 through the downcomer 4.
It is sent into riser 1 again. In order to cut ore powder from the introduction pipe 3 to the bottom 11 of the riser 1, a branch pipe 20 branched from the gas blowing pipe 14 is opened inside the introduction pipe 3. Further, the branch pipe 20 is provided with a flow rate adjustment valve 21 to adjust the flow rate of gas blown into the introduction pipe 3 from the branch pipe 20. As a result, the introduction pipe 3
The amount of powder material cut out from the bottom portion 11 is controlled.

他方、サイクロン5で粉粒体から分離されたガスは、排
気管22から排ガス23として系外に放出される。
On the other hand, the gas separated from the powder by the cyclone 5 is discharged from the exhaust pipe 22 as exhaust gas 23 to the outside of the system.

このように、粉鉱石80大半を、内筒7の内部空間から
内筒7とライザーl内壁との間に循環する流れとするこ
とによって、ライザー1内を高密度に維持することがで
きる。したがって、粉鉱石8に対する還元ガス12の接
触反応が効率良く行われ、高い還元率で粉鉱石8が予備
還元される。また、予備還元された粉鉱石は、ダウンカ
マー4の途中に設けた還元鉱取出し管24から連続的又
は間歇的に取り出される。
In this way, by circulating most of the fine ore 80 from the internal space of the inner cylinder 7 between the inner cylinder 7 and the inner wall of the riser 1, the inside of the riser 1 can be maintained at a high density. Therefore, the contact reaction of the reducing gas 12 with respect to the fine ore 8 is efficiently carried out, and the fine ore 8 is preliminarily reduced at a high reduction rate. Further, the pre-reduced fine ore is taken out continuously or intermittently from a reduced ore take-out pipe 24 provided in the middle of the downcomer 4.

ここで、溶融還元炉で発生した排ガスを還元ガス12と
して、平均粒径が130虜の粉鉱石8を予備還元したと
きの操業条件を示す。
Here, operating conditions are shown when fine ore 8 having an average particle size of 130 mm is preliminarily reduced using the reducing gas 12 as the exhaust gas generated in the smelting reduction furnace.

流動層炉に装入した粉鉱石8に対して、還元ガス12を
空塔速度8m/秒でガス吹込み管14から吹き込み、粉
鉱石8を流動化させた。このとき、内筒7の内部空間に
浮遊する粉鉱石の平均密度は約250kg/rrI′に
コントロールされており、このときの外部循環量は10
0kg/m’秒程度で、且つ内筒7の高さ方向に関して
粉鉱石の密度分布にそれほど大きな差は生じていなかっ
た。そして、還元鉱取出し管24から取り出された粉鉱
石の還元率は、60%であった。
A reducing gas 12 was blown into the fine ore 8 charged into the fluidized bed furnace through the gas blowing pipe 14 at a superficial velocity of 8 m/sec to fluidize the fine ore 8. At this time, the average density of the fine ore floating in the internal space of the inner cylinder 7 is controlled to about 250 kg/rrI', and the external circulation amount at this time is 10
It was approximately 0 kg/m' seconds, and there was not a large difference in the density distribution of fine ore in the height direction of the inner cylinder 7. The reduction rate of the fine ore taken out from the reduced ore removal pipe 24 was 60%.

これに対し、内筒7を配置しないで、ライザー1の内部
空間に浮遊する粉鉱石の平均密度を約250kg/m”
とする条件下で、粉鉱石8の還元を行ったところ、ライ
ザー1内に右ける粉鉱石8は、下部で750 kg /
m’、上部で150 kg / m’と懸濁密度に大き
な差が生じていた。このときの外部循環量は、180k
g / m’秒であり、内筒7を配置した場合に比較し
て1,8倍の外部循環量が必要であった。また、この場
合、ライザ−1上部における粉鉱石密度が薄いため、ラ
イザー1の内部空間全体を還元ガス12による還元反応
に効率良く使用することができなかった。
On the other hand, without arranging the inner cylinder 7, the average density of fine ore floating in the inner space of the riser 1 is approximately 250 kg/m.
When the fine ore 8 was reduced under the following conditions, the fine ore 8 in the riser 1 weighed 750 kg / 750 kg at the bottom.
m', there was a large difference in suspension density of 150 kg/m' at the top. The external circulation amount at this time is 180k
g/m' seconds, and 1.8 times the amount of external circulation was required compared to the case where the inner cylinder 7 was arranged. Further, in this case, since the fine ore density in the upper part of the riser 1 was low, the entire internal space of the riser 1 could not be efficiently used for the reduction reaction using the reducing gas 12.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、ライザー内
に内筒を配置し、流動層炉を二重構成とすることによっ
て、流動層炉内を循環する粉粒体の循環流を形成してい
る。そして、内筒の内部空間を上昇するガス流に随伴さ
れる粉鉱石は、内筒を出たところで急激に失速するので
、大半が内筒とライザー内壁との間を落下する。その結
果、内筒に浮遊する粉粒体の密度を大きくすることがで
き、この内筒内で粉粒体が流動化ガスと接触するため、
予熱、乾燥、予備還元等の処理を効率良く行うことが可
能となる。
As explained above, in the present invention, by arranging the inner cylinder in the riser and making the fluidized bed furnace a double configuration, a circulating flow of powder and granular material circulating inside the fluidized bed furnace is formed. There is. The fine ore that is accompanied by the gas flow rising through the internal space of the inner cylinder suddenly stalls when it exits the inner cylinder, and most of it falls between the inner cylinder and the inner wall of the riser. As a result, the density of the powder floating in the inner cylinder can be increased, and the powder comes into contact with the fluidizing gas within this inner cylinder, so
It becomes possible to efficiently carry out processes such as preheating, drying, and preliminary reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例の外部循環式流動層炉を示す概
略図である。 l:ライザー       2=導出管3:導入管  
     4:ダウンカマー5:サイクロン     
6:傾斜部 7:内筒        8:粉鉱石 9、13.21:流量調整弁  lO:供給管ll:底
部        12:還元ガス14:ガス吹込み管
    15:上昇流16:下降流       17
:堆積部18゜20:分岐管     19:粉鉱石随
伴流22:排気管       23:排ガス24:M
元鉱取出し管
FIG. 1 is a schematic diagram showing an external circulation type fluidized bed furnace according to an embodiment of the present invention. l: riser 2 = outlet pipe 3: introduction pipe
4: Downcomer 5: Cyclone
6: Inclined part 7: Inner cylinder 8: Powdered ore 9, 13.21: Flow rate adjustment valve 1O: Supply pipe 11: Bottom 12: Reducing gas 14: Gas blowing pipe 15: Upflow 16: Downflow 17
: Deposition part 18° 20: Branch pipe 19: Fine ore accompanying flow 22: Exhaust pipe 23: Exhaust gas 24: M
Original ore extraction pipe

Claims (1)

【特許請求の範囲】[Claims] 1、ライザーの上端近傍及び下端近傍にそれぞれ開口さ
れた導出管及び導入管と、これら導出管及び導入管とを
接続するダウンカマーと、該ダウンカマーの途中に設け
たサイクロンとを備えており、前記ライザーの内壁から
離間して内筒を垂直方向に設け、前記ライザーの下端部
内径が前記内筒の径に等しいか又は小さくなるように、
前記ライザーの下端部を下に向かって傾斜させたことを
特徴とする外部循環式流動層炉。
1. It is equipped with an outlet pipe and an inlet pipe opened near the upper end and the lower end of the riser, respectively, a downcomer connecting these outlet pipes and the inlet pipe, and a cyclone provided in the middle of the downcomer, An inner cylinder is provided vertically apart from the inner wall of the riser, and the inner diameter of the lower end of the riser is equal to or smaller than the diameter of the inner cylinder,
An external circulation fluidized bed furnace characterized in that the lower end of the riser is inclined downward.
JP7257188A 1988-03-26 1988-03-26 External circulation type fluidized-bed furnace Pending JPH01247988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7257188A JPH01247988A (en) 1988-03-26 1988-03-26 External circulation type fluidized-bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7257188A JPH01247988A (en) 1988-03-26 1988-03-26 External circulation type fluidized-bed furnace

Publications (1)

Publication Number Publication Date
JPH01247988A true JPH01247988A (en) 1989-10-03

Family

ID=13493192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7257188A Pending JPH01247988A (en) 1988-03-26 1988-03-26 External circulation type fluidized-bed furnace

Country Status (1)

Country Link
JP (1) JPH01247988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108916866A (en) * 2018-05-10 2018-11-30 哈尔滨理工大学 A kind of telescopic multi fuel recycles-is bubbled combined fluidized bed boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108916866A (en) * 2018-05-10 2018-11-30 哈尔滨理工大学 A kind of telescopic multi fuel recycles-is bubbled combined fluidized bed boiler
CN108916866B (en) * 2018-05-10 2021-01-15 哈尔滨理工大学 Sleeve type multi-fuel circulating-bubbling combined fluidized bed boiler

Similar Documents

Publication Publication Date Title
US5330556A (en) Method for treating gas and particulate solids in a fluid bed
TW426745B (en) Method for treating particulate material in the fluidized bed method and vessel and plant for carrying out the method
KR20050093802A (en) Method and plant for the heat treatment of sulfidic ores using annular fluidized bed
CN113544292B (en) Direct reduction process in fluidized bed
RU2175675C2 (en) Method of making pig iron or liquid steel semiproducts
JPH01247988A (en) External circulation type fluidized-bed furnace
CN1222198A (en) Melting gasifier for producing molten metals
AU728390B2 (en) Method for treating particulate material in the fluidized bed method and vessel and plant for carrying out the method
JPH01247519A (en) Outside circulating type fluidized bed furnace
JPH01129915A (en) Prereduction furnace for smelting reduction
JP2613616B2 (en) Circulating fluidized bed reactor for powder
JPH01247518A (en) Outside circulating type fluidized bed furnace
JPH01242708A (en) Fluidized-bed reducing equipment for iron ore
JPH01247987A (en) External circulation type fluidized-bed furnace
JPS59196730A (en) Ore catalyst method
JPH01247521A (en) Outside circulating type fluidized bed furnace
KR100213342B1 (en) Dual fludized-bed reactor for the reduction of fine ore
JP2002533642A (en) Compound fluidized bed type fine iron ore reduction apparatus and method therefor
JPH01247514A (en) Fluidized bed pre-reduction furnace and operating method thereof
JPH01242724A (en) Circulation fluidized bed reactor for powder
JPH0649520A (en) Fluidized bed furnace
JPH01247520A (en) Outside circulating type fluidized bed furnace
JPH03100112A (en) Method for operating circulating fluidized reduction furnace of powdery ore and reduction furnace
JPH0723492B2 (en) Iron ore fluidized bed reduction device
MXPA05006826A (en) Method and plant for the heat treatment of sulfidic ores using annular fluidized