JPH0331412A - Fluidized bed type prereduction furnace for iron or non-ferrous ore - Google Patents
Fluidized bed type prereduction furnace for iron or non-ferrous oreInfo
- Publication number
- JPH0331412A JPH0331412A JP16261889A JP16261889A JPH0331412A JP H0331412 A JPH0331412 A JP H0331412A JP 16261889 A JP16261889 A JP 16261889A JP 16261889 A JP16261889 A JP 16261889A JP H0331412 A JPH0331412 A JP H0331412A
- Authority
- JP
- Japan
- Prior art keywords
- ore
- reducing gas
- supplying
- ports
- fluidized bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 12
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title claims description 7
- 229910052742 iron Inorganic materials 0.000 title claims description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 abstract 9
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 23
- 239000006185 dispersion Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000000605 extraction Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
〔産業上の利用分野1
本発明は、鉄あるいは非鉄鉱石を溶融還元する前に予備
還元する際に用いられる流動層式予備還元炉に関する。
〔従来の技術]
鉄あるいは非鉄鉱石の資源は、近年、低品位化の傾向に
あり、品位を向上するために低品位鉱を選鉱して、粉粒
鉱として使用されるようになった。
これ等の粉粒鉱から金属あるいは合金を製造する方法と
して、粉粒鉱を予備還元した後、溶融還元して金属ある
いは合金を製造する方法がある。
粉粒鉱を予備還元する装置としては回転炉も使用し得る
が、流動層炉は回転炉に比して、■温度制御が正確に行
われるので、極部過熱による粉粒鉱の成塊がない。
■設置面積に対する処理能力が大きい。
等の利点があり、今後、益々使用されるものと思われる
。
前記の粉粒鉱は、一般に1粒径は最大が3mmでO,1
mm以下の粉末も含有しており、流動層内で流速2〜l
om/secの還元ガスで流動化され1例えば予備還元
鉱石を1日に100を生産するとすれば、炉の大きさは
内径2〜6m、高さ10〜30mになると思われ、予備
還元反応が均一にかつ効率よく行われるためには、供給
された鉱石粒子および還元ガスが十分に分散して、相互
によく混合して反応する必要がある。
流動層式予備還元炉としては、例えば特匍昭58−21
7615号公報に開示されたものがあるが、ここに開示
されたものは炉の内径が1m程度の小型のもので、鉱石
供給口は1個であるとともに、還元ガス供給口も実質的
に1個で、この型式によっては、上記の大きさの流動層
式予備還元炉においては鉱石粒子および還元ガスの十分
な分散および混合を行うことは困難で、多量の予備還元
鉱石を生産し得る大型の流動層式予備還元炉の開発に際
して、鉱石粒子および還元ガスの十分な分散および混合
を行うことが要望されていた。[Industrial Application Field 1] The present invention relates to a fluidized bed pre-reducing furnace used for pre-reducing iron or non-ferrous ore before melting and reducing it. [Prior Art] In recent years, iron or non-ferrous ore resources have tended to be of lower grade, and in order to improve the grade, low-grade ore has been beneficent and used as granule ore. As a method for producing metals or alloys from these powder ores, there is a method in which the powder ores are pre-reduced and then melted and reduced to produce metals or alloys. A rotary furnace can also be used as a device for pre-reducing fine ore, but compared to a rotary furnace, a fluidized bed furnace allows for more accurate temperature control, which prevents agglomeration of fine ore due to extreme overheating. do not have. ■Large processing capacity relative to installation area. It has the following advantages and is expected to be used more and more in the future. The above-mentioned fine grain ore generally has a maximum grain size of 3 mm and O,1
Contains powder of less than mm, and the flow rate is 2 to 1 in the fluidized bed.
For example, if 100 pre-reduced ores are to be produced per day by being fluidized with reducing gas at a rate of 1.5 oz/sec, the size of the furnace would be 2 to 6 m in inner diameter and 10 to 30 m in height, and the pre-reduction reaction would be In order to carry out the reaction uniformly and efficiently, the supplied ore particles and reducing gas must be sufficiently dispersed and mixed well with each other to react. As a fluidized bed pre-reduction furnace, for example, Tokusho 58-21
There is a furnace disclosed in Publication No. 7615, but the furnace disclosed here is a small one with an inner diameter of about 1 m, and has one ore supply port and substantially one reducing gas supply port. Depending on the type, it is difficult to sufficiently disperse and mix the ore particles and reducing gas in a fluidized bed pre-reduction furnace of the above size, and it is difficult to achieve sufficient dispersion and mixing of ore particles and reducing gas. When developing a fluidized bed pre-reduction furnace, it was desired to sufficiently disperse and mix ore particles and reducing gas.
本発明は、供給された粉粒鉱石および還元ガスが十分に
分散および混合し得る流動層式予備還元炉を提供し、前
記要望を解決しようとするものである。
【課題を解決するための手段]
本発明は前記課題を解決するために、炉の下部側壁に、
鉱石を炉内に供給する2個以上の鉱石供給口と、該鉱石
供給口の下方に還元ガスを炉内に供給する2個以上の還
元ガス供給口とを設けたことを特徴とする鉄あるいは非
鉄鉱石の流動層式予備還元炉を提供するもので、還元ガ
ス供給口が設けられた還元ガス供給部の内径が、鉱石供
給口が設けられた鉱石供給部の内径より小さいことが好
ましい。
、〔作用J
本発明を図面を用いて説明する。
第1図は本発明の一実施例における下部の縦断面説明図
である。
lは予備還元炉、2.2は予備還元炉lの側壁の下部に
同一の高さの位置に対称に2個設けられた鉱石供給口で
、これを通して鉄あるいは非鉄粉粒鉱石が炉内の鉱石供
給部9に供給される。
3.3は還元ガス供給口で、予備還元炉lの側壁に鉱石
供給口2より下方の同一の高さの位置に対称に設けられ
、還元ガス供給管5により送られる還元ガスを還元ガス
供給部4に供給する。
6は流動層よりの落鉱の抜出口である。
本発明においては、2個以上の還元ガス供給口が、2個
以上の鉱石供給口の下方に設けられるならば、還元ガス
供給口および鉱石供給口の設置数および設置位置は上記
実施例に限定されるものではなく、それぞれの設置数が
多い程、設置位置が均等に分布している程、供給された
鉱石およびガスの分散・混合が良好となるので、それぞ
れの設置数および設置位置は炉の大きさ等を勘案して適
宜決定される。
本発明においては、鉱石が還元ガスより上方で、かつそ
れぞれ複数の供給口より炉内に供給されるので、鉱石お
よび還元ガスの分散・混合を向上させることができる。
本実施例は、還元ガス供給部4の内径を鉱石供給部9の
内径より小さくしたもので、このようにすることにより
流動層の底部に右ける還元ガスの上向流速を大にするこ
とができ、流動層よりの落鉱を減少させて原料の歩留り
を向上することができる。
還元ガス供給部4の内径は、用いる鉱石の粒度分布等を
勘案して適宜決定される。
〔実施例1
第1図に示した型式の本発明の流動層式予備還元炉を、
第2図に系統をブロック図で示した予備還元装置に組込
んだ。
予備還元炉は、鉱石供給部の内径0.7 m 、還元ガ
ス供給部の内径0.2〜0.3 m 、高さ7.3mで
、還元ガスとして(CO+82+N2)の組成からなる
ガスを用い、粉鉱石を600kg/hの割合で予備還元
した。
鉱石は、鉱石供給管8、鉱石供給量調整装置7.7を通
して予備還元炉lの鉱石供給部9に分散して供給され、
還元ガスは、還元ガス供給管5.5、還元ガス供給量調
節装置12.!−2を通って予備還元炉lの還元ガス供
給部4に供給され、炉l内を上昇し、供給された鉱石を
流動化すると共に予備還元する。
炉lの排ガスは予備還元された鉱石を伴って。
サイクロン10.10を順次通過し、予備還元鉱石を分
離したのち系外に排出され、サイクロンLO,IOで分
離された予備還元鉱石は製品抜出管11により抜出され
る。
流動層からの落鉱を落鉱抜出口6より抜出した。
上記の操作により、製品の歩留りは90%、予備還元率
は55%となった。
還元ガス供給部4の内径を鉱石供給部9の内径と同一と
した上記の流動層式予備還元炉を用いたほかは、上記と
同様とした操作においては、予備還元率は変らず、製品
の歩留りは40%となるので、還元ガス供給部4の内径
を鉱石供給部9の内径より小さくすることにより、製品
の歩留りを向上させることができた。
〔発明の効果]
本発明により、流動層中の鉱石および還元ガスの分散・
混合が改善され、反応が均一化されると共に反応効率が
良くなった。
また、落鉱を減少させ得ることにより、原料の歩留りを
上げて生産性を上げることができた。
さらに、本発明は?!数の鉱石供給口を有するので、予
備還元炉より排ガスと共に排出された鉱石の一部を予備
還元炉に循環させることができ、これにより予備還元率
を向上かつ安定させることができる。The present invention aims to solve the above-mentioned needs by providing a fluidized bed pre-reduction furnace in which supplied granular ore and reducing gas can be sufficiently dispersed and mixed. [Means for Solving the Problems] In order to solve the above problems, the present invention provides a method for solving the problems described above.
Iron or iron characterized by having two or more ore supply ports for supplying ore into the furnace, and two or more reducing gas supply ports below the ore supply ports for supplying reducing gas into the furnace. The present invention provides a fluidized bed pre-reduction furnace for non-ferrous ore, and it is preferable that the inner diameter of the reducing gas supply section provided with the reducing gas supply port is smaller than the inner diameter of the ore supply section provided with the ore supply port. , [Function J] The present invention will be explained using the drawings. FIG. 1 is an explanatory longitudinal cross-sectional view of the lower part in one embodiment of the present invention. 1 is a preliminary reduction furnace, and 2.2 is two ore supply ports installed symmetrically at the same height at the bottom of the side wall of the preliminary reduction furnace 1, through which ferrous or non-ferrous powder ore is fed into the furnace. The ore supply unit 9 is supplied with the ore. 3.3 is a reducing gas supply port, which is symmetrically provided at the same height position below the ore supply port 2 on the side wall of the preliminary reduction furnace 1, and is used to supply the reducing gas sent by the reducing gas supply pipe 5. 4. 6 is an outlet for extracting fallen ore from the fluidized bed. In the present invention, if two or more reducing gas supply ports are provided below two or more ore supply ports, the number and installation positions of the reducing gas supply ports and ore supply ports are limited to the above embodiments. The more each installation is installed, and the more evenly distributed the installation positions are, the better the dispersion and mixing of the supplied ore and gas will be. It is determined as appropriate, taking into consideration the size, etc. In the present invention, since the ore is supplied into the furnace above the reducing gas and from a plurality of supply ports, it is possible to improve the dispersion and mixing of the ore and the reducing gas. In this embodiment, the inner diameter of the reducing gas supply section 4 is made smaller than the inner diameter of the ore supply section 9. By doing so, the upward flow velocity of the reducing gas at the bottom of the fluidized bed can be increased. It is possible to reduce the amount of ore falling from the fluidized bed and improve the yield of raw materials. The inner diameter of the reducing gas supply section 4 is appropriately determined in consideration of the particle size distribution of the ore used. [Example 1] A fluidized bed pre-reduction furnace of the present invention of the type shown in FIG.
The system was incorporated into a preliminary reduction device shown in a block diagram in Figure 2. The preliminary reduction furnace has an ore supply section with an inner diameter of 0.7 m, a reducing gas supply section with an inner diameter of 0.2 to 0.3 m, and a height of 7.3 m, and uses a gas having the composition (CO + 82 + N2) as the reducing gas. , the fine ore was pre-reduced at a rate of 600 kg/h. The ore is distributed and supplied to the ore supply section 9 of the preliminary reduction furnace l through the ore supply pipe 8 and the ore supply amount adjustment device 7.7,
The reducing gas is supplied through a reducing gas supply pipe 5.5 and a reducing gas supply amount adjusting device 12. ! -2, the gas is supplied to the reducing gas supply section 4 of the preliminary reduction furnace 1, rises inside the furnace 1, fluidizes the supplied ore, and performs preliminary reduction. The exhaust gas from the furnace is accompanied by pre-reduced ore. After successively passing through cyclones 10 and 10 and separating the pre-reduced ore, it is discharged from the system, and the pre-reduced ore separated by the cyclones LO and IO is extracted through the product extraction pipe 11. The fallen ore from the fluidized bed was extracted from the fallen ore extraction port 6. Through the above operations, the product yield was 90% and the preliminary reduction rate was 55%. In the same operation as above except that the fluidized bed pre-reduction furnace described above in which the inner diameter of the reducing gas supply section 4 is the same as the inner diameter of the ore supply section 9 is used, the pre-reduction rate remains unchanged and the product Since the yield was 40%, by making the inner diameter of the reducing gas supply section 4 smaller than the inner diameter of the ore supply section 9, the yield of the product could be improved. [Effects of the invention] The present invention improves the dispersion and dispersion of ore and reducing gas in a fluidized bed.
The mixing was improved, the reaction was more homogeneous, and the reaction efficiency was higher. Furthermore, by reducing the amount of ore falling, it was possible to increase the yield of raw materials and increase productivity. Furthermore, what about the present invention? ! Since it has several ore supply ports, a part of the ore discharged from the pre-reduction furnace together with the exhaust gas can be circulated to the pre-reduction furnace, thereby improving and stabilizing the pre-reduction rate.
第1図は本発明の実施例の下部構造を示す縦断面説明図
、第2図は第1図に示す本発明の実施例を組込んだ還元
装置の系統を示すブロック図である。
1・・・予備還元炉
3・−還元ガス供給口
5・・・還元ガス供給管
7・・−鉱石供給量調整装置
8・・・鉱石供給管 9・・・鉱石供給部10・
・・サイクロン it・・−製品抜出管12・・・還
元ガス供給量調整装置
2・−・鉱石供給口
4・・・還元ガス供給部
6・・・落鉱抜出口FIG. 1 is a vertical cross-sectional explanatory view showing the lower structure of an embodiment of the present invention, and FIG. 2 is a block diagram showing a system of a reduction apparatus incorporating the embodiment of the present invention shown in FIG. 1... Preliminary reduction furnace 3 - Reducing gas supply port 5 - Reducing gas supply pipe 7 - Ore supply amount adjustment device 8 - Ore supply pipe 9 - Ore supply section 10 -
... Cyclone it ... - Product extraction pipe 12 ... Reducing gas supply amount adjustment device 2 - - Ore supply port 4 ... Reducing gas supply section 6 ... Ore extraction outlet
Claims (1)
鉱石供給口と、該鉱石供給口の下方に還元ガスを炉内に
供給する2個以上の還元ガス供給口とを設けたことを特
徴とする鉄あるいは非鉄鉱石の流動層式予備還元炉。 2 還元ガス供給口が設けられた還元ガス供給部の内径
が、鉱石供給口が設けられた鉱石供給部の内径より小さ
い請求項1記載の流動層式予備還元炉。[Claims] 1. Two or more ore supply ports for supplying ore into the furnace in the lower side wall of the furnace, and two or more reducing gas ports below the ore supply ports for supplying reducing gas into the furnace. A fluidized bed pre-reduction furnace for iron or non-ferrous ore, characterized in that it is equipped with a supply port. 2. The fluidized bed pre-reduction furnace according to claim 1, wherein the inner diameter of the reducing gas supply section provided with the reducing gas supply port is smaller than the inner diameter of the ore supply section provided with the ore supply port.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16261889A JPH0331412A (en) | 1989-06-27 | 1989-06-27 | Fluidized bed type prereduction furnace for iron or non-ferrous ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16261889A JPH0331412A (en) | 1989-06-27 | 1989-06-27 | Fluidized bed type prereduction furnace for iron or non-ferrous ore |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0331412A true JPH0331412A (en) | 1991-02-12 |
Family
ID=15758032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16261889A Pending JPH0331412A (en) | 1989-06-27 | 1989-06-27 | Fluidized bed type prereduction furnace for iron or non-ferrous ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0331412A (en) |
-
1989
- 1989-06-27 JP JP16261889A patent/JPH0331412A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100276339B1 (en) | Three-stage Fluidized Bed Reduction Apparatus for Ferrous Iron Ore with X-shaped Circulation Tube | |
KR100213327B1 (en) | Three-stage fluidized-bed reactor for the reduction of fine ore | |
EP0596107B1 (en) | Fluidized bed preliminary reducing furnace for raw material comprising oxide | |
JPH0331412A (en) | Fluidized bed type prereduction furnace for iron or non-ferrous ore | |
JPH01184211A (en) | Fluidized bed reduction device for ore | |
JPH0328305A (en) | Fluidized bed type pre-reduction furnace for iron or nonferrous ore | |
JPH0328307A (en) | Fluidized bed type pre-reduction furnace for iron or nonferrous ore | |
JPH06220513A (en) | Circulation layer type preliminary reducing furnace for powdery iron ore | |
JPH0328306A (en) | Fluidized bed type pre-reduction furnace for iron or nonferrous ore | |
AU717927B2 (en) | Two step twin-single fluidized bed type pre-reduction apparatus for pre-reducing fine iron ore, and method therefor | |
JPH01129915A (en) | Prereduction furnace for smelting reduction | |
JP2562172B2 (en) | Iron ore fluidized bed reduction device | |
JP2579785B2 (en) | Pre-reduction device for smelting reduction | |
JPS6311609A (en) | Prereduction device for iron ore | |
KR100276343B1 (en) | High-temperature reduced iron cooler and fluidized bed furnace reduction device of iron ore with this cooler | |
JPH06145749A (en) | Method for reducing ore by circulating fluidized bed | |
KR100213342B1 (en) | Dual fludized-bed reactor for the reduction of fine ore | |
JPS6311611A (en) | Prereduction device for iron ore | |
WO2000037687A1 (en) | Complex fluidized bed type fine iron ore reducing apparatus, and method therefor | |
JPH01114691A (en) | Iron ore fluidized-bed reducing device | |
JPS6311610A (en) | Prereduction device for iron ore | |
KR100236160B1 (en) | 3-stage fluidized-bed apparatus for reducing fine iron ores | |
JPH07268429A (en) | Operating method of fluidized bed prereduction device | |
JPH077313Y2 (en) | Pre-reduction equipment for smelting reduction of iron ore | |
JPH05331516A (en) | Particle circulating device for circulating type fluidized bed pre-reduction furnace |