JPH07268429A - Operating method of fluidized bed prereduction device - Google Patents

Operating method of fluidized bed prereduction device

Info

Publication number
JPH07268429A
JPH07268429A JP5931694A JP5931694A JPH07268429A JP H07268429 A JPH07268429 A JP H07268429A JP 5931694 A JP5931694 A JP 5931694A JP 5931694 A JP5931694 A JP 5931694A JP H07268429 A JPH07268429 A JP H07268429A
Authority
JP
Japan
Prior art keywords
fluidized bed
reduction furnace
circulation type
furnace
particle circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5931694A
Other languages
Japanese (ja)
Inventor
Naoki Mukai
直樹 向井
Hiroshi Itaya
宏 板谷
Kazuhiko Sato
和彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5931694A priority Critical patent/JPH07268429A/en
Publication of JPH07268429A publication Critical patent/JPH07268429A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To make a reduction rate high and operation safe in a smelting reduction method of powdery ore using a smelting reduction furnace and a fluidized bed prereduction device utilizing the reducing gases discharged therefrom as fluidizing gases. CONSTITUTION:A fluidized bed prereduction device consisting of a particle circulation type fluidized bed reduction furnace 11 as a first stage and an air bubble fluidized bed reduction furnace 21 utilizing the gases discharged from this particle circulation type fluidized bed reduction furnace 11 as a second stage is formed. The pressure of the gases discharged from the particle circulation type fluidized bed reduction furnace 11 is changed by regulating the amt. of the particles stagnating in this air bubble fluidized bed reduction furnace 21, by which the velocity of flow of the gases in the fluidized bed of this particle circulation type fluidized bed reduction furnace 11 is controlled. As a result, the condition of the prereduction furnace is stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、溶融還元炉と、溶融
還元炉から排出される還元ガスを流動化ガスとして利用
する流動層予備還元装置とからなる粉状鉱石の溶融還元
法における、粉状鉱石の流動層予備還元装置の操業方法
に関する。特に溶融還元炉の炉況が変化し、溶融還元炉
から流動層予備還元装置に導入する還元ガスの体積流量
又は温度が変化した場合においても、流動層予備還元装
置において還元ガスの流動層内ガス流速を一定に保つこ
とにより、流動層予備還元装置の炉況を安定化させるこ
とができる流動層予備還元装置の操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a smelting reduction method for powdered ores, which comprises a smelting reduction furnace and a fluidized bed preliminary reduction device that uses the reducing gas discharged from the smelting reduction furnace as a fluidizing gas. TECHNICAL FIELD The present invention relates to a method of operating a fluidized bed preliminary reduction device for granular ores. Even when the furnace conditions of the smelting reduction furnace change and the volume flow rate or temperature of the reducing gas introduced from the smelting reduction furnace into the fluidized bed preliminary reduction device changes, the gas in the fluidized bed of the reducing gas in the fluidized bed preliminary reduction device also changes. The present invention relates to a method for operating a fluidized bed preliminary reduction device that can stabilize the furnace condition of the fluidized bed preliminary reduction device by keeping the flow velocity constant.

【0002】[0002]

【従来の技術】一般に流動層反応装置は層内の温度の均
一性が良く、連続大量に反応処理を行うことができ、造
粒などの事前処理工程なしで微粉を用いることができる
ため、粉状鉱石の還元プロセスとして積極的に応用する
ことが考えられている。粉状鉱石の溶融還元炉と、流動
層を用いた粉状鉱石の予備還元装置とを組み合わせた装
置が知られている。そのような流動層を用いた予備還元
装置として、例えば特開平3−215621号公報に開
示されたような粒子循環型流動層還元炉が公知である。
このような粒子循環型流動層還元装置は図5に示すよう
に、流動層予備還元炉51、還元鉄鉱石粉を捕集するサ
イクロン52、サイクロン下部に連接する粒子溜り槽5
3、粒子溜り槽53内の還元鉄鉱石粉を流動層予備還元
炉51に戻す循環経路54より構成されている。このよ
うな粒子循環型流動層還元装置50では、流動層予備還
元炉51内、粒子溜り槽53内および循環経路54内の
温度を測定し、これらの温度差に応じて粒子溜り槽53
内へ供給する不活性ガス58及び/又は供給原料55又
は添加原料56の供給量を制御することにより、粒子循
環型流動層還元炉50の安定操業を図る。
2. Description of the Related Art Generally, a fluidized bed reactor has a good temperature uniformity in the bed, can perform a large amount of reaction continuously, and can use fine powder without a pretreatment step such as granulation. It is considered to be applied positively as a reduction process of spheroidal ores. A device is known in which a smelting reduction furnace for powdery ores and a preliminary reduction device for powdery ores using a fluidized bed are combined. As a preliminary reduction device using such a fluidized bed, a particle circulation type fluidized bed reduction furnace as disclosed in, for example, JP-A-3-215621 is known.
As shown in FIG. 5, such a particle circulation type fluidized bed reduction apparatus has a fluidized bed preliminary reduction furnace 51, a cyclone 52 for collecting reduced iron ore powder, and a particle reservoir 5 connected to the lower portion of the cyclone.
3. A circulation path 54 for returning the reduced iron ore powder in the particle reservoir 53 to the fluidized bed preliminary reduction furnace 51. In such a particle circulation type fluidized bed reduction apparatus 50, the temperatures in the fluidized bed preliminary reduction furnace 51, the particle accumulation tank 53 and the circulation path 54 are measured, and the particle accumulation tank 53 is measured according to the temperature difference.
By controlling the supply amount of the inert gas 58 and / or the feed material 55 or the additive material 56 to be supplied into the inside, stable operation of the particle circulation type fluidized bed reduction furnace 50 is achieved.

【0003】しかるに、この操業では図示しない溶融還
元炉の炉況が変化し、流動層予備還元炉51に、溶融還
元炉から導入する還元ガス60の体積流量又は温度が変
化した場合には、還元鉱石粉の還元率を高値で一定に保
つことが困難であった。一般に、粒子循環型流動層は粒
子の終末速度より高いガス流速にて操作される。したが
って、流動層予備還元炉における粒子の良好な流動性を
確保し、分散板からの落鉱等を防止するためには、流動
層予備還元炉のガス流速を一定の値以上に維持する必要
がある。しかしながら、ガス流速があまり大きくなりす
ぎると流動層予備還元炉からの粒子飛び出し量が増大し
粒子の滞留量を維持することが困難になる。したがっ
て、鉱石あるいは還元ガスの物性に応じて安定した操業
を行うためには適正なガス流速の範囲が存在する。
However, in this operation, when the furnace condition of the smelting reduction furnace (not shown) changes and the volume flow rate or temperature of the reducing gas 60 introduced from the smelting reduction furnace into the fluidized bed preliminary reduction furnace 51 changes, the reduction is performed. It was difficult to keep the reduction rate of ore powder at a high value and constant. Generally, a particle circulation type fluidized bed is operated at a gas flow rate higher than the terminal velocity of particles. Therefore, in order to secure good fluidity of particles in the fluidized bed preliminary reduction furnace and prevent falling ore from the dispersion plate, it is necessary to maintain the gas flow rate in the fluidized bed preliminary reduction furnace at a certain value or higher. is there. However, if the gas flow rate becomes too high, the amount of particles jumping out of the fluidized bed preliminary reduction furnace will increase, and it will be difficult to maintain the retention amount of particles. Therefore, there is an appropriate gas flow velocity range for stable operation depending on the physical properties of the ore or reducing gas.

【0004】そして、このようなガス流速の範囲として
は、例えば特開平3-183711号公報に開示されたように、
流動層予備還元炉内でのガス空塔速度U0 と鉱石の終末
速度Ut との比で、 2≦U0 /Ut ≦20 …(1) が提案されている。
The range of such gas flow velocity is, for example, as disclosed in JP-A-3-183711.
It has been proposed that 2 ≦ U 0 / U t ≦ 20 (1) as a ratio of the superficial gas velocity U 0 and the terminal velocity U t of the ore in the fluidized bed preliminary reduction furnace.

【0005】すなわち流動層予備還元炉内におけるガス
流速は、上記の例のごとく、還元鉱石粉の還元率を一定
に保つために、また流動層予備還元炉における粒子の良
好な流動性を確保し分散板からの落鉱等を防止する観点
から、ある適正な範囲内の流速で操業する必要がある。
このガス流速はガスの体積流量と流動層予備還元炉の断
面積およびガス温度により規定されるため、流動化ガス
として使用する還元ガス60の流量あるいは温度が変化
したときにはガス流速も変化し上記適正な範囲を逸脱す
る可能性がある。
That is, the gas flow velocity in the fluidized bed preliminary reduction furnace is, as in the above example, to keep the reduction rate of the reduced ore powder constant and to secure good fluidity of particles in the fluidized bed preliminary reduction furnace. From the standpoint of preventing falling ore from the dispersion plate, it is necessary to operate at a flow velocity within a certain appropriate range.
Since this gas flow rate is defined by the volume flow rate of the gas, the cross-sectional area of the fluidized bed preliminary reduction furnace, and the gas temperature, when the flow rate or the temperature of the reducing gas 60 used as the fluidizing gas changes, the gas flow rate also changes, and May deviate from the range.

【0006】このような還元ガス60の流量の変化に対
してガス流速を適正流速範囲に保つ方法としては、流動
層予備還元炉の排ガス系に圧力調整弁等を設置し、流動
層予備還元炉内の圧力を制御する方法を容易に類推する
ことができる。しかしながら、流動層予備還元炉からの
排ガスは高温でダストを多く含むため通常の圧力調整器
にて炉内圧力を制御することは困難である。
As a method for keeping the gas flow velocity within the proper flow velocity range with respect to such a change in the flow rate of the reducing gas 60, a pressure adjusting valve or the like is installed in the exhaust gas system of the fluidized bed preliminary reduction furnace to The method of controlling the internal pressure can be easily analogized. However, since the exhaust gas from the fluidized bed preliminary reduction furnace contains a large amount of dust at a high temperature, it is difficult to control the furnace pressure with a normal pressure regulator.

【0007】[0007]

【発明が解決しようとする課題】この発明は上記の問題
点を解決する技術を提供することを目的とする。すなわ
ち、溶融還元炉と流動層予備還元炉とからなり、溶融還
元炉から排出される還元ガスを流動層予備還元炉の流動
化ガスとして利用し、粉状鉱石を溶融還元するシステム
の操業において、溶融還元炉の炉況が変化し流動層予備
還元炉に導入する還元ガスの体積流量あるいはガス温度
が変化した場合においても流動層予備還元炉において還
元ガスの流動層内ガス流速を一定に保つことにより予備
還元炉の炉況を安定化させる、すなわち、(a)還元鉱
石粉の還元率を高値で一定に保つことができ、(b)ま
た流動層予備還元炉における粒子の良好な流動性を確保
し、分散板からの落鉱等を防止することができる、流動
層予備還元装置の操業方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a technique for solving the above problems. That is, in the operation of a system consisting of a smelting reduction furnace and a fluidized bed preliminary reduction furnace, using a reducing gas discharged from the smelting reduction furnace as a fluidizing gas of the fluidized bed preliminary reduction furnace, and performing a smelting reduction of powdery ores, Maintaining a constant gas velocity in the fluidized bed in the fluidized bed preliminary reduction furnace even when the volumetric flow rate or gas temperature of the reducing gas introduced into the fluidized bed preliminary reduction furnace changes due to changes in the furnace conditions of the smelting reduction furnace Stabilizes the furnace condition of the pre-reduction furnace, that is, (a) the reduction rate of the reduced ore powder can be kept constant at a high value, and (b) the good fluidity of particles in the fluidized-bed pre-reduction furnace is maintained. An object of the present invention is to provide a method for operating a fluidized bed pre-reducing device, which can be secured and can prevent falling or the like from a dispersion plate.

【0008】[0008]

【課題を解決するための手段】この発明は上記の課題を
解決する方法として、粒子循環型流動層還元炉と、この
粒子循環型流動層還元炉の排出ガスを流動化ガスとする
気泡流動層還元炉とを組み合わせてなる流動層予備還元
装置を用い、前記気泡流動層還元炉の粒子滞留量を調整
して前記粒子循環型流動層還元炉の流動層内ガス流速を
制御することを特徴とする流動層予備還元装置の操業方
法である。
As a method for solving the above problems, the present invention provides a particle circulation type fluidized bed reduction furnace and a bubbling fluidized bed using the exhaust gas of the particle circulation type fluidized bed reduction furnace as a fluidizing gas. Using a fluidized bed preliminary reduction device in combination with a reduction furnace, the amount of particles retained in the bubbling fluidized bed reduction furnace is adjusted to control the gas flow rate in the fluidized bed of the particle circulation type fluidized bed reduction furnace. This is a method of operating a fluidized bed preliminary reduction device.

【0009】また、上記方法において、前記粒子循環型
流動層還元炉に溶融還元炉から導入するガスの流量又は
温度の変化に応じて、前記気泡流動層還元炉の粒子滞留
量を調整し、前記粒子循環型流動層還元炉の流動層内ガ
ス流速を一定に制御することを特徴とする流動層予備還
元装置の操業方法を提供する。
In the above method, the amount of particles retained in the bubbling fluidized bed reduction furnace is adjusted according to a change in the flow rate or temperature of the gas introduced from the smelting reduction furnace into the particle circulation type fluidized bed reduction furnace, Provided is a method for operating a fluidized bed preliminary reduction device, which is characterized in that a gas flow velocity in a fluidized bed of a particle circulation type fluidized bed reduction furnace is controlled to be constant.

【0010】[0010]

【作用】この発明の発明者らは上記課題を解決する方法
として、粒子循環型流動層還元炉を1段目としこの粒子
循環型流動層還元炉の排出ガスを流動化ガスとして利用
する気泡流動層還元炉を2段目として配設した流動層予
備還元装置を用いるシステムを開発した。
As a method for solving the above problems, the inventors of the present invention use a particle circulation type fluidized bed reduction furnace as a first stage and use the exhaust gas of this particle circulation type fluidized bed reduction furnace as a fluidizing gas. We have developed a system that uses a fluidized bed preliminary reduction device with a bed reduction furnace as the second stage.

【0011】この発明による作用を図1をもとに説明す
る。図1は 本発明による流動層予備還元装置の基本構
造を模式的に示したものである。原料鉱石は2段目の気
泡流動層還元炉21の原料装入口22より装入され、還
元ガス導入口23より導入される還元ガスにより気泡流
動層還元炉21中で予熱・還元される。この場合、気泡
流動層還元炉21内の還元ガス流速は通常の気泡流動層
を形成する範囲とする。予熱・還元された鉱石は還元鉱
石輸送管27により1段目の粒子循環型流動層還元炉1
1に導入される。気泡流動層還元炉21から飛び出す若
干量の還元鉱石は粒子捕集装置24で還元ガスより分離
され下降管25を介して再び気泡流動層還元炉21内に
供給される。
The operation of the present invention will be described with reference to FIG. FIG. 1 schematically shows the basic structure of a fluidized bed preliminary reduction device according to the present invention. The raw material ore is charged from the raw material inlet 22 of the second-stage bubbling fluidized bed reduction furnace 21, and is preheated / reduced in the bubbling fluidized bed reduction furnace 21 by the reducing gas introduced from the reducing gas introduction port 23. In this case, the flow rate of the reducing gas in the bubbling fluidized bed reduction furnace 21 is set to a range where a normal bubbling fluidized bed is formed. The preheated / reduced ore is fed by the ore transport pipe 27 to the first stage particle circulation type fluidized bed reduction furnace 1
Introduced in 1. A small amount of the reduced ore jumping out of the bubbling fluidized bed reduction furnace 21 is separated from the reducing gas by the particle collecting device 24 and supplied again into the bubbling fluidized bed reduction furnace 21 via the downcomer pipe 25.

【0012】気泡流動層還元炉21により予熱・還元さ
れた半還元鉱石は原料装入口12より粒子循環型流動層
還元炉11に供給される。この半還元鉱石は還元ガス導
入口13より導入された還元ガスにより粒子循環型流動
層還元炉11内で還元され排出口17より系外に排出さ
れ、図示省略した溶融還元炉に装入される。この場合、
粒子循環型流動層還元炉11内の還元ガスの流動層内ガ
ス流速は前記(1)式を満たす条件とし、粒子循環型流
動層還元炉11内における粒子の良好な流動性を確保
し、分散板からの落鉱等を防止する。また粒子循環型流
動層還元炉11より飛び出した鉱石は粒子補集装置14
で還元ガスより分離され、下降管15を介して再び粒子
循環型流動層還元炉11内に供給される。
The semi-reduced ore preheated and reduced by the bubbling fluidized bed reduction furnace 21 is supplied to the particle circulation type fluidized bed reduction furnace 11 from the raw material inlet 12. This semi-reduced ore is reduced in the particle circulation type fluidized bed reduction furnace 11 by the reducing gas introduced from the reducing gas inlet 13, discharged from the outlet 17 to the outside of the system, and charged into a melting reduction furnace not shown. . in this case,
The gas flow velocity in the fluidized bed of the reducing gas in the particle circulation type fluidized bed reduction furnace 11 is set to satisfy the above formula (1), and good fluidity of particles in the particle circulation type fluidized bed reduction furnace 11 is ensured and dispersed. Prevents falling ore from the plate. Further, the ore jumped out of the particle circulation type fluidized bed reduction furnace 11 is a particle collecting device 14
Is separated from the reducing gas by means of and is supplied again into the particle circulation type fluidized bed reducing furnace 11 via the downcomer pipe 15.

【0013】上記気泡流動層還元炉21中の下降管25
や、粒子循環型流動層還元炉11中の下降管15には還
元ガスの逆流を防止するために特開平3−215621
号公報に開示されたような粒子溜り槽内の還元鉄鉱石粉
を流動層に戻す循環経路26、16を設置することが好
ましい。供給される原料鉱石は気泡流動層還元炉21で
予熱・半還元され、さらに粒子循環型流動層還元炉11
で循環しながら高率の最終還元率まで還元される。
The downcomer pipe 25 in the bubbling fluidized bed reduction furnace 21.
Alternatively, in order to prevent the backflow of the reducing gas, the downflow pipe 15 in the particle circulation type fluidized bed reduction furnace 11 is disclosed in JP-A-3-215621.
It is preferable to install circulation paths 26 and 16 for returning the reduced iron ore powder in the particle reservoir tank to the fluidized bed as disclosed in Japanese Patent Laid-Open Publication No. 2003-242242. The supplied raw material ore is preheated / semi-reduced in the bubbling fluidized bed reduction furnace 21, and further, the particle circulation type fluidized bed reduction furnace 11
It is reduced to a high final reduction rate while circulating at.

【0014】その際、最終還元率は、(1)流動層予備
還元炉11内の還元ガス流速(m/s)、(2)流動層
予備還元炉11の断面積(m2 )、(3)ガス導入口1
3より供給される還元ガス(これは溶融還元炉の排出ガ
スが利用される)の流量(Nm3 /s)、(4)温度(
℃) 、及び(5)流動層予備還元炉11の炉内圧力で決
まる。
At this time, the final reduction rate is (1) reducing gas flow velocity (m / s) in the fluidized bed preliminary reduction furnace 11, (2) cross-sectional area (m 2 ) of the fluidized bed preliminary reduction furnace 11, (3) ) Gas inlet 1
The flow rate (Nm 3 / s) of the reducing gas (which uses the exhaust gas of the melting and reducing furnace) supplied from No. 3 , (4) the temperature (
C), and (5) the pressure inside the fluidized bed preliminary reduction furnace 11.

【0015】この発明の流動層予備還元装置は気泡流動
層還元炉21内の鉱石滞留量を調整することにより気泡
流動層還元炉21内におけるガスの圧力損失を制御し、
この効果により粒子循環型流動層還元炉11内の圧力と
ガス流速を制御することができるように構成している。
本発明の流動層予備還元装置の操業方法は、粒子循環型
流動層還元炉に導入する還元ガスの流量あるいは温度の
変化に応じて、気泡流動層還元炉への鉱石供給速度ある
いは気泡流動層還元炉からの鉱石排出速度を調整するこ
とにより気泡流動層還元炉の流動層予備還元炉21内の
鉱石滞留量を変化させ、この効果により粒子循環型流動
層還元炉21におけるガスの圧力損失を変化させ、粒子
循環型流動層還元炉11の炉内圧力を制御し、粒子循環
型流動層還元炉11内の還元ガスのガス流速を制御する
ものである。
The fluidized bed preliminary reduction device of the present invention controls the pressure loss of gas in the bubbling fluidized bed reduction furnace 21 by adjusting the amount of ore retained in the bubbling fluidized bed reduction furnace 21.
With this effect, the pressure and the gas flow velocity in the particle circulation type fluidized bed reduction furnace 11 can be controlled.
The operation method of the fluidized bed preliminary reduction device of the present invention is to provide an ore supply rate to the bubbling fluidized bed reduction furnace or a bubbling fluidized bed reduction according to a change in the flow rate or temperature of the reducing gas introduced into the particle circulation type fluidized bed reduction furnace. The amount of ore retained in the fluidized bed preliminary reduction furnace 21 of the bubbling fluidized bed reduction furnace is changed by adjusting the ore discharge rate from the furnace, and this effect changes the pressure loss of gas in the particle circulation type fluidized bed reduction furnace 21. Then, the pressure in the particle circulation type fluidized bed reduction furnace 11 is controlled, and the gas flow velocity of the reducing gas in the particle circulation type fluidized bed reduction furnace 11 is controlled.

【0016】[0016]

【実施例】この発明の装置と従来例の装置によって試験
操業した結果を比較して示す。試験は流動化ガス量を変
化させ、流動層予備還元炉内の鉱石滞留量を調査して行
った。試験条件を表1に示す。本発明による試験は図1
に示す装置を用いて行った。
EXAMPLE The results of the test operation by the apparatus of the present invention and the apparatus of the conventional example are shown in comparison. The test was conducted by changing the fluidized gas amount and investigating the amount of ore retained in the fluidized bed preliminary reduction furnace. The test conditions are shown in Table 1. The test according to the invention is shown in FIG.
It carried out using the apparatus shown in.

【0017】粒子循環型流動層還元炉11は還元ガス導
入口13に設けたガス分散板18から粒子飛び出し口1
9までの高さが1000mm、内径が100mmの円筒
形のものを用いた。気泡流動層還元炉21はガス導入口
23に設けたガス分散板28から粒子飛び出し口29ま
での高さが3000mm、内径が150mmの円筒形の
ものを用いた。
The particle circulation type fluidized bed reduction furnace 11 has a particle ejection port 1 from a gas dispersion plate 18 provided at a reducing gas introduction port 13.
A cylindrical shape having a height up to 9 of 1000 mm and an inner diameter of 100 mm was used. The bubbling fluidized bed reduction furnace 21 used was a cylindrical one having a height from the gas dispersion plate 28 provided in the gas inlet 23 to the particle outlet 29 of 3000 mm and an inner diameter of 150 mm.

【0018】従来法による試験は図2に示す粒子循環型
流動層還元炉11のみからなる装置を用いて行った。粒
子循環型流動層還元炉11は、還元ガス導入口13に設
けたガス分散板から粒子飛び出し口19までの高さが1
000mm、内径が100mmの円筒形のものを用い
た。試験は3.0kg/hで連続的に鉱石の供給と排出
を行いながら行った。
The test according to the conventional method was carried out by using the apparatus comprising only the particle circulation type fluidized bed reduction furnace 11 shown in FIG. In the particle circulation type fluidized bed reduction furnace 11, the height from the gas dispersion plate provided in the reducing gas inlet 13 to the particle outlet 19 is 1 or less.
A cylinder having a diameter of 000 mm and an inner diameter of 100 mm was used. The test was performed while continuously supplying and discharging ore at 3.0 kg / h.

【0019】ガス流量が12Nl/minのときに、本
発明例においては粒子循環型流動層還元炉11の鉱石滞
留量が3kg、気泡流動層還元炉21の鉱石滞留量が1
0kgになるように、従来例においては粒子循環型流動
層還元炉11の滞留量が3kgになるように調整し、そ
の後ガス流量を6Nl/min〜18Nl/minの間
で変化させた。
When the gas flow rate is 12 Nl / min, the amount of ore retained in the particle circulation type fluidized bed reduction furnace 11 is 3 kg and the amount of ore retained in the bubbling fluidized bed reduction furnace 21 is 1 in the present invention.
In the conventional example, the amount of residence in the particle circulation type fluidized bed reduction furnace 11 was adjusted to 3 kg, and then the gas flow rate was changed between 6 Nl / min and 18 Nl / min.

【0020】本発明例においてはガス流量の変化に対し
気泡流動層還元炉21内の鉱石滞留量を3〜60kgの
間で変化させた。ガス流量を変化させたときの粒子循環
型流動層還元炉11の流動層内ガス流速及び粒子循環型
流動層還元炉11内鉱石滞留量を、本発明の実施例の場
合を図3に、従来例の場合について図4に示す。図3中
に1段目、2段目と記入したものは図1に示すものであ
る。
In the example of the present invention, the amount of ore retained in the bubbling fluidized bed reduction furnace 21 was changed between 3 and 60 kg with respect to the change in gas flow rate. The gas flow rate in the fluidized bed of the particle circulation type fluidized bed reduction furnace 11 and the amount of ore retained in the particle circulation type fluidized bed reduction furnace 11 when the gas flow rate was changed are shown in FIG. An example case is shown in FIG. The first and second rows in FIG. 3 are those shown in FIG.

【0021】実施例の場合は粒子循環型流動層還元炉1
1に供給されるガス流量が変化した場合においても、粒
子循環型流動層還元炉11内のガス流速を制御し粒子循
環型流動層還元炉11内の鉱石滞留量を維持することが
可能であった。その結果、ガス流量の変化に対しても鉱
石の還元率を高率で維持することが出来た。
In the case of the embodiment, a particle circulation type fluidized bed reduction furnace 1
Even if the gas flow rate supplied to No. 1 changes, it is possible to control the gas flow velocity in the particle circulation type fluidized bed reduction furnace 11 and maintain the amount of ore retained in the particle circulation type fluidized bed reduction furnace 11. It was As a result, the reduction rate of ore could be maintained at a high rate even when the gas flow rate changed.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】この発明によれば以下の効果を奏するこ
とが出来た。 (1)流動化ガス量が変化した場合でも、流動層予備還
元炉内の鉱石滞留量を一定に維持することが出来るので
安定な操業が可能である。 (2)流動化ガス量が変化した場合でも鉱石の還元率を
高率で維持することができる。
According to the present invention, the following effects can be obtained. (1) Even if the amount of fluidizing gas changes, the amount of ore retained in the fluidized bed preliminary reduction furnace can be maintained constant, so stable operation is possible. (2) The reduction rate of ore can be maintained at a high rate even when the fluidizing gas amount changes.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の流動層予備還元装置の構成図である。FIG. 1 is a configuration diagram of a fluidized bed preliminary reduction device according to an embodiment.

【図2】試験に用いた粒子循環型流動層還元装置の構成
図である。
FIG. 2 is a configuration diagram of a particle circulation type fluidized bed reducing apparatus used in a test.

【図3】実施例の試験チャートである。FIG. 3 is a test chart of an example.

【図4】従来例の試験チャートである。FIG. 4 is a test chart of a conventional example.

【図5】粒子循環型流動層還元炉の説明図である。FIG. 5 is an explanatory view of a particle circulation type fluidized bed reduction furnace.

【符号の説明】[Explanation of symbols]

11 粒子循環型流動層還元炉 21 気泡流動層還元炉 12、22 原料装入口 13、23 環流ガス導入口 14、24 粒子捕集装置 15、25 下降管 16、26 循環経路 17、27 排出口 18、28 分散板 19、29 飛び出し口 11 Particle Circulation Type Fluidized Bed Reduction Furnace 21 Bubbling Fluidized Bed Reduction Furnace 12, 22 Raw Material Inlet 13, 23 Reflux Gas Inlet 14, 24 Particle Collector 15, 25 Downcomer 16, 26 Circulation Path 17, 27 Outlet 18 , 28 Dispersion plate 19, 29 Ejection port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒子循環型流動層還元炉と、該粒子循環
型流動層還元炉の排出ガスを流動化ガスとする気泡流動
層還元炉とを組み合わせてなる流動層予備還元装置を用
い、前記気泡流動層還元炉内の粒子滞留量を調整して前
記粒子循環型流動層還元炉の流動層内ガス流速を制御す
ることを特徴とする流動層予備還元装置の操業方法。
1. A fluidized bed preliminary reduction apparatus comprising a particle circulation type fluidized bed reduction furnace and a bubbling fluidized bed reduction furnace which uses the exhaust gas of the particle circulation type fluidized bed reduction furnace as a fluidizing gas. A method of operating a fluidized bed preliminary reduction device, characterized in that the flow rate of gas in the fluidized bed of the particle circulation type fluidized bed reduction furnace is controlled by adjusting the amount of particles retained in the bubbling fluidized bed reduction furnace.
【請求項2】 前記粒子循環型流動層還元炉に溶融還元
炉から導入するガスの流量又は温度の変化に応じて前記
気泡流動層還元炉の粒子滞留量を調整し、前記粒子循環
型流動層還元炉の流動層内ガス流速を一定に制御するこ
とを特徴とする請求項1記載の流動層予備還元装置の操
業方法。
2. The particle circulation type fluidized bed, wherein the particle retention amount of the bubble fluidized bed reduction furnace is adjusted according to the change in the flow rate or temperature of the gas introduced from the melting reduction furnace into the particle circulation type fluidized bed reduction furnace. The method for operating a fluidized bed preliminary reduction device according to claim 1, wherein the gas flow velocity in the fluidized bed of the reduction furnace is controlled to be constant.
JP5931694A 1994-03-29 1994-03-29 Operating method of fluidized bed prereduction device Withdrawn JPH07268429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5931694A JPH07268429A (en) 1994-03-29 1994-03-29 Operating method of fluidized bed prereduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5931694A JPH07268429A (en) 1994-03-29 1994-03-29 Operating method of fluidized bed prereduction device

Publications (1)

Publication Number Publication Date
JPH07268429A true JPH07268429A (en) 1995-10-17

Family

ID=13109843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5931694A Withdrawn JPH07268429A (en) 1994-03-29 1994-03-29 Operating method of fluidized bed prereduction device

Country Status (1)

Country Link
JP (1) JPH07268429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481125B1 (en) * 2013-04-30 2015-01-12 주식회사 포스코 Apparatus for manufacturing melting iron and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481125B1 (en) * 2013-04-30 2015-01-12 주식회사 포스코 Apparatus for manufacturing melting iron and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0316819B1 (en) Metal-making process and apparatus involving the smelting reduction of metallic oxides
US6110413A (en) 3-Stage fluidized bed type fine iron ore reducing apparatus having x-shaped circulating tubes
US6224649B1 (en) Method and apparatus for reducing iron-oxides-particles having a broad range of sizes
JPH10204513A (en) Fluidized bed type reduction method, fluidized bed type reduction reactor and fluidized bed type reduction reaction apparatus
JPH07268429A (en) Operating method of fluidized bed prereduction device
SK282985B6 (en) Method of producing liquid pig iron or liquid steel precursors
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
JP2501662B2 (en) Control method of ore retention in circulating fluidized bed preliminary reduction furnace
US6132489A (en) Method and apparatus for reducing iron-oxides-particles having a broad range of sizes
JPH0699734B2 (en) Circulating fluidized bed type pre-reduction furnace for fine iron ore
US6235079B1 (en) Two step twin-single fluidized bed pre-reduction apparatus for pre-reducing fine iron ore, and method therefor
JP2659889B2 (en) Particle circulation device of circulating fluidized bed pre-reduction furnace
JP2765737B2 (en) Operating method of fluidized bed prereduction furnace and fluidized bed prereduction furnace
JPH11108561A (en) Fluidized bed reaction device with interior partition plate
JP3223727B2 (en) Powder material transfer device
JPH03215621A (en) Circulating fluidized bed prereduction for powdery iron ore
JP2536642B2 (en) Method of adjusting gas flow for preliminary reduction in smelting reduction equipment equipped with preliminary reduction furnace
JPH03100112A (en) Method for operating circulating fluidized reduction furnace of powdery ore and reduction furnace
JPH01129917A (en) Device for preheating and charging material in reduction furnace
KR940007490B1 (en) Equipment of pre-reduction
JPH0331412A (en) Fluidized bed type prereduction furnace for iron or non-ferrous ore
JPH0754029A (en) Method for pre-reducing grain circulating fluidized bed and apparatus therefor
JPH0649520A (en) Fluidized bed furnace
JPH08269516A (en) Operation method of fluidized bed furnace
JPH01247988A (en) External circulation type fluidized-bed furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605