JPH08269516A - Operation method of fluidized bed furnace - Google Patents

Operation method of fluidized bed furnace

Info

Publication number
JPH08269516A
JPH08269516A JP9439295A JP9439295A JPH08269516A JP H08269516 A JPH08269516 A JP H08269516A JP 9439295 A JP9439295 A JP 9439295A JP 9439295 A JP9439295 A JP 9439295A JP H08269516 A JPH08269516 A JP H08269516A
Authority
JP
Japan
Prior art keywords
fluidized bed
flow rate
bed furnace
furnace
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9439295A
Other languages
Japanese (ja)
Inventor
Shinji Matsubara
真二 松原
Osamu Yamase
治 山瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9439295A priority Critical patent/JPH08269516A/en
Publication of JPH08269516A publication Critical patent/JPH08269516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE: To provide an operation method capable of changing the supply flow rate of products without fluctuating the holdup of respective fluidized bed furnaces of bubbling type fluidized bed furnaces of a multistage type. CONSTITUTION: The set value of the granular and powder material supply 13 rate into the system in the multistage fluidized bed furnaces of a granular and powder material bubbling type is equal to the sum of a product delivery 12 rate and the loss quantity in the system and the corrected hold up. The set value of product coarse particles 10 is equal to the value obtd. after the delivered particulate 11 quantity is subtracted from the set value of the total delivered granular and powder material (total delivered product) 12 quantity. The set value of the delivered particulate 9 quantity from the n-th stage (n: >=2) of the fluidized bed furnace (hereafter 'furnace') is set equal to the generated particulate 7 quantity (or the quantity obtd. by adding a prescribed quantity thereto). The set value of the delivered particulate 8 quantity from the n-th stage furnace is equal to the value obtd. after the corrected holdup (n+1 is required not to exceed the number of columns of the fluidized bed furnaces) within the (n+1)-th stage furnace is added to the value obtd. by subtracting the quantity of the particulates generated in the next stage furnace from the sum of the delivered coarse and fine particle quantity to the next stage furnace. As the result, the furnaces are operated by calculating the values of the set values of the granular and powder material input 13 quantity to the inside of the system, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、化学プラントにおけ
る触媒反応および鉄鉱石の還元等に用いられるバブリン
グ型流動層炉を、製品の到達反応率を高めるために複数
段連結した設備において、各流動層の粉粒体滞留量(ま
たは滞留時間)を個別に制御するとともに、最終的に製
造される製品の供給量をも同時に制御することができる
流動層炉の操業方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a bubbling type fluidized bed furnace used for a catalytic reaction in a chemical plant, reduction of iron ore, etc. in a plurality of stages connected to each other in order to increase the reaction rate of the product. The present invention relates to a method for operating a fluidized bed furnace, which allows individual control of the amount of powder (or residence time) of powder or granules in a bed, and at the same time, the amount of supply of a finally manufactured product.

【0002】[0002]

【従来の技術】従来の直列多段式流動層炉としては、石
灰焼生炉のような溢流管を利用した装置が考案されてい
る。図6は、このような溢流管型石灰焼生炉の例を示す
概略縦断面図である。同図において、原料の石灰石19
が装入口20から第1予熱部23に供給される。一方、
石灰焼生炉下部に設けられた羽口21から供給された空
気により焼却室26下部の吹込口22から供給された燃
料が燃焼する。溢流管27によって第1予熱部23、第
2予熱部24次いで第3予熱部25を経由し、次いで、
焼却部26に導入された石灰石は焼生されて生石灰28
になり、生石灰28は溢流管27によって冷却部29へ
導入され、冷却後、払出口30から排出される。
2. Description of the Related Art As a conventional series multi-stage fluidized bed furnace, a device utilizing an overflow pipe such as a lime baking furnace has been devised. FIG. 6 is a schematic vertical sectional view showing an example of such an overflow tube type lime calcination furnace. In the figure, raw material limestone 19
Is supplied from the charging port 20 to the first preheating section 23. on the other hand,
The air supplied from the tuyere 21 provided at the lower part of the lime burning furnace burns the fuel supplied from the blowing port 22 at the lower part of the incineration chamber 26. The overflow pipe 27 passes through the first preheating section 23, the second preheating section 24, and then the third preheating section 25, and then,
The limestone introduced into the incinerator 26 is burnt and burned with quick lime 28.
Then, the quick lime 28 is introduced into the cooling unit 29 by the overflow pipe 27, cooled, and then discharged from the outlet 30.

【0003】しかしながら、このような溢流管型装置
は、対象とする原料粒子径が比較的均一な場合にのみ有
効であり、例えば、鉄鉱石のような広い粒径分布を有す
る粒子を取り扱う場合には、粗粒子を流動化させる条件
下ではどうしても微粒子が流動層から飛び出してしまう
ので適用することは困難である。
However, such an overflow tube type device is effective only when the target raw material particle size is relatively uniform, for example, when handling particles having a wide particle size distribution such as iron ore. However, it is difficult to apply the method because the fine particles inevitably jump out of the fluidized bed under the condition that the coarse particles are fluidized.

【0004】特開昭58−341114号公報には、鉄
鉱石粒子を流動状態に保持しつつ高温還元ガスと接触さ
せて還元鉄を製造する方法が記載されている(以下、先
行技術という)。即ち、鉄鉱石粒子を流動状態に保持し
た流動層予備還元炉に炭化水素を供給して炭化水素の一
部を分解ガス化すると共に鉄鉱石粒子を部分還元し、副
生する炭素を鉄鉱石粒子に付着させ、次いで、流動層ガ
ス改質炉に炭素付着鉄鉱石粒子、分解ガスおよび後続す
る流動層炉からの還元鉄の一部を供給して上記分解ガス
をCOおよびH2 主体の還元ガスに改質し、そして、次
いで、流動層ガス改質炉から排出される鉄鉱石粒子およ
び還元鉄を流動層還元炉に供給し、流動状態に保持しつ
つ上記還元ガスと接触させることによって還元鉄を製造
する方法が記載されている。そして、この先行技術にお
ける流動層予備還元炉、流動層ガス改質炉および流動層
還元炉はいずれもバブリング型流動層炉である。
Japanese Unexamined Patent Publication (Kokai) No. 58-341114 describes a method for producing reduced iron by keeping iron ore particles in a fluid state and contacting them with a high-temperature reducing gas (hereinafter referred to as prior art). That is, by supplying hydrocarbons to a fluidized bed preliminary reduction furnace that holds iron ore particles in a fluidized state to decompose and gasify a part of the hydrocarbons and partially reduce the iron ore particles, the by-produced carbon is generated as iron ore particles. Then, the carbon-deposited iron ore particles, the cracked gas and a part of the reduced iron from the subsequent fluidized bed furnace are supplied to the fluidized bed gas reforming furnace, and the cracked gas is mainly reduced gas containing CO and H 2. And then the iron ore particles and reduced iron discharged from the fluidized bed gas reforming furnace are supplied to the fluidized bed reducing furnace and brought into contact with the reducing gas while maintaining the fluidized state. A method of manufacturing is described. The fluidized bed preliminary reduction furnace, fluidized bed gas reforming furnace and fluidized bed reduction furnace in this prior art are all bubbling type fluidized bed furnaces.

【0005】[0005]

【発明が解決しようとする課題】バブリング型流動層炉
においては、風箱部に導入されたガスを、多孔板型ガス
分散板を通して流動層炉内に均一に導入することによ
り、分散板上に粉粒体の流動層領域が形成され、この流
動層領域の上方部には粉粒体が殆ど存在しない領域、所
謂フリ−ボ−ド領域が形成される。これは下記理由によ
る。即ち、流動層炉をガスが上昇する過程において、あ
る粒径の粒子は、上記上昇ガス流から受ける浮揚力とこ
の粒子の重力とが釣り合うことによりガス流中で静止状
態となるときのガス流速、即ち、所謂「終末速度」を有
する。フリ−ボ−ドにおけるガスの上昇流速、即ち、空
塔流速がある粒子に対する終末速度を超えると、この粒
子は流動層領域に滞留することができなくなり流動層炉
から飛び出してしまう。ところが粉粒体は一般にある粒
度分布を有するので、流動層領域に滞留するものと滞留
せず、流動層炉から飛び出すものに分かれるからであ
る。
In the bubbling type fluidized bed furnace, the gas introduced into the air box part is uniformly introduced into the fluidized bed furnace through the perforated plate type gas dispersion plate, so that the gas is distributed on the dispersion plate. A fluidized bed region of the granular material is formed, and a so-called free-board region is formed above the fluidized bed region in which the granular material is scarcely present. This is for the following reason. That is, in the process in which the gas rises in the fluidized bed furnace, the particles having a certain particle diameter have a gas flow velocity at which the particles are in a stationary state in the gas flow due to the balance between the levitation force received from the rising gas flow and the gravity of the particles. That is, it has a so-called “end speed”. When the rising velocity of gas in the freeboard, that is, the superficial velocity exceeds a certain terminal velocity for particles, the particles cannot stay in the fluidized bed region and fly out of the fluidized bed furnace. However, since the granular material generally has a certain particle size distribution, it is divided into those that stay in the fluidized bed region and those that do not stay in the fluidized bed region and jump out from the fluidized bed furnace.

【0006】一般に、上述したような流動層炉から飛び
出した粒子(以下、「発生微粒子」という)に対して
は、これを捕集し再度流動層炉に戻すか、または、製品
として次工程に移送するために、流動層炉のガス出側に
サイクロンが設置されている。従って、バグリンブ型流
動層炉の操業において製品の払出し流量および滞留量を
制御するためには、流動層領域に滞留する粒子(以下、
「粗粒子」という)を流動層領域から抜き出す流量(以
下、「払出し流量」という)の他に、サイクロンで捕集
された粒子(以下、「微粒子」という)をサイクロンか
ら抜き出す流量(以下、「払出し流量」という)を適正
に調整しなければならない。
Generally, with respect to the particles (hereinafter, referred to as "generated fine particles") jumping out of the fluidized bed furnace as described above, they are collected and returned to the fluidized bed furnace again, or they are produced as a product in the next step. A cyclone is installed on the gas outlet side of the fluidized bed furnace for transfer. Therefore, in order to control the delivery flow rate and the retention amount of the product in the operation of the bag-limb type fluidized bed furnace, the particles (hereinafter,
In addition to the flow rate for extracting "coarse particles" from the fluidized bed region (hereinafter referred to as "delivery flow rate"), the flow rate for extracting particles (hereinafter referred to as "fine particles") collected by the cyclone from the cyclone (hereinafter referred to as ""Discharge flow rate") must be properly adjusted.

【0007】しかしながら、粉粒体粒度分布、ガス温
度、ガス量および系内圧力等の操業条件が刻々変化する
場合には、粉粒体粒度分布およびフリ−ボ−ドにおける
ガス流速の変化により発生微粒子の割合が変化する。こ
のため、流動層炉の安定操業のためには、発生微粒子の
流量を常に把握し、これに応じて粗粒子の払出し流量を
調整しないと、製品の払出し流量および滞留量は変動
し、これを制御することが困難となる。
However, when the operating conditions such as the particle size distribution of the powder, the gas temperature, the gas amount and the pressure in the system change every moment, it is caused by the particle size distribution of the powder and the gas flow velocity in the freeboard. The proportion of fine particles changes. Therefore, for stable operation of the fluidized bed furnace, unless the flow rate of the generated fine particles is constantly grasped and the discharge flow rate of the coarse particles is adjusted accordingly, the discharge flow rate and the retention amount of the product will fluctuate. It becomes difficult to control.

【0008】更に、複数の流動層炉を直列に連結した場
合には、すべての流動層炉における操業条件が同一であ
るとは限らない。例えば、ある流動層炉では粗粒子とし
て流動層に滞留するものが、他の流動層炉では微粒子と
して流動層領域から飛び出してサイクロンに入ることが
考えられ、また、これと逆の場合も考えられる。従っ
て、粗粒子の払出し流量を調整する場合には、上述した
ことを考慮しなければならない。また、多段式流動層炉
の場合には、上流側の流動層炉で行なった操業変更アク
ションが、下流側の流動層炉に影響を及ぼすまでに時間
遅れが生じることを考慮しなければならない。
Further, when a plurality of fluidized bed furnaces are connected in series, not all the fluidized bed furnaces have the same operating conditions. For example, in one fluidized bed furnace, particles that stay in the fluidized bed as coarse particles may jump out of the fluidized bed region as particles in another fluidized bed furnace and enter the cyclone, and vice versa. . Therefore, when adjusting the discharge flow rate of the coarse particles, the above-mentioned matters must be taken into consideration. In the case of a multi-stage fluidized bed furnace, it must be taken into consideration that there is a time delay before the operation change action performed in the upstream fluidized bed furnace affects the downstream fluidized bed furnace.

【0009】このように、多段式のバグリンブ型流動層
炉の操業においては、種々の操業要因が相互に影響を及
ぼし、一部分の要因変動のみに対して操業アクションを
とると、これが他の部分にも影響するために、制御が収
束しないことになる。例えば、各流動層炉の滞留量が常
時変化する等の結果が生じることになる。
As described above, in the operation of the multi-stage bag-limbed type fluidized bed furnace, various operation factors influence each other, and if an operation action is taken for only a part of the factor change, it is transferred to the other part. Also, the control does not converge because it also affects. For example, the result is that the amount of residence in each fluidized bed furnace constantly changes.

【0010】これに対して、従来技術による溢流式焼生
炉および先行技術のいずれにおいても、上述した問題を
解決するための方法は開示されていない。
On the other hand, neither the conventional overflow overflow furnace nor the prior art discloses a method for solving the above-mentioned problems.

【0011】従って、この発明の目的は、上述した問題
を解決することにより、多段式のバグリンブ型流動層炉
の操業において、各流動層炉における滞留量を変動させ
ることなく最終段流動層炉からの払出し流量、即ち、製
品の払出し流量を変更したり、逆に、製品の払出し流量
を変動させることなく所定の流動層炉における滞留量を
変更することができるような流動層炉の操業方法を提供
することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, so that in the operation of a multi-stage bag-limbed type fluidized bed furnace, the final stage fluidized bed furnace can be operated without changing the residence amount in each fluidized bed furnace. The operating method of the fluidized bed furnace is such that the delivery flow rate of the product, that is, the delivery flow rate of the product can be changed, or conversely, the retention amount in a predetermined fluidized bed furnace can be changed without changing the delivery flow rate of the product. To provide.

【0012】[0012]

【課題を解決するための手段】この発明は、上述した目
的を達成するために、多段式流動層炉についての全体お
よび各流動層炉の各々の系に対するマスバランスを構成
する場合に、各々の系内での損失量、および、各々の系
内の滞留量に所定の補正を施して得られる「補正された
滞留量」を算入し、これに基づいて流動層炉の操業を制
御することに特徴を有するものであり、下記構成からな
る。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a multi-stage fluidized bed furnace and a mass balance for each system of each fluidized bed furnace. The amount of loss in the system and the "corrected retention amount" obtained by applying a predetermined correction to the retention amount in each system are included, and the operation of the fluidized bed furnace is controlled based on this. It has the characteristics and has the following configuration.

【0013】即ち、この発明による流動層炉の操業方法
は、粉粒体を流動化させるガスの導入部、前記ガスを分
散させる分散板、および、前記ガスに同伴して流動層か
ら飛び出す微粒粉粒体を捕集するサイクロンを設けた流
動層炉を2塔以上、直列に連結した多段式流動層炉の操
業において、下記(イ)から(ニ)の工程: (イ)前記全流動層炉を1つの系とみなした場合に、前
記系内への前記粉粒体のインプット流量設定値(Fin
s)は、前記系外への前記粉粒体のアウトプット流量
に、前記系内での損失量および前記系内のト−タル滞留
量における設定値と測定値の差分を補正する値を加算し
て得られる値に等しいとみなして、前記インプット流量
設定値(Fin s)を算定する工程、(ロ)最終段流動層
炉から払出される粗粒粉粒体の流量設定値Fc out s
は、前記系内からアウトプットされるト−タル粉粒体の
流量設定値から、前記最終段流動層炉から払出される前
記微粒粉粒体流量を差し引いて得られる値に等しいとみ
なして、前記粗粒粉粒体の流量設定値Fc out s を算定
する工程、(ハ)第n段目(但し、n:2以上の自然
数。以下、同じ)流動層炉から払出される微粒粉粒体の
流量設定値Fn f out s は、前記第n段目流動層炉内の
発生微粒粉粒体の流量に等しいか、または、これに所定
量を加えて得られる値に等しいとみなして、前記微粒粉
粒体の流量設定値Fn f out s を算定する工程、およ
び、(ニ)第n段目流動層炉から払出される粗粒子の流
量設定値(Fn c out s )は、第n−1段目流動層炉か
ら第n段目流動層炉へ払出される粗粒子の流量と微粒子
の流量との和から、第n段目流動層炉内の発生微粒子の
流量を差し引いて得られる値に、第n+1段目流動層炉
内の滞留量における設定値と測定値の差分を補正する値
(但し、n+1が前記多段式流動層炉を構成する流動層
炉の塔数を超える場合は、この補正された滞留量は0と
する)を加算して得られる値に等しいとみなして、前記
粗粒子の流量設定値(Fn c out s )を算定する工程、
を行なうことにより、前記各流動層炉内の滞留量を制御
し、かつ、前記多段式流動層炉で製造される製品の払出
し流量を制御することに特徴を有するものである。
That is, the operating method of the fluidized bed furnace according to the present invention is such that a gas introduction portion for fluidizing the powder or granular material, a dispersion plate for dispersing the gas, and a fine particle powder that is entrained in the gas and jumps out from the fluidized bed. In the operation of a multi-stage fluidized bed furnace in which two or more fluidized bed furnaces provided with a cyclone for collecting particles are connected in series, the following steps (a) to (d): (a) the whole fluidized bed furnace , The input flow rate setting value (Fin of the granular material into the system is
s) is added to the output flow rate of the granular material to the outside of the system, a value for correcting the difference between the set value and the measured value in the loss amount in the system and the total residence amount in the system. The step of calculating the input flow rate set value (Fin s), which is regarded as equal to the value obtained by (b) the flow rate set value Fc out s of the coarse-grained particles discharged from the final stage fluidized bed furnace.
Is considered to be equal to the value obtained by subtracting the flow rate of the fine particulate material discharged from the final stage fluidized bed furnace from the flow rate setting value of the total powder or granular material output from the system, Step of calculating the flow rate set value Fc out s of the coarse-grained powder, (c) n-th stage (however, n is a natural number of 2 or more, and the same hereinafter) fine-grained powder discharged from a fluidized bed furnace The flow rate setting value Fn f out s of the above is considered to be equal to the flow rate of the generated fine-grained powder or granular material in the n-th fluidized bed furnace or equal to the value obtained by adding a predetermined amount to the above, and The step of calculating the flow rate set value Fn f out s of the fine powder particles and the flow rate set value (Fn c out s) of the coarse particles discharged from the (d) nth stage fluidized bed furnace are the n-th From the sum of the flow rates of the coarse particles and the fine particles discharged from the first-stage fluidized bed furnace to the n-th fluidized bed furnace, the n-th fluidized bed is obtained. The value obtained by subtracting the flow rate of the generated fine particles in the inside is a value for correcting the difference between the set value and the measured value in the retention amount in the (n + 1) th stage fluidized bed furnace (where n + 1 is the multistage fluidized bed furnace If the number of towers of the fluidized bed furnace is exceeded, the corrected residence amount is regarded as equal to the value obtained by adding 0) and the flow rate setting value (Fn c out s) of the coarse particles is regarded as Calculation process,
By performing the above, the retention amount in each fluidized bed furnace is controlled, and the delivery flow rate of the product manufactured in the multi-stage fluidized bed furnace is controlled.

【0014】[0014]

【作用】図1は、この発明の操業方法において使用され
る流動層炉の一般形を示す概略フロ−図である。以下、
同図に基づいてこの発明の作用・効果を説明する。粉粒
体流動用のガスが、第1段流動層炉1下部のガス導入部
16から風箱5に入り、第1段流動層炉へ供給された粉
粒体を流動させ、分散板14上に粗粒子流動層6を形成
する。第2段目以後最終段流動層炉においてもこれと同
様にして粗粒子流動層6を形成する。
FIG. 1 is a schematic flow chart showing a general form of a fluidized bed furnace used in the operating method of the present invention. Less than,
The operation and effect of the present invention will be described based on FIG. The gas for flowing the powder and granules enters the wind box 5 from the gas introduction part 16 in the lower part of the first-stage fluidized bed furnace 1 and causes the powder and the granules supplied to the first-stage fluidized bed furnace to flow therethrough, and then on the dispersion plate 14. Then, the coarse particle fluidized bed 6 is formed. The coarse particle fluidized bed 6 is formed in the same manner in the second and subsequent final fluidized bed furnaces.

【0015】同図に示したように、直列に連結された複
数のバブリング型流動層炉群を1つの系と考え、下記
(1)式: 但し、Fin s :系内への粉粒体のインプット流量設定
値 α :損失(例えばダストロス)に基づく補正係数 Fout :系外への粉粒体のアウトプット流量 Wi s :i段目流動層炉における滞留量設定値 Wi r :i段目流動層炉における滞留量実績値 T :滞留量補正値 によって、系外への粉粒体のアウトプット12量の実績
値Fout にリンクさせて、常に系内への粉粒体のインプ
ット13量の設定値Fin sを制御することができる。
As shown in the figure, a plurality of bubbling type fluidized bed furnace groups connected in series are considered to be one system, and the following equation (1): However, Fin s: Set value of the input flow rate of the granular material into the system α: Correction coefficient based on the loss (for example, dust loss) Fout: Output flow rate of the granular material outside the system Wi s: i-th fluidized bed furnace Residual amount setting value in WI: Actual amount of residual amount in i-th fluidized bed furnace T: By the amount of residual amount correction value, linked to the actual value Fout of 12 output of the granular material It is possible to control the set value Fin s of the amount 13 of input of the granular material into the inside.

【0016】もし、(1)式を採用せずに、例えば、部
分的な流動層炉の滞留量変動をみて制御アクションのみ
をとり全体の収支バランスをとらなければ、ト−タル滞
留量が増減し、その結果、他の流動層炉の滞留量の制御
バランスを崩すことになる。また、(1)式では更に、
ト−タル滞留量の設定値ΣWi s (i=1〜n) および
実測値ΣWi s (i=1〜n) の誤差を補正するように
考慮されているので、何らかの原因によりある流動層炉
の滞留量が変動した場合でも、または、任意の流動層炉
の滞留量設定値を変更する場合でも、系内のト−タル滞
留量は常にト−タル滞留量設定値となるように制御され
る。
If the formula (1) is not adopted and only the control action is taken to balance the entire balance without looking at the partial fluctuation in the amount of stay in the fluidized bed furnace, the total amount of stay will increase or decrease. However, as a result, the balance of control of the retention amount of other fluidized bed furnaces is lost. Also, in equation (1),
Since it is considered to correct the error between the set value ΣWi s (i = 1 to n) and the measured value ΣWi s (i = 1 to n) of the total amount of stay, the cause of some cause of the fluidized bed furnace Even if the amount of residence changes, or if the amount of residence set value of any fluidized bed furnace is changed, the total amount of total residence in the system is controlled so as to always be the total amount of residence set value. .

【0017】次に、最終段流動層炉3からの製品払出し
12流量の設定値、即ち、系外への粉粒体のト−タル払
出し流量設定値Fout s を制御するためには、粗粒子払
出し10流量および微粒子払出し11流量のト−タル流
量を制御する必要がある。しかしながら、微粒子の場
合、操業上のバッファとしての滞留層を持っていないた
め、下記(3)式: Fn f out s =Fn f out +β -------------------------------(3) 但し、 Fn f out s :n段目流動層炉からの微粒子の払出し流
量設定値 Fn f out :n段目流動層炉からの発生微粒子の流量 β :補正係数 に示すように、微粒子の払出し流量設定値Fn f out s
は、流動層からの発生微粒子7の流量Fn f out に合わ
せなければならない。払出し流量が発生流量以下の場合
には、微粒子がサイクロン4で滞留してしまう。逆に、
払出し流量が発生流量以上の場合には、微粒子の払出し
が断続的になってしまう。一方、発生微粒子7の流量F
n f out は、操業条件の変動によって変動するため、工
業装置としての制御性に欠ける。
Next, in order to control the set value of the product delivery 12 flow rate from the final stage fluidized bed furnace 3, that is, the total delivery flow rate set value Fout s of the granular material to the outside of the system, the coarse particles are used. It is necessary to control the total flow rate of the discharge 10 flow rate and the particulate discharge 11 flow rate. However, in the case of fine particles, since it does not have a retention layer as a buffer in operation, the following formula (3): Fn f out s = Fn f out + β -------------------- ---------------- (3) However, Fn f out s: Set value of discharge amount of fine particles from n-th fluidized bed furnace Fn f out: N-th fluidized bed furnace Flow rate β of fine particles generated from: As shown in the correction coefficient, the set flow rate Fn f out s of fine particles is set.
Must be adjusted to the flow rate Fn f out of the generated fine particles 7 from the fluidized bed. When the discharge flow rate is less than or equal to the generated flow rate, the fine particles stay in the cyclone 4. vice versa,
If the delivery flow rate is greater than or equal to the generated flow rate, the delivery of the fine particles will be intermittent. On the other hand, the flow rate F of the generated fine particles 7
Since nf out fluctuates due to fluctuations in operating conditions, it lacks controllability as an industrial device.

【0018】従って、本発明においては、最終段流動層
炉からの製品払出し12流量の設定値Fout s の制御
は、操業上のバッファとしての滞留層をもつ粗粒子払出
し10流量によって行なうべきである。即ち、下記
(2)式: Fc out s =Fout s −Ff out ------------------------------(2) 但し、 Fc out s :最終段流動層炉からの粗粒子の払出し流量
設定値 Fout s :系外への粉粒体のト−タル払出し流量設定値 Ff out :系外への粉粒体の微粒子の払出し流量 に示すように、製品払出し流量設定値Fout s から、微
粒子払出し11流量Ffout を除いた値を粗粒子の払出
し10流量設定値Fc out s とすればよい。これによ
り、製品払出し12流量設定値Fout s を変更した場合
には、一時的に滞留量に変動が生じるが、(1)式によ
り系内にインプットされる粉粒体流量の設定値Fin sも
変更されるので、やがて発生微粉子7の流量Fn f out
も変化し、新たなバランスで安定する。
Therefore, in the present invention, the set value Fout s of the product discharge 12 flow rate from the final stage fluidized bed furnace should be controlled by the coarse particle discharge 10 flow rate having a retention layer as an operation buffer. . That is, the following equation (2): Fc out s = F out s -Ff out ------------------------------ (2) However, Fc out s: Set value of flow rate of coarse particles discharged from the final stage fluidized bed furnace F out s: Set value of flow rate of total particle discharge to the outside of the system Ff out: Fine particle of powder outside the system As shown in the dispensing flow rate of No. 1, the product dispensing flow rate set value Fout s may be a value obtained by removing the fine particle dispensing 11 flow rate Ffout as the coarse particle dispensing 10 flow rate set value Fc out s. As a result, when the product delivery 12 flow rate set value Fout s is changed, the retention amount temporarily fluctuates, but the set value Fin s of the granular material flow rate input into the system by the equation (1) is also changed. Since it is changed, the flow rate of the fine particles 7 is generated Fn f out
Also changes and stabilizes with a new balance.

【0019】各流動層炉における粉粒体の滞留量の制御
については、製品払出し流量制御を優先させる最終段流
動層炉3を除いたすべての流動層炉について、同じロジ
ックで行なうべきである。このロジックは、下記(4)
式: Fn c out s =Fn-1 c out +Fn-1 f out −α’Fn f out +(Wn+1 s −Wn+1 r )/T ----------(4) 但し、 Fn c out s :n段目流動層炉からの粗粒子の払出し流
量設定値 Fn-1 c out :n−1段目流動層炉からの粗粒子の払出
し流量 Fn-1 f out :n−1段目流動層炉からの微粉子の払出
し流量 α’ :損失(例えば、ダストロス)に基づく補
正係数 Fn f out :n段目流動層炉からの発生微粒子の流量 Wn+1 s :n+1段目流動層炉における滞留量設定
値 Wn+1 r :n+1段目流動層炉における滞留量実績
値 T :滞留量補正値 に示すように、流動層炉1または2への微粒子および粗
粒子の供給流量13または8+9から発生微粒子7の流
量Fn f out を差し引いた値に、次工程の流動層炉の滞
留量設定値Wn+1 s および実績値Wn+1 r の誤差を補正
したものを流動層炉からの粗粒子の払出し流量設定値F
n c out s とすればよい。
The control of the retention amount of the powder or granules in each fluidized bed furnace should be performed by the same logic for all fluidized bed furnaces except the final stage fluidized bed furnace 3 in which the product delivery flow rate control is prioritized. This logic is described in (4) below.
Formula: Fncouts = Fn-1cout + Fn-1fout-α'Fnfout + (Wn + 1s-Wn + 1r) / T ---------- (4) However, Fn c out s: Set value for discharging coarse particles from n-th fluidized bed furnace Fn-1 c out: Flow rate for discharging coarse particles from n-1 st fluidized bed furnace Fn-1 f out: n -Flow rate of fine particles discharged from the 1st-stage fluidized bed furnace α ': Correction coefficient based on loss (for example, dust loss) Fn f out: Flow rate of fine particles generated from the nth-stage fluidized bed furnace Wn + 1 s: n + 1 stage Set value of residence amount in the fluidized bed furnace Wn + 1 r: Actual value of residence amount in the n + 1 th fluidized bed furnace T: Residence amount correction value As shown in the table, supply of fine particles and coarse particles to the fluidized bed furnace 1 or 2 A value obtained by subtracting the flow rate Fn f out of the generated fine particles 7 from the flow rate of 13 or 8 + 9 and correcting the error of the retention value set value Wn + 1 s and the actual value Wn + 1 r of the fluidized bed furnace in the next process A furnace Payout rate setting value F of the coarse particles
You can use nc out s.

【0020】上述した(1)〜(4)式で表わした論理
操作を採用することによって、複雑な多段式流動層炉の
操業において、各流動層炉における滞留量を制御し、且
つ、最終製品の払出し流量制御を比較的容易に実施する
ことが可能となる。
By adopting the logical operations represented by the above equations (1) to (4), the amount of residence in each fluidized bed furnace is controlled in the operation of a complicated multi-stage fluidized bed furnace, and the final product is obtained. It becomes possible to relatively easily perform the payout flow rate control.

【0021】[0021]

【実施例】次に、この発明を実施例により更に詳細に説
明する。図2は、この発明の操業方法の実施例において
使用した流動層炉の概略フロ−を示す図である。
Next, the present invention will be described in more detail with reference to Examples. FIG. 2 is a diagram showing a schematic flow of the fluidized bed furnace used in the embodiment of the operating method of the present invention.

【0022】同図に示した設備は、溶融還元設備におい
て鉄鉱石を予熱・予備還元するための2段式バブリング
流動層炉であり、前記(1)〜(4)式に示したロジッ
クを計算機制御システムにより自動的に実行するもので
ある。この制御に使用した補正係数α、α’およびβは
下記のとおりである。 α :0.95〜1.05 α’:0.95〜1.05 β :10 kg/min
The equipment shown in the figure is a two-stage bubbling fluidized bed furnace for preheating and pre-reducing iron ore in a smelting reduction equipment, and the logic shown in the above equations (1) to (4) is calculated by a computer. It is automatically executed by the control system. The correction coefficients α, α ′ and β used for this control are as follows. α: 0.95 to 1.05 α ': 0.95 to 1.05 β: 10 kg / min

【0023】同図に示した流動層炉では、溶融還元炉
(図示せず)から発生した温度500〜800℃、ゲ−
ジ圧1.6kg/cm2 Gのガスを、最終段流動層炉3
のガス導入部16bより流量4000Nm3 /minで
バブリング用並びに予熱および予備還元用として導入
し、次いで、風箱5bおよび分散板14bを経て塔高9
m、塔径2.7mの最終段流動層炉3の粗粒子流動層6
bに導入し、このようにして粗粒子流動層6bに導入さ
れたガスはサイクロン4bおよびガス連絡ダクト17を
経た後、塔高5m、塔径2.5mの第1段流動層炉1の
ガス導入部16aよりバブリング並びに予熱および予備
還元用ガスとして導入、次いで、風箱5a、分散板14
aを経て粗粒子流動層6aに入り再利用され、サイクロ
ン4aを経て排風される。
In the fluidized bed furnace shown in the figure, the temperature generated from a smelting reduction furnace (not shown) is 500 to 800 ° C.
A gas having a dipressure of 1.6 kg / cm 2 G was used for the final stage fluidized bed furnace 3
Was introduced from the gas introduction part 16b at a flow rate of 4000 Nm 3 / min for bubbling as well as for preheating and pre-reduction, and then passed through the wind box 5b and the dispersion plate 14b to obtain a tower height of 9
m, the coarse particle fluidized bed 6 of the final stage fluidized bed furnace 3 with a tower diameter of 2.7 m
The gas introduced into b and thus introduced into the coarse particle fluidized bed 6b is passed through the cyclone 4b and the gas communication duct 17, and then the gas of the first-stage fluidized bed furnace 1 having a tower height of 5 m and a tower diameter of 2.5 m. Bubbling and introduction as preheating and pre-reducing gas from the introduction part 16a, then the air box 5a, the dispersion plate 14
After passing through a, it enters the coarse particle fluidized bed 6a for reuse, and is exhausted through the cyclone 4a.

【0024】一方、鉄鉱石は、鉄鉱石供給シュ−ト13
aから第1段流動層炉1に300〜500kg/min
の速度で供給され、その流量は前記(1)式において、
i =1とおいて得られる下記(1’)式: Fin s =α×Fout +(ΣW1 s −ΣW1 r )/T ---------(1') 但し、 α :0.95〜1.05 に基づき、粉粒体流量調整器18aによって調整され
る。このようにして、第1段流動層炉1に供給された鉄
鉱石は、分散板14aを通過して上昇するガスによって
粗粒子および微粒子に分級される。この粗粒子と微粒子
との量的割合は、5:5〜2:8程度である。
On the other hand, the iron ore is the iron ore supply shoe 13
a to 300 to 500 kg / min for the first-stage fluidized bed furnace 1
Is supplied at the speed of
The following equation (1 ′) obtained when i = 1: Fin s = α × Fout + (ΣW1 s −ΣW1 r) / T --------- (1 ′) where α: 0.95 .About.1.05, and is adjusted by the powder or granular material flow rate adjuster 18a. In this way, the iron ore supplied to the first-stage fluidized bed furnace 1 is classified into coarse particles and fine particles by the gas rising after passing through the dispersion plate 14a. The quantitative ratio of the coarse particles to the fine particles is about 5: 5 to 2: 8.

【0025】このようにして分級された粗粒子は分散板
14a上に5〜10tonの粗粒子流動層6aを形成
し、予熱・還元が行われ、次いで、第1段流動層炉1か
ら払い出されて最終段流動層炉3に供給される。一方、
微粒子は上記ガスによって搬送され、サイクロン4aに
捕集される。捕集された微粒子は、発生微粒子7aの量
に応じてサイクロン4aから微粒子払出しシュ−ト9か
ら払出され、最終段流動層炉3に供給される。
The coarse particles classified in this manner form a coarse particle fluidized bed 6a of 5 to 10 tons on the dispersion plate 14a, are preheated and reduced, and then discharged from the first stage fluidized bed furnace 1. And is supplied to the final stage fluidized bed furnace 3. on the other hand,
The fine particles are carried by the gas and collected in the cyclone 4a. The collected fine particles are discharged from the cyclone 4a through the fine particle discharging shunt 9 according to the amount of the generated fine particles 7a, and are supplied to the final stage fluidized bed furnace 3.

【0026】最終段流動層炉3に供給する粗粒子の量
は、前記(4)式において、n =2とおいて得られる下
記(4’)式: F2 c out s =F1 c out +F1 f out −α’F2 f out +(W 3 s −W 3 r )/T ---------(4') 但し、α’:0.95〜1.05 に基づき、流量調整器18a’によって調整される。但
し、この実施例における流動層炉は2段式であるから第
3段目流動層炉は存在しない。従って、上記(4')式の右
辺中W 3 s およびW 3 r はいずれも0である。この
ようにして最終段流動層炉3に供給された粗粒子および
微粒子は、最終段流動層炉3の操業条件に応じて新たに
粗粒子および微粒子に分級される。
The amount of coarse particles to be supplied to the final stage fluidized bed furnace 3 is expressed by the following equation (4 ') obtained by setting n = 2 in the equation (4): F2 c out s = F1 c out + F1 f out -Α'F2 f out + (W3s-W3r) / T --------- (4 ') However, based on α': 0.95 to 1.05, the flow rate regulator 18a 'Is adjusted. However, since the fluidized bed furnace in this embodiment is a two-stage type, there is no third stage fluidized bed furnace. Therefore, both W 3 s and W 3 r in the right side of the above equation (4 ′) are 0. The coarse particles and fine particles thus fed to the final stage fluidized bed furnace 3 are newly classified into coarse particles and fine particles according to the operating conditions of the final stage fluidized bed furnace 3.

【0027】分級された粗粒子は分散板14b上に粗粒
子流動層6bを形成し、予熱・還元が行われて製品粗粒
子が製造され、一方、分級された微粒子はガスによって
搬送され、サイクロン4bに捕集される。
The classified coarse particles form a coarse particle fluidized bed 6b on the dispersion plate 14b and are preheated / reduced to produce product coarse particles, while the classified fine particles are conveyed by a gas and cyclone. Captured at 4b.

【0028】捕集された微粒子は、発生微粒子7bの量
に応じてサイクロン4bから微粒子払出しシュ−ト11
から払出される。一方、製品粗粒子は、下記(2)式: Fc out s =Fout s −Ff out -----------------------------(2) に基づき、粉粒体流量調整器18bによって流量が調整
されつつ、製品粗粒子供給シュ−ト10により払出され
る。
The collected fine particles are discharged from the cyclone 4b according to the amount of the generated fine particles 7b.
Paid out from. On the other hand, the product coarse particles are expressed by the following formula (2): Fc out s = F out s -F f out ---------------------------- -Based on (2), while the flow rate is adjusted by the granular material flow rate adjuster 18b, the product coarse particle supply shoe 10 dispenses the product.

【0029】図3は、上述したこの発明の操業方法の実
施例における製品払出し流量設定値とその実績値との間
の相関図である。同図から明らかなように、製品払出し
流量実績値は設定値に対して、ほぼ±15%の範囲内に
あり、精度良く制御されている。
FIG. 3 is a correlation diagram between the product delivery flow rate set value and its actual value in the embodiment of the operation method of the present invention described above. As is clear from the figure, the actual product delivery flow rate value is within ± 15% of the set value, and is controlled accurately.

【0030】図4および図5は、上述したこの発明の操
業方法の実施例における第1段流動層炉および第2段流
動層炉(最終段流動層炉)における滞留量設定値と滞留
量実績値との偏差の経時変化を示すグラフである。滞留
量実績値の算定は、差圧計によって流動層炉内の所定の
位置における圧力差(流動層差圧)を測定し、下記(5)
式: 滞留量実績値=流動層差圧×流動層断面積 ---------------------(5) に基づき行なった。この実施例において、流動層差圧は
1000〜2000mmAq、流動層断面積は5.72
6m2 である。そして、同図は、第1段流動層炉の滞留
量設定値を5tonとし、最終段流動層炉のそれを9t
onとした場合の制御結果である。同図から明らかなよ
うに、設定値に対する実績値の標準偏差σはいずれの流
動層炉においても0.3〜0.4tonの範囲内であ
り、精度よく制御されている。
FIGS. 4 and 5 show retention amount set values and retention amount results in the first-stage fluidized bed furnace and the second-stage fluidized bed furnace (final stage fluidized bed furnace) in the embodiment of the operating method of the present invention described above. It is a graph which shows the time-dependent change of the deviation with a value. The actual amount of residence is calculated by measuring the pressure difference (fluidized bed differential pressure) at a predetermined position in the fluidized bed furnace using a differential pressure gauge, and
Formula: Actual amount of stay = Fluidized bed differential pressure x Fluidized bed cross section --------------------- (5) In this example, the fluidized bed differential pressure is 1000 to 2000 mmAq and the fluidized bed cross sectional area is 5.72.
It is 6 m 2 . In the figure, the retention amount setting value of the first-stage fluidized bed furnace is set to 5 ton
It is a control result when it is turned on. As is clear from the figure, the standard deviation σ of the actual value with respect to the set value is within the range of 0.3 to 0.4 ton in any fluidized bed furnace, and is accurately controlled.

【0031】[0031]

【発明の効果】上述したように、この発明によれば、化
学プラントおよび鉄鉱石還元プラント等における多段式
バブリング型流動層炉の操業において、各々の流動層炉
の滞留量を制御しつつ製品の払出し流量を制御する場
合、煩雑な操作を容易に行なうことができ、しかも、計
算機を使用することにより自動的に行なうことができる
流動層炉の操業方法を提供することができ、工業上極め
て有用な効果がもたらされる。
As described above, according to the present invention, in the operation of the multi-stage bubbling type fluidized bed furnace in a chemical plant, an iron ore reduction plant, etc., the product amount can be controlled while controlling the retention amount of each fluidized bed furnace. When controlling the discharge flow rate, a complicated operation can be easily performed, and a method for operating a fluidized bed furnace that can be automatically performed by using a computer can be provided, which is extremely useful industrially. The effect is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の操業方法において使用される流動層
炉の一般形を示す概略フロ−図である。
FIG. 1 is a schematic flow chart showing a general form of a fluidized bed furnace used in an operating method of the present invention.

【図2】この発明の操業方法の実施例において使用した
2段式バブリング流動層炉の概略フロ−図である。
FIG. 2 is a schematic flow diagram of a two-stage bubbling fluidized bed furnace used in an example of the operating method of the present invention.

【図3】この発明の操業方法の実施例における製品払出
し流量設定値とその実績値との間の相関図である。
FIG. 3 is a correlation diagram between a product payout flow rate set value and its actual value in the embodiment of the operating method of the present invention.

【図4】この発明の操業方法の実施例における第1段流
動層炉における滞留量設定値と滞留量実績値の偏差の経
時変化を示すグラフである。
FIG. 4 is a graph showing a change with time of a deviation between a stay amount set value and a stay amount actual value in a first-stage fluidized bed furnace in an example of the operating method of the present invention.

【図5】この発明の操業方法の実施例における最終段流
動層炉における滞留量設定値と滞留量実績値の偏差の経
時変化を示すグラフである。
FIG. 5 is a graph showing a change over time in the deviation between the retention amount set value and the retention amount actual value in the final stage fluidized bed furnace in the example of the operating method of the present invention.

【図6】従来の直列多段式流動層炉の例を示す概略縦断
面図である。
FIG. 6 is a schematic vertical sectional view showing an example of a conventional series multi-stage fluidized bed furnace.

【符号の説明】[Explanation of symbols]

1 第1段流動層炉 2 第2段流動層炉 3 最終段流動層炉 4 サイクロン 4a 実施例の第1段流動層炉のサイクロン 4b 実施例の最終段流動層炉のサイクロン 5 風箱 5a 実施例の第1段流動層炉の風箱 5a 実施例の最終段流動層炉の風箱 6 粗粒子流動層 6a 実施例の第1段流動層炉の粗粒子流動層 6b 実施例の最終段流動層炉の粗粒子流動層 7 発生微粒子 7a 実施例の第1段流動層炉内の発生微粒子 7b 実施例の最終段流動層炉内の発生微粒子 8 粗粒子払出しシュ−ト 8a 実施例の第1段流動層炉の粗粒子払出しシュ−ト 9 微粒子払出しシュ−ト 10 製品粗粒子払出しシュ−ト 11 製品微粒子払出しシュ−ト 12 製品払出し 13 系内への粉粒体のインプット 13a 鉄鉱石供給シュ−ト 14 分散板 14a 実施例の第1段流動層炉の分散板 14b 実施例の最終段流動層炉の分散板 15 フリ−ボ−ド 16 ガス導入部 16a 実施例の第1段流動層炉のガス導入部 16b 実施例の最終段流動層炉のガス導入部 17 ガス連絡ダクト 18 粉粒体流量調整器 18a 実施例の第1段流動層炉の粉粒体流量調整器 18b 実施例の最終段流動層炉の粉粒体流量調整器 19 石灰石 20 装入口 21 羽口 22 吹込口 23 第1予熱部 24 第2予熱部 25 第3予熱部 26 焼却室 27 溢流管 28 生石灰 29 冷却部 30 払出口 1 1st stage fluidized bed furnace 2 2nd stage fluidized bed furnace 3 Final stage fluidized bed furnace 4 Cyclone 4a Cyclone of 1st stage fluidized bed furnace of Example 4b Cyclone of final stage fluidized bed furnace of Example 5 Windbox 5a Implementation Example First Stage Fluid Bed Furnace Wind Box 5a Final Stage Fluid Bed Furnace Wind Box 6 Coarse Particle Fluidized Bed 6a Example First Stage Fluid Bed Furnace Coarse Particle Fluidized Bed 6b Final Stage Fluidization of the Example Coarse particle of fluidized bed fluidized bed 7 Particles generated 7a Particles generated in first stage fluidized bed furnace of Example 7b Particles generated in final stage fluidized bed furnace of Example 8 Coarse particle delivery shunt 8a Example of Example 1 Coarse particle delivery shunt 9 for staged fluidized bed furnace 9 Particle delivery shunt 10 Product coarse particle delivery shunt 11 Product particulate delivery shunt 12 Product delivery 13 Input of powder into the system 13a Iron ore supply shoe -T 14 Dispersion plate 14a First embodiment Dispersion plate 14b of the first-stage fluidized bed furnace Dispersion plate of the final stage fluidized bed furnace of the example 15 Freeboard 16 Gas introduction part 16a Gas introduction part 16b of the first stage fluidized bed furnace of the example 16b Final stage of the example Gas introduction part of fluidized bed furnace 17 Gas communication duct 18 Powder and granular material flow rate controller 18a Powder and granular material flow rate controller of first stage fluidized bed furnace of Example 18b Powder and granular material flow rate adjustment of final stage fluidized bed furnace of Example 18b Container 19 Limestone 20 Inlet 21 Tuyere 22 Blow-in 23 First 1st preheating section 24 2nd preheating section 25 3rd preheating section 26 Incinerator room 27 Overflow pipe 28 Quick lime 29 Cooling section 30 Discharge outlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粉粒体を流動化させるガスの導入部、前
記ガスを分散させる分散板、および、前記ガスに同伴し
て流動層から飛び出す微粒子を捕集するサイクロンを設
けた流動層炉を2塔以上、直列に連結した多段式流動層
炉の操業において、下記(イ)から(ニ)の工程: (イ)前記全流動層炉を1つの系とみなした場合に、前
記系内への前記粉粒体のインプット流量設定値(Fin
s)は、前記系外への前記粉粒体のアウトプット流量
に、前記系内での損失量および前記系内のト−タル滞留
量における設定値と測定値の差分を補正する値を加算し
て得られる値に等しいとみなして、前記インプット流量
設定値(Fin s)を算定する工程、 (ロ)最終段流動層炉から払出される粗粒子の流量設定
値(Fc out s )は、前記系内からアウトプットされる
ト−タル粉粒体の流量設定値から、前記最終段流動層炉
から払出される前記微粒子の流量を差し引いて得られる
値に等しいとみなして、前記粗粒子の流量設定値(Fc
out s )を算定する工程、 (ハ)第n段目(但し、n:2以上の自然数。以下、同
じ)流動層炉から払出される微粒子の流量設定値(Fn
f out s )は、前記第n段目流動層炉内の発生微粒子の
流量に等しいか、または、これに所定量を加えて得られ
る値に等しいとみなして、前記微粒子の流量設定値(F
n f out s )を算定する工程、および、 (ニ)第n段目流動層炉から払出される粗粒子の流量設
定値(Fn c out s )は、第n−1段目流動層炉から第
n段目流動層炉へ払出される粗粒子の流量と微粒子の流
量との和から、第n段目流動層炉内の発生微粒子の流量
を差し引いて得られる値に、第n+1段目流動層炉内の
滞留量における設定値と測定値の差分を補正する値(但
し、n+1が前記多段式流動層炉を構成する流動層炉の
塔数を超える場合は、この補正された滞留量は0とす
る)を加算して得られる値に等しいとみなして、前記粗
粒子の流量設定値(Fn c out s )を算定する工程、を
行なうことにより、前記各流動層炉内の滞留量を制御
し、かつ、前記多段式流動層炉で製造される製品の払出
し流量を制御することを特徴とする流動層炉の操業方
法。
1. A fluidized bed furnace provided with a gas introduction part for fluidizing powders and granules, a dispersion plate for dispersing the gas, and a cyclone for collecting fine particles that accompany the gas and fly out of the fluidized bed. In the operation of a multi-stage fluidized bed furnace in which two or more towers are connected in series, the following steps (a) to (d): (a) When all the fluidized bed furnaces are regarded as one system, Input flow rate setting value (Fin
s) is added to the output flow rate of the granular material to the outside of the system, a value for correcting the difference between the set value and the measured value in the loss amount in the system and the total residence amount in the system. The step of calculating the input flow rate set value (Fin s) by assuming that the flow rate set value (Fc out s) of the coarse particles discharged from the final stage fluidized bed furnace is From the flow rate setting value of the total powder or granular material output from the system, it is regarded as equal to the value obtained by subtracting the flow rate of the fine particles discharged from the final stage fluidized bed furnace, Flow rate setting value (Fc
out c), (c) nth stage (however, n is a natural number of 2 or more. The same applies below) Flow rate set value of fine particles discharged from a fluidized bed furnace (Fn
f out s) is regarded as equal to the flow rate of the fine particles generated in the n-th fluidized bed furnace or equal to a value obtained by adding a predetermined amount to the flow rate set value (F
nf out s) is calculated, and (d) the flow rate setting value (Fn c out s) of the coarse particles discharged from the nth stage fluidized bed furnace is calculated from the n-1st stage fluidized bed furnace. A value obtained by subtracting the flow rate of fine particles generated in the nth stage fluidized bed furnace from the sum of the flow rate of coarse particles and the flow rate of fine particles discharged to the nth stage fluidized bed furnace is the n + 1th stage fluidized bed. A value for correcting the difference between the set value and the measured value of the residence amount in the furnace (however, when n + 1 exceeds the number of towers of the fluidized bed furnace constituting the multi-stage fluidized bed furnace, the corrected residence amount is 0. The step of calculating the flow rate set value (Fn c out s) of the coarse particles by performing the step of calculating the flow rate set value (Fn c out s) of the coarse particles is controlled to control the residence amount in each of the fluidized bed furnaces. And controlling the delivery flow rate of the product produced in the multi-stage fluidized bed furnace. Method.
JP9439295A 1995-03-28 1995-03-28 Operation method of fluidized bed furnace Pending JPH08269516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9439295A JPH08269516A (en) 1995-03-28 1995-03-28 Operation method of fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9439295A JPH08269516A (en) 1995-03-28 1995-03-28 Operation method of fluidized bed furnace

Publications (1)

Publication Number Publication Date
JPH08269516A true JPH08269516A (en) 1996-10-15

Family

ID=14109009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9439295A Pending JPH08269516A (en) 1995-03-28 1995-03-28 Operation method of fluidized bed furnace

Country Status (1)

Country Link
JP (1) JPH08269516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395115B1 (en) * 2001-09-03 2003-08-21 주식회사 포스코 Operation method of fine particle circulating type fluidized bed reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395115B1 (en) * 2001-09-03 2003-08-21 주식회사 포스코 Operation method of fine particle circulating type fluidized bed reactor

Similar Documents

Publication Publication Date Title
US4111158A (en) Method of and apparatus for carrying out an exothermic process
US8021600B2 (en) Method and plant for the heat treatment of solids containing iron oxide
AU2005204467B2 (en) Supply system for suspension smelting furnace
US3793444A (en) Multistage iron chloride oxidation process
JPH08269516A (en) Operation method of fluidized bed furnace
SK282985B6 (en) Method of producing liquid pig iron or liquid steel precursors
CZ372998A3 (en) Treatment of particulate material by employing fluidized bed process, tank and apparatus for making the same
RU2164951C2 (en) Melting-and-gasifying apparatus for making melt metal and plant for making metal melts
CA2031473C (en) Method for controlling a flow rate of gas for prereducing ore and apparatus therefor
RU2218418C2 (en) Device for prevention of disruption of fluidized bed designed for reduction reactor with fluidized bed
KR100395115B1 (en) Operation method of fine particle circulating type fluidized bed reactor
CN1075201A (en) Circulating fluidized bed furnace for pre-reduction of fine iron ore
US3031293A (en) Iron ore reduction process in a fluidized bed
JP2659889B2 (en) Particle circulation device of circulating fluidized bed pre-reduction furnace
WO1998030497A1 (en) Iron carbide manufacturing process and apparatus
KR20000011107A (en) Process for the treatment of particulate matter by fluidisation, and vessel with apparatus to carry out the treatment
KR20010057419A (en) Device for controlling the discharging height of fine particles in fluidized bed reactor
JP3223727B2 (en) Powder material transfer device
JPH07268429A (en) Operating method of fluidized bed prereduction device
SU883182A1 (en) Method of heating furnace with stepwise suspended layer
JP2003096511A (en) Method for operating blast furnace
JP2981015B2 (en) Operating method of circulating fluidized bed reactor
KR20040056093A (en) Method of reducing pressure peak in coal and fine iron ore based ironmaking process
JP2536642B2 (en) Method of adjusting gas flow for preliminary reduction in smelting reduction equipment equipped with preliminary reduction furnace
JPH01117132A (en) Transfer device for hot bulk material