JPH11108561A - Fluidized bed reaction device with interior partition plate - Google Patents

Fluidized bed reaction device with interior partition plate

Info

Publication number
JPH11108561A
JPH11108561A JP28922797A JP28922797A JPH11108561A JP H11108561 A JPH11108561 A JP H11108561A JP 28922797 A JP28922797 A JP 28922797A JP 28922797 A JP28922797 A JP 28922797A JP H11108561 A JPH11108561 A JP H11108561A
Authority
JP
Japan
Prior art keywords
fluidized bed
partition plate
particles
gas
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28922797A
Other languages
Japanese (ja)
Inventor
Kazuya Kunitomo
和也 国友
Yasushi Takamoto
泰 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28922797A priority Critical patent/JPH11108561A/en
Publication of JPH11108561A publication Critical patent/JPH11108561A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control the residence time of a particle in a flowing reaction device. SOLUTION: In a fluidized bed reaction device 1 where a supply port 2 of a raw material particle, the supply port of a fluidization gas, and the delivery port 3 of a particle are provided at upper, lower, and side part, respectively, a channel being bent or spirally curved by a partition plate 13 being nearly vertically provided on a gas diffusion plate 7 at the lower part in the flow reaction device 1 is formed, and the residence time of the fluidized raw material particle can be adjusted, the partition plate 13 is set to a position that is higher than that of a splash zone directly above a surface 6 of a dense layer in a fluidized bed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉体とガスとの反
応に供される反応装置である流動層反応装置に関するも
のであり、特に、流動層内の粒子の滞留時間分布を制御
するための仕切り板を有する流動層反応装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed reactor which is a reactor used for a reaction between a powder and a gas, and more particularly to a method for controlling a residence time distribution of particles in a fluidized bed. The present invention relates to a fluidized bed reactor having a partition plate of the above.

【0002】[0002]

【従来の技術】粉体とガスとの反応には、流動層反応装
置が広く用いられている。流動層反応装置はシャフト炉
と異なり、比較的粒径の小さい粒子を反応ガスによって
流動させながら反応させるものであり、通常、粒子を塊
成化する必要がないこと、ガス流速を粒子の流動化開始
速度以上にできるため面積当たり多量のガスが導入でき
生産性を上げられることなどの利点を有する。
2. Description of the Related Art Fluidized bed reactors are widely used for the reaction between powder and gas. Fluidized bed reactors are different from shaft furnaces in that relatively small particles are caused to react by flowing them with a reaction gas.No need to agglomerate the particles and the gas flow velocity Since the starting speed can be increased, a large amount of gas can be introduced per area, and the productivity can be improved.

【0003】一方、流動層反応装置に入った粒子はガス
により激しく攪拌され完全混合状態にあるため、連続し
て粒子を供給・排出する場合、未反応もしくは充分反応
していない粒子が成品にある確率で混入する。このた
め、成品の反応率をあるレベル以上に高めるためには、
粒子の供給速度および排出速度を大幅に落とす必要があ
り生産性が低下する。
On the other hand, particles entering a fluidized bed reactor are vigorously stirred by a gas and are in a completely mixed state. Therefore, when particles are continuously supplied and discharged, unreacted or not sufficiently reacted particles are present in the product. Mixed with probability. Therefore, in order to increase the reaction rate of a product to a certain level or more,
It is necessary to greatly reduce the supply speed and discharge speed of the particles, and the productivity is reduced.

【0004】これらの流動層反応装置の欠点を補うた
め、図3,図4に示すような仕切り板を有する流動層反
応装置の構成が考案され、例えば米国特許USP5,1
18,479や特開平8−261658号公報等で開示
されている。これらの先行技術は、粉体がガスにより流
動している流動層29内に炉体21の粒子供給口22か
ら連続的に粉体を供給し、粒子排出口23から排出する
流動層反応装置に関するものであるが、供給された粉体
がすぐに粒子排排出口23から排出されないようにガス
分散板25上に垂直に仕切り板26を設けており、粒子
はその仕切り板26で区切られた間を蛇行するように流
動・移動し粒子排出口23へと向かうように流路24を
形成したものである。つまり、粒子が完全混合状態にな
るのを仕切り板26で防止し、押し出し流れに近い粒子
の運動状態を作ろうとしたものである。これら先行技術
においては、特開平8−261658号公報にもあるよ
うに、流動層が形成される高さよりも仕切り板26の高
さを高くしておくことによって、屈曲した粒子の流路を
形成するとされている。
In order to compensate for the disadvantages of these fluidized bed reactors, a fluidized bed reactor having a partition plate as shown in FIGS. 3 and 4 has been devised. For example, US Pat.
18,479 and JP-A-8-261658. These prior arts relate to a fluidized bed reactor in which powder is continuously supplied from a particle supply port 22 of a furnace body 21 into a fluidized bed 29 in which the powder is flowing by gas and discharged from a particle discharge port 23. However, a partition plate 26 is provided vertically on the gas dispersion plate 25 so that the supplied powder is not immediately discharged from the particle discharge port 23, and the particles are separated by the partition plate 26. The flow path 24 is formed so as to flow and move in a meandering manner and head toward the particle discharge port 23. That is, the partition plate 26 prevents the particles from being completely mixed, and attempts to create a motion state of the particles that is close to the extrusion flow. In these prior arts, as described in Japanese Patent Application Laid-Open No. 8-261658, the height of the partition plate 26 is set higher than the height at which the fluidized bed is formed, so that the flow path of the bent particles is formed. It has been done.

【0005】[0005]

【発明が解決しようとする課題】流動層においては、層
の表面近傍では流動層内を上昇してきた気泡がはじけ、
粒子が吹き上げられる現象が認められる。このため、仕
切り板を設けて粒子の流路を形成しようとしても、仕切
り板を飛び越して粒子排出口にショートカットする粒子
があり、粒子滞留時間の長い操業条件の場合は仕切り板
の効果が減少して完全混合状態に近い滞留時間分布とな
ってしまう問題が生じる。流動層反応装置内の粒子の滞
留時間分布を制御するためには、流動層部分の粒子の動
きを制御するだけでは不十分であり、流動層上部空間
の、フリーボードと呼ばれる粒子濃度が希薄な領域にお
ける粒子混合を防止する必要がある。
In a fluidized bed, air bubbles that have risen in the fluidized bed burst near the surface of the bed,
A phenomenon in which particles are blown up is observed. For this reason, even if a partition plate is provided to form a flow path for particles, there are particles that jump over the partition plate and are short-circuited to the particle discharge port.In the case of operating conditions with a long particle residence time, the effect of the partition plate is reduced. This causes a problem that the residence time distribution becomes close to a completely mixed state. In order to control the residence time distribution of the particles in the fluidized bed reactor, it is not enough to control the movement of the particles in the fluidized bed part, and the particle concentration in the upper space of the fluidized bed called freeboard is low. It is necessary to prevent particle mixing in the area.

【0006】[0006]

【課題を解決するための手段】本発明は、原料粒子の供
給口、成品粒子の排出口、流動化ガスの供給機構を有す
る流動層反応装置内下部のガス分散板上にほぼ垂直に設
けた仕切り板で屈曲または螺旋状に湾曲した流路を成形
し、流動化した粒子の滞留時間分布の調整を可能とした
流動層反応装置において、流動層内濃厚層表面直上のス
プラッシュゾーン高さより、仕切り板を高くしたことを
特徴とする仕切り板を内装する流動層反応装置である。
SUMMARY OF THE INVENTION The present invention is provided substantially vertically on a gas dispersion plate in a lower portion of a fluidized bed reactor having a supply port for raw material particles, a discharge port for product particles, and a mechanism for supplying a fluidizing gas. In a fluidized bed reactor that forms a curved or helically curved flow path with a partition plate and enables the adjustment of the residence time distribution of fluidized particles, the partition is separated from the height of the splash zone immediately above the surface of the dense layer in the fluidized bed. This is a fluidized bed reactor equipped with a partition plate characterized by having a raised plate.

【0007】また、本発明は、仕切り板の間隔、ガスの
空塔速度から(1)式の関係で求まる流動層内濃厚層表
面直上のスプラッシュゾーン高さより、仕切り板を高く
したことを特徴とする。
Further, the present invention is characterized in that the partition plate is made higher than the height of the splash zone just above the surface of the dense layer in the fluidized bed, which is obtained from the space of the partition plate and the superficial velocity of the gas by the relationship of the formula (1). I do.

【0008】 H=Dw (0.4Dw -0.36−0.1)exp(0.75Uo Dw -0.23) ・・・(1) ここで、Hはスプラッシュゾーン高さ(m)、Dw は仕
切り板の間隔(m)、Uo はガスの空塔速度(m/s)
である。
[0008] H = Dw (0.4Dw -0.36 -0.1) exp (0.75Uo Dw -0.23) ··· (1) Here, H is the splash zone height (m), Dw is of the partition plate Interval (m), Uo is gas superficial velocity (m / s)
It is.

【0009】また、流動層の分野におけるスプラッシュ
ゾーンとは、流動層内濃厚層表面近傍において反応ガス
よりなる気泡の破裂時に射出された粗大粒子の上昇と落
下の現象が存在する領域である(例えば、「流動層の反
応工学」(培風館1984年刊行、155ページ))。
A splash zone in the field of a fluidized bed is an area in the vicinity of the surface of a dense layer in a fluidized bed in which the phenomenon of rising and falling of coarse particles ejected at the time of rupture of bubbles formed of a reaction gas is present (for example, , "Reaction Engineering of Fluidized Bed" (published in Baifukan 1984, p. 155).

【0010】[0010]

【発明の実施の形態】本発明に従えば、流動層反応装置
内の粒子は仕切板と装置壁、もしくは隣接する仕切り板
との間で形成された屈曲または螺旋状の流路を新たな装
置に供給または排出した粒子の量に応じて移動するとと
もに、フリーボードに吹き上げられた粒子も、スプラッ
シュゾーンより上方に上端のある仕切り板により区切ら
れているため再度同じ領域に落下するため仕切り板を飛
び越して粒子が排出口へショートカットすることを防止
できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, particles in a fluidized bed reactor are provided with a bent or spiral flow path formed between a partition plate and a device wall or an adjacent partition plate. In addition to moving according to the amount of particles supplied or discharged to the free board, the particles blown up on the free board are also separated by a partition plate having an upper end above the splash zone, so that the particles fall again into the same area, so that the partition plate is removed. It is possible to prevent the particles from jumping and shortcut to the discharge port.

【0011】スプラッシュゾーンは、特別に設計された
粒子サンプラーを用いて射出された粒子を採取すること
により実測することができるが、操業条件による推定が
できれば簡便である。発明者らによる実験の結果、スプ
ラッシュゾーンの高さは、粒子物性やガス物性などへの
依存性は少なく、仕切り板の間隔と空塔ガス流速に大き
く影響を受けることが分かった。即ち、仕切り板の間隔
を大きくすると、また、ガスの空塔速度を大きくすると
スプラシュゾーンの高さが高くなることが分かった。こ
のためさらに多くの実験を繰り返し他の研究者らの実
験、検討結果も参考にして仕切り板の間隔とガス空塔速
度を変化させた場合のスプラッシュゾーンの高さを実験
に求め、仕切り板の間隔とガス空塔速度の関数でスプラ
ッシュゾーンの高さを求める関係式を求めた。この結
果、本発明における仕切り板の高さは、流動層内濃厚層
表面からさらに上方に(1)式により求まる距離Hより
高くすればよいとの結論を得た。また、この高さ以上に
おいては、流動層内濃厚層表面近傍において反応ガスよ
りなる気泡の破裂時に射出された粒子の上昇はほとんど
認められず、仕切り板を飛び越えて隣の領域に混入する
ことはないため、粒子が排出口へショートカットするこ
とを防ぐことができる。
The splash zone can be actually measured by collecting the ejected particles using a specially designed particle sampler, but it is convenient if estimation can be made based on operating conditions. As a result of an experiment by the inventors, it was found that the height of the splash zone had little dependence on the particle properties, gas properties, and the like, and was greatly affected by the spacing between the partition plates and the superficial gas flow velocity. That is, it was found that the height of the splash zone was increased by increasing the interval between the partition plates and by increasing the superficial velocity of the gas. For this reason, many experiments were repeated, and the height of the splash zone when the spacing of the partition plates and the gas superficial gas velocity were changed was determined in the experiment by referring to the experiments and examination results of other researchers, and the A relational expression for calculating the height of the splash zone as a function of the interval and the gas superficial velocity was obtained. As a result, it was concluded that the height of the partition plate in the present invention should be higher than the distance H determined by the equation (1) further above the surface of the dense layer in the fluidized bed. Above this height, almost no increase in the particles injected during the rupture of the gas bubble formed of the reaction gas near the surface of the dense layer in the fluidized bed is observed, and it is not possible to jump over the partition plate and mix into the adjacent region. As a result, it is possible to prevent particles from shortcutting to the outlet.

【0012】[0012]

【実施例】図1は本発明の一実施例の流動層反応装置の
垂直断面の構成を示す。また、図2は、図1の切断面a
−a’の水平断面の構成を示す。矩形の流動層反応装置
1の左右に粒子供給口2および粒子排出口3が設けられ
ている。流動層内粒子4は排出口へオーバーフローする
ように流れてゆき成品ホッパー5に排出されるため、流
動層内濃厚層表面6のレベルは粒子排出口3の開口部位
置とほぼ一致する。また、粒子供給口2は流動層内濃厚
層上方のフリーボード空間9に開放されている。
FIG. 1 shows the configuration of a vertical section of a fluidized bed reactor according to one embodiment of the present invention. FIG. 2 is a sectional view a of FIG.
The configuration of the horizontal section of -a 'is shown. A particle supply port 2 and a particle discharge port 3 are provided on the left and right sides of the rectangular fluidized bed reactor 1. Since the particles 4 in the fluidized bed flow so as to overflow to the discharge port and are discharged to the product hopper 5, the level of the surface 6 of the dense layer in the fluidized bed substantially coincides with the position of the opening of the particle discharge port 3. The particle supply port 2 is open to a free board space 9 above the dense layer in the fluidized bed.

【0013】以下、鉄鉱石の流動還元装置に本発明を適
用した例について説明する。粒子供給口2からは、原料
ホッパー10a、10b経由で例えば鉄鉱石(酸化鉄)
を供給する。それが粒子排出口3まで移動する際に、ガ
ス分散板7を経由して流動層に吹き込まれた流動化ガス
8である炭酸ガスと反応し還元され金属鉄となって粒子
排出口3から排出される。反応したガスは流動層反応装
置1の内部のフリーボード空間9を上昇し、排ガスダク
ト11、サイクロン12を経て系外に排出される。
An example in which the present invention is applied to a fluid reduction device for iron ore will be described below. From the particle supply port 2, for example, iron ore (iron oxide) via the raw material hoppers 10a and 10b
Supply. When it travels to the particle outlet 3, it reacts with carbon dioxide gas, which is the fluidizing gas 8 blown into the fluidized bed via the gas dispersion plate 7, is reduced and becomes metallic iron, and is discharged from the particle outlet 3. Is done. The reacted gas rises in the freeboard space 9 inside the fluidized bed reactor 1 and is discharged outside the system through the exhaust gas duct 11 and the cyclone 12.

【0014】この際、成品の金属鉄に原料に由来する未
反応の酸化鉄が混入すると次の溶解工程での所要電力が
増加したり鉄分歩留まりが低下するため好ましくない。
そこで、流動層反応装置内下部のガス分散板上にほぼ垂
直に設けた仕切り板で屈曲または螺旋状に湾曲した流路
を形成し、この流路内を流動化した粒子が移動するよう
にすれば、極端に滞留時間の短い粒子が無くなり滞留時
間分布幅を小さくすることができる。ガス分散板7とは
垂直に5枚の仕切り板13を流動層反応装置内に設置し
て屈曲流路を形成し、仕切板の上端を流動層内濃厚層表
面直上のスプラッシュゾーンよりも高い所に位置させた
(図2)。例えば、ガス空塔速度を0.8m/sとし、
200mm間隔に仕切り板13を設置した場合、(1)
式で求まるスプラッシュゾーンの高さは約290mmで
あったため、仕切り板の上端が流動層内濃厚層表面より
も上方400mmの位置となる仕切り板を設けた。本発
明の効果を明確にするため、仕切り板の上端を流動層内
濃厚層表面直上のスプラッシュゾーンよりも低いところ
に設定した比較例との操業結果の差違を表1に示す。
[0014] At this time, if unreacted iron oxide derived from the raw material is mixed with the metallic iron of the product, it is not preferable because the required power in the next melting step increases and the yield of iron decreases.
Therefore, a curved or spirally curved flow path is formed by a partition plate provided almost vertically on a gas dispersion plate in the lower part of the fluidized bed reactor, and the fluidized particles move in the flow path. In this case, particles having extremely short residence time are eliminated, and the residence time distribution width can be reduced. Five partition plates 13 are installed in the fluidized bed reactor vertically with respect to the gas dispersion plate 7 to form a bent channel, and the upper end of the partition plate is located higher than the splash zone just above the surface of the dense layer in the fluidized bed. (FIG. 2). For example, when the gas superficial velocity is 0.8 m / s,
When the partition plates 13 are installed at intervals of 200 mm, (1)
Since the height of the splash zone determined by the equation was about 290 mm, a partition plate was provided in which the upper end of the partition plate was located 400 mm above the surface of the dense layer in the fluidized bed. In order to clarify the effect of the present invention, Table 1 shows the difference in operation results from the comparative example in which the upper end of the partition plate was set at a position lower than the splash zone immediately above the surface of the dense layer in the fluidized bed.

【0015】[0015]

【表1】 [Table 1]

【0016】ここで、実施例1と2、および、実施例3
と4は、それぞれ同じ装置において原料の供給速度すな
わち生産速度を変化させた場合の例である。比較例の場
合、成品還元率の基準である90%を得ようとすると生
産速度を0.5〜0.7(t/m2 /h)以上に上げら
れないが、スプラッシュゾーンより高いところまで仕切
り板を延ばした実施例においては、同じ生産速度では還
元率が上昇し、生産速度を増やしても90%の還元率の
成品が得られた。
Here, Embodiments 1 and 2 and Embodiment 3
4 and 4 are examples in which the feed rate of the raw material, that is, the production rate is changed in the same apparatus. In the case of the comparative example, the production rate cannot be increased to 0.5 to 0.7 (t / m 2 / h) or more when trying to obtain 90% which is the standard of the product reduction rate, but to a level higher than the splash zone. In the example in which the partition plate was extended, the reduction rate increased at the same production rate, and a product with a reduction rate of 90% was obtained even when the production rate was increased.

【0017】[0017]

【発明の効果】本発明の適用により、本来完全混合状態
になる流動層内の粒子が、流動層内粒子濃厚層のみなら
ずフリーボードにおいても粒子が混合しにくくなるため
押し出し流れに近くなり、未反応の粒子が成品に混入す
ることを避けられるため、成品の反応率を上げることが
できること、一定の反応率においては供給速度を増加で
きるため生産性が向上するなどの効果が得られ、その工
業的効果は極めて大きい。
According to the present invention, the particles in the fluidized bed, which are originally in a completely mixed state, are hardly mixed with the particles in the freeboard as well as in the concentrated layer in the fluidized bed, so that the particles become close to an extruded flow. Unreacted particles can be prevented from being mixed into the product, so that the reaction rate of the product can be increased, and at a constant reaction rate, the feed rate can be increased, so that effects such as an improvement in productivity are obtained. The industrial effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の流動層反応装置の垂直断面
の構成を示す説明図である。
FIG. 1 is an explanatory view showing a configuration of a vertical cross section of a fluidized bed reactor according to one embodiment of the present invention.

【図2】図1の切断面a−a’線の水平断面の構成を示
す説明図である。
FIG. 2 is an explanatory diagram showing a configuration of a horizontal cross section taken along line aa ′ of FIG. 1;

【図3】従来の流動層反応装置の水平断面の構成を示す
説明図である。
FIG. 3 is an explanatory view showing a configuration of a horizontal section of a conventional fluidized bed reactor.

【図4】図3のb−b’線の垂直断面の構成を示す説明
図である。
FIG. 4 is an explanatory diagram showing a configuration of a vertical cross section taken along line bb ′ of FIG. 3;

【符号の説明】[Explanation of symbols]

1 流動層反応装置 2 粒子供給口 3 粒子排出口 4 流動層内粒子 5 成品ホッパー 6 流動層内濃厚層表面 7 ガス分散板 8 流動化ガス 9 フリーボード空間 10a,10b 原料ホッパー 11 排ガスダクト 12 サイクロン 13 仕切り板 21 炉体 22 粒子供給口 23 粒子排出口 24 流路 25 ガス分散板 26 仕切板 27 バブリングノズル 28 噴出ガス 29 流動層 32,42 ガス吹出口 REFERENCE SIGNS LIST 1 fluidized bed reactor 2 particle supply port 3 particle outlet 4 particles in fluidized bed 5 product hopper 6 dense layer surface in fluidized bed 7 gas dispersion plate 8 fluidizing gas 9 free board space 10a, 10b raw material hopper 11 exhaust gas duct 12 cyclone DESCRIPTION OF SYMBOLS 13 Partition plate 21 Furnace body 22 Particle supply port 23 Particle discharge port 24 Flow path 25 Gas dispersion plate 26 Partition plate 27 Bubbling nozzle 28 Emitted gas 29 Fluidized bed 32, 42 Gas outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原料粒子の供給口、成品粒子の排出口、
流動化ガスの供給機構を有する流動層反応装置内下部の
ガス分散板上にほぼ垂直に設けた仕切り板で屈曲または
螺旋状に湾曲した流路を成形し、流動化した粒子の滞留
時間分布の調整を可能とした流動層反応装置において、
流動層内濃厚層表面直上のスプラッシュゾーン高さよ
り、仕切り板を高くしたことを特徴とする仕切り板を内
装する流動層反応装置。
An inlet for raw material particles, an outlet for product particles,
A bent or helically curved flow path is formed by a partition plate provided almost vertically on a gas dispersion plate in the lower part of the fluidized bed reactor having a fluidized gas supply mechanism, and the residence time distribution of the fluidized particles is measured. In a fluidized bed reactor that enables adjustment,
A fluidized bed reactor having a partition plate therein, wherein the height of the partition plate is higher than the height of the splash zone immediately above the surface of the dense layer in the fluidized bed.
【請求項2】 仕切り板の間隔、ガスの空塔速度から
(1)式の関係で求まる流動層内濃厚層表面直上のスプ
ラッシュゾーン高さより、仕切り板を高くしたことを特
徴とする請求項1記載の仕切り板を内装する流動層反応
装置。 H=Dw (0.4Dw -0.36−0.1)exp(0.75Uo Dw -0.23) ・・・(1) ここで、Hはスプラッシュゾーン高さ(m)、Dw は仕
切り板の間隔(m)、Uoはガスの空塔速度(m/s)
である。
2. The height of the partition plate is set higher than the height of the splash zone immediately above the surface of the dense layer in the fluidized bed, which is obtained from the space of the partition plate and the superficial velocity of the gas according to the relationship of equation (1). A fluidized bed reactor equipped with the partition plate described in the above. H = Dw (0.4Dw -0.36 -0.1) exp (0.75Uo Dw -0.23 ) (1) where H is the height of the splash zone (m), and Dw is the interval (m) of the partition plate. ), Uo is the superficial velocity of gas (m / s)
It is.
JP28922797A 1997-10-07 1997-10-07 Fluidized bed reaction device with interior partition plate Withdrawn JPH11108561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28922797A JPH11108561A (en) 1997-10-07 1997-10-07 Fluidized bed reaction device with interior partition plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28922797A JPH11108561A (en) 1997-10-07 1997-10-07 Fluidized bed reaction device with interior partition plate

Publications (1)

Publication Number Publication Date
JPH11108561A true JPH11108561A (en) 1999-04-23

Family

ID=17740441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28922797A Withdrawn JPH11108561A (en) 1997-10-07 1997-10-07 Fluidized bed reaction device with interior partition plate

Country Status (1)

Country Link
JP (1) JPH11108561A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053544A1 (en) * 2000-01-20 2001-07-26 Voest-Alpine Industrieanlagenbau Gmbh & Co Fluidized bed aggregate for reducing oxide-containing material
KR100360110B1 (en) * 2000-12-20 2002-11-07 주식회사 포스코 Fluidized bed reactor for achieving high efficiency and preventing back-mixing
US10557091B2 (en) 2016-07-28 2020-02-11 Uop Llc Process for increasing hydrocarbon yield from catalytic reformer
US10583412B1 (en) 2019-08-26 2020-03-10 Uop Llc Apparatus for catalytic reforming hydrocarbons having flow distributor and process for reforming hydrocarbons
US10933395B1 (en) 2019-08-26 2021-03-02 Uop Llc Apparatus for catalytic reforming hydrocarbons having flow distributor and process for reforming hydrocarbons

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053544A1 (en) * 2000-01-20 2001-07-26 Voest-Alpine Industrieanlagenbau Gmbh & Co Fluidized bed aggregate for reducing oxide-containing material
KR100360110B1 (en) * 2000-12-20 2002-11-07 주식회사 포스코 Fluidized bed reactor for achieving high efficiency and preventing back-mixing
US10557091B2 (en) 2016-07-28 2020-02-11 Uop Llc Process for increasing hydrocarbon yield from catalytic reformer
US10583412B1 (en) 2019-08-26 2020-03-10 Uop Llc Apparatus for catalytic reforming hydrocarbons having flow distributor and process for reforming hydrocarbons
US10933395B1 (en) 2019-08-26 2021-03-02 Uop Llc Apparatus for catalytic reforming hydrocarbons having flow distributor and process for reforming hydrocarbons

Similar Documents

Publication Publication Date Title
EP0534243B1 (en) A method for treating gases and particulate solids in a fluid bed
KR101528369B1 (en) Apparatus for producing trichlorosilane and method for producing trichlorosilane
JPH09505268A (en) Plasma arc milling method and apparatus
CN1288065A (en) Pressure control
EP1759024B1 (en) Process for copper converting
JPH11108561A (en) Fluidized bed reaction device with interior partition plate
JP5449149B2 (en) Shaft furnace and method of operating the furnace
US2856264A (en) Charging fluidizing gas into fluidized bed reactor
US7803268B2 (en) Method and plant for producing low-temperature coke
US3999951A (en) Apparatus for chlorinating metal-bearing materials
US4144051A (en) Process for thermally treating solids with high-oxygen gases, especially for pyrometallurgical applications
JP5000487B2 (en) Direct reduction method
EP1165844B1 (en) A device for preventing back mixture in a fluidized bed reactor
JP2765734B2 (en) Operation method of iron bath reactor
JP2862863B2 (en) Multi-chamber split type fluidized bed furnace
JPH05331516A (en) Particle circulating device for circulating type fluidized bed pre-reduction furnace
US3867505A (en) Method and apparatus for chlorinating metal bearing materials
JPH07268429A (en) Operating method of fluidized bed prereduction device
JP2008133147A (en) Method for producing silicon chloride
JPS6010097B2 (en) Magnesium metal production equipment
US20050250967A1 (en) Device for introducing gas into a fluidised bed and method for therefor
KR940007490B1 (en) Equipment of pre-reduction
JPH01247516A (en) Method for supplying raw material in smelting reduction
JP3204917B2 (en) Fluidized bed furnace
JPH01242724A (en) Circulation fluidized bed reactor for powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207