JPH01236915A - Method for controlling apparatus for co2 removal with solid amine - Google Patents

Method for controlling apparatus for co2 removal with solid amine

Info

Publication number
JPH01236915A
JPH01236915A JP63061770A JP6177088A JPH01236915A JP H01236915 A JPH01236915 A JP H01236915A JP 63061770 A JP63061770 A JP 63061770A JP 6177088 A JP6177088 A JP 6177088A JP H01236915 A JPH01236915 A JP H01236915A
Authority
JP
Japan
Prior art keywords
adsorption
performance
water content
temperature
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63061770A
Other languages
Japanese (ja)
Other versions
JPH0565207B2 (en
Inventor
Kenji Shibata
憲司 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP63061770A priority Critical patent/JPH01236915A/en
Publication of JPH01236915A publication Critical patent/JPH01236915A/en
Publication of JPH0565207B2 publication Critical patent/JPH0565207B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE:To keep a performance in CO2 adsorption by detecting and memorizing CO2 concentration in treated gas at every moment during an adsorption process, calculating an adsorption performance from the data of measured CO2 concentration and setting a temperature and moisture in accordance with an estimated holding water content of adsorbent when the calculated performance becomes lowered. CONSTITUTION:While the first adsorption reactor 1 is in an adsorption process, CO2 concentration in treatment gas is detected with a CO2 analyzer, e.g., every 30sec and stored into a control computer 6. After the adsorption process is finished, an adsorption performance is calculated from the measured CO2 concen tration data, and a discrimination between a lowered performance and a normal one is carried out. When the performance tends to be lowered, a holding water content of adsorbent is estimated by comparing the data with shapes of break through curves corresponding to various holding water contents. A temperature and moisture corresponding to a deviation of the calculated holding water content from an optimum one are further calculated and determined as set values in the next adsorption process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体アミンによるCO2除去装置の制御方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for controlling a CO2 removal device using a solid amine.

(従来技術) 固体アミンによるCO2除去プロセスにおいて、固定ア
ミンの再生には水蒸気による直接加熱再生方式が用いら
れている。このプロセスの吸着−再生工程での固体アミ
ンの保有水分は次のように変化する。
(Prior Art) In a CO2 removal process using a solid amine, a direct heating regeneration method using steam is used to regenerate the fixed amine. The water content of the solid amine during the adsorption-regeneration step of this process changes as follows.

1)吸着工程における保有水分の変化 固体アミン層を通過する供給ガスの温度、湿度及び流速
に応じた分だけ固体アミン粒子表面から保有水分が蒸発
し減少する。この現象は、固体アミン層を通過するガス
中の水分と固体アミン粒子表面の水分との間に平衡関係
が成立するまで続くので、固体アミンから失われる保有
水分の総量は、扱方時間または平衡到達時間(平衡に達
するまでに要する時間)の短かい方で定まる。
1) Change in retained moisture in the adsorption process The retained moisture evaporates and decreases from the solid amine particle surface by an amount corresponding to the temperature, humidity, and flow rate of the supplied gas passing through the solid amine layer. This phenomenon continues until an equilibrium relationship is established between the moisture in the gas passing through the solid amine layer and the moisture on the surface of the solid amine particles, so the total amount of retained moisture lost from the solid amine depends on the handling time or the equilibrium It is determined by the shorter of the arrival time (time required to reach equilibrium).

2)再生工程における保有水分の変化 固体アミンの再生には、通常100〜120℃の飽和水
蒸気が用いられる。固体アミン層に供給された水蒸気は
、固体アミン層内で凝縮し、この時に発生する潜熱によ
って吸着されたCO2は固体アミンから脱離し、固体ア
ミンは再生される。
2) Change in water content in the regeneration process Saturated steam at 100 to 120°C is usually used to regenerate solid amines. The water vapor supplied to the solid amine layer is condensed within the solid amine layer, and the CO2 adsorbed by the latent heat generated at this time is desorbed from the solid amine, and the solid amine is regenerated.

この凝縮した水の内、一部は固体アミンに吸着されるこ
とになる。吸着される水分の総量は吸着工程での固体ア
ミンの乾燥の度合、固体アミン自体が保有可能な水ff
1(飽和吸着水量)、固体アミンの水分成層速度及び再
生時間等によって定まる。
A portion of this condensed water will be adsorbed by the solid amine. The total amount of water adsorbed depends on the degree of drying of the solid amine in the adsorption process and the amount of water that the solid amine itself can hold.
1 (saturated adsorbed water amount), determined by the water stratification rate of solid amine, regeneration time, etc.

以上のべたように固体アミンの保有水分は吸着工程で減
少し、再生工程で増加する。即ち、固体アミン側からみ
ると吸着工程で乾燥し、再生工程で湿潤することになる
。したがって、吸着工程で失われた水分が再生工程で補
給されるような条件下では、固体アミンは一定の範囲で
水分を保持すること−なり、安定したCO2吸着性能を
維持することができる。
As explained above, the water content of solid amines decreases during the adsorption process and increases during the regeneration process. That is, when viewed from the solid amine side, it dries during the adsorption process and becomes wet during the regeneration process. Therefore, under conditions where the moisture lost in the adsorption process is replenished in the regeneration process, the solid amine will retain moisture within a certain range, and stable CO2 adsorption performance can be maintained.

しかしながら、上述の関係(固定アミンの乾燥−湿潤)
を維持するためには、装置の設置場所における環境条件
(温度、湿度)を一定に保つ必要があり、環境条件が変
動すると固体アミンは乾燥。
However, the above relationship (drying-wetting of fixed amines)
In order to maintain this, it is necessary to keep the environmental conditions (temperature, humidity) constant at the location where the equipment is installed, and if the environmental conditions fluctuate, the solid amine will dry out.

湿潤いずれかの方向に偏り、CO2吸着性能が低下する
If the humidity is biased in either direction, the CO2 adsorption performance will decrease.

次に固体アミンの吸着性能と保有水分の関係についての
べる。この関係をグラフに描くと第3図のようになる。
Next, we will discuss the relationship between solid amine adsorption performance and water content. If you draw this relationship on a graph, it will look like Figure 3.

ハミルトンスタンダード社(米国)が実施したIRA−
45(米国ロームアンドハース社製、弱塩基性陰イオン
交換樹脂)でのテスト結果によれば、IRA−45のC
O2吸着性能を維持するためには、保有水分の範囲は1
8〜35%とされている。この範囲を外れると性能が低
下することになり、その原因として以下のことが挙げら
れる。
IRA conducted by Hamilton Standard (USA)
45 (manufactured by Rohm and Haas, USA, weakly basic anion exchange resin), the C of IRA-45
In order to maintain O2 adsorption performance, the retained moisture range is 1
It is said to be 8-35%. If it falls outside this range, the performance will deteriorate, and the reasons for this are as follows.

1)保有水分が下限以下の場合(IRA−45では18
%以下) 固体アミンのCO2吸着反応はイオン交換反応によるも
のであるが、交換基のアミン類が十分に水和されていな
いと、イオン交換反応が抑制され。
1) If the retained moisture is below the lower limit (18 for IRA-45)
% or less) The CO2 adsorption reaction of solid amines is based on an ion exchange reaction, but if the amines of the exchange group are not sufficiently hydrated, the ion exchange reaction will be suppressed.

第4図(a)に示すように急激に吸着性能が低下する。As shown in FIG. 4(a), the adsorption performance decreases rapidly.

2)保有水分が上限以上の場合(IRA−45では35
%以上) 第4図(c)に示すように、吸着初期の吸着速度は低下
するもの\、保有水分が下限以下(第4図(a))のよ
うな急激な低下はみられない。これは固体アミン粒子表
面に水の層ができ、CO2がイオン交換サイトに到達す
るまでの抵抗となる。つまりCO2の拡散速度が低下す
ることによる現象である。
2) If the retained moisture is above the upper limit (35 for IRA-45)
% or more) As shown in Figure 4(c), although the adsorption rate decreases at the initial stage of adsorption, there is no sudden decrease as seen when the retained moisture is below the lower limit (Figure 4(a)). This creates a layer of water on the surface of the solid amine particles, which provides resistance for CO2 to reach the ion exchange site. In other words, this phenomenon is caused by a decrease in the diffusion rate of CO2.

なお第4図(b)は保有水分が適切な範囲(IRA−4
5では18〜35%)にある場合の典型的な例で、破過
時間(固体アミン層出口にCO2が吸着されずに流出し
てくるまでに要する時間)が長いことがわかる。
Figure 4 (b) shows the appropriate range of retained moisture (IRA-4
5), the breakthrough time (the time required for CO2 to flow out without being adsorbed at the outlet of the solid amine layer) is long.

また固体アミンの適切な保有水分範囲は固体アミンの種
類によって変わるが、−船釣には生乾きの状態がよいと
されている。IRA−45の場合で説明すると、その保
有可能な水分は40〜45%で、適切な範囲は上述の如
く18〜35%である。
The appropriate moisture content range for solid amines varies depending on the type of solid amine, but it is said that a half-dry state is best for boat fishing. In the case of IRA-45, the moisture content it can hold is 40-45%, with a suitable range being 18-35% as mentioned above.

以上で、吸着−再生工程での保有水分の変化及び保有水
分のCO2吸着性能への影響について説明したが、従来
技術では直接的な保有水分の制御はなされておらず、環
境条件を保有水分が変動しないよう調節している程度で
あった。
Above, we have explained the change in retained moisture during the adsorption-regeneration process and the influence of retained moisture on CO2 adsorption performance.However, in the conventional technology, retained moisture is not directly controlled, and environmental conditions are controlled by retained moisture. It was just an adjustment to keep it from fluctuating.

したがって、空調が整備されていないような場所におい
ては、保有水分の変動は避けられず、吸 。
Therefore, in places where air conditioning is not provided, fluctuations in retained moisture are unavoidable, leading to absorption.

着性能を維持できなかった。The wearing performance could not be maintained.

(発明により解決しようとする課題) 本発明は固体アミンの吸着性能曲a(以下、破過曲線)
の形が保有水分の増減に伴い変動することに着目し、固
体アミンの保有水分を適切な範囲に保たせるための制御
方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention solves the adsorption performance curve a (hereinafter referred to as breakthrough curve) of solid amines.
Focusing on the fact that the shape of a solid amine changes with the increase or decrease in water content, the aim is to provide a control method for maintaining the water content of a solid amine within an appropriate range.

(発明による課題の解決手段) 供給ガスの供給路に温湿度調整装置と、又処理ガスの排
出路にCO2分析計と、該CO2分析計による分析結果
を格納しかつ前記温湿度調整装置に設定信号を送る制御
用コンピュータとを備え、吸着工程に入ると同時に処理
ガス中のCO2濃度を検出して制御用コンピュータに記
憶させておき、吸着工程が終了するとco4度測定デー
タから吸着性能を計算し、性能低下の有無を判別し、性
能低下傾向にある場合はあらかじめ制御用コンピュータ
の記憶装置に格納されている保有水分に応じた破過曲線
の形と比較して保有水分を推定し、更に計算された保有
水分と最適保有水分の偏差に応じた温度及び湿度を計算
し、次の吸着工程における設定値として固体アミンのC
O2の高い吸着性能を維持可能にした。
(Means for Solving the Problems by the Invention) A temperature and humidity adjustment device is provided in the supply path of the supply gas, a CO2 analyzer is provided in the discharge path of the process gas, and the analysis results from the CO2 analyzer are stored and set in the temperature and humidity adjustment device. It is equipped with a control computer that sends signals, and as soon as the adsorption process begins, the CO2 concentration in the processed gas is detected and stored in the control computer, and when the adsorption process is finished, the adsorption performance is calculated from the CO4 measurement data. , determine whether there is a decline in performance, and if there is a tendency for performance to decline, estimate the water content by comparing it with the shape of the breakthrough curve according to the water content stored in the storage device of the control computer, and perform further calculations. Calculate the temperature and humidity according to the deviation between the determined moisture content and the optimal moisture content, and set the C of the solid amine as the set value for the next adsorption process.
It is possible to maintain high O2 adsorption performance.

(実施例) 第1図は第1吸着反応器1と第2吸着反応器2を備えた
2塔式C○2除去装置である。供給ガスは温湿度調節装
置3で温湿度調節されて供給され、吸着反応器1又は2
でCO2を吸着されたのち、環境中へ排出される。4は
再生用蒸気発生装置、5はCO2分析計である。6は制
御用コンピュータで、温湿度調節装置3及びCO0分析
計5に結ばれている。
(Example) FIG. 1 shows a two-column C○2 removal apparatus equipped with a first adsorption reactor 1 and a second adsorption reactor 2. The supply gas is supplied after being controlled in temperature and humidity by a temperature and humidity control device 3, and is then supplied to the adsorption reactor 1 or 2.
After CO2 is adsorbed, it is released into the environment. 4 is a steam generator for regeneration, and 5 is a CO2 analyzer. Reference numeral 6 denotes a control computer, which is connected to the temperature/humidity controller 3 and the CO0 analyzer 5.

今、第1吸着反応器1が吸着工程にあるとすると、もう
一方の第2吸着反応器2は再生工程にあり、タイマー等
により順次切替えて使用することにより、環境中のCO
2濃度を設定した範囲内に制御することができるように
なっている。
Now, if the first adsorption reactor 1 is in the adsorption process, the other second adsorption reactor 2 is in the regeneration process, and by sequentially switching and using it with a timer etc., CO in the environment is removed.
2 density can be controlled within a set range.

供給ガスは制御用コンピュータ6からの温湿度設定信号
によって制御される。供給ガス温湿度調節装置3で一定
温湿度に調節され、第1吸着反応器1の上部から供給さ
れ、CO□を除去された後、下部より排出され環境中へ
戻される。この排出されたガス(以下処理ガスという)
の一部はCO2分析計5へ導かれ、CO2濃度がa+1
1定される。測定結果はコンピュータ6の記憶装置へ格
納され、次の吸着工程における温湿度調整装置に対する
温湿度設定のためのデータとなる。
The supply gas is controlled by temperature and humidity setting signals from the control computer 6. The supply gas is adjusted to a constant temperature and humidity by the temperature and humidity control device 3, and is supplied from the upper part of the first adsorption reactor 1, and after removing CO□, is discharged from the lower part and returned to the environment. This discharged gas (hereinafter referred to as processed gas)
A part of the is led to the CO2 analyzer 5, and the CO2 concentration is a+1.
1 is determined. The measurement results are stored in the storage device of the computer 6, and serve as data for temperature and humidity settings for the temperature and humidity adjustment device in the next adsorption step.

以下第2図のフローチャートを参照してCO2除去装置
の作用について説明する。
The operation of the CO2 removal device will be explained below with reference to the flowchart shown in FIG.

第1吸着反応器lが吸着工程に入ると同時に処理ガス中
のCO2濃度を一定間隔(例えば30秒間隔)で検出し
、制御用コンピュータ6の記憶装置に格納する。この操
作は吸着工程終了まで継続する。
As soon as the first adsorption reactor 1 enters the adsorption process, the CO2 concentration in the process gas is detected at regular intervals (for example, every 30 seconds) and stored in the storage device of the control computer 6. This operation continues until the end of the adsorption step.

吸着工程が終了すると、CO2濃度測定データから吸着
性能を計算し、性能低下の有無を判別する。性能が低下
傾向にある場合は、あらかじめ制御用コンピュータの記
憶装置に格納されている第4図に示した保有水分に応じ
た破過曲線の形と比較し保有水分を推定する。更に計算
された保有水分と最適保有水分の偏差に応じた温度及び
湿度を計算し、次の吸着工程における設定値とする。運
転を停止する場合は、フロッピーディスク等の不揮発性
メモリに格納し、運転再開時の初期値とする。
When the adsorption step is completed, the adsorption performance is calculated from the CO2 concentration measurement data, and it is determined whether or not the performance has deteriorated. If the performance is on the decline, the retained moisture is estimated by comparing it with the shape of the breakthrough curve according to retained moisture shown in FIG. 4, which is stored in advance in the storage device of the control computer. Furthermore, the temperature and humidity are calculated according to the deviation between the calculated retained moisture content and the optimal retained moisture content, and are used as set values for the next adsorption step. When the operation is stopped, the values are stored in a non-volatile memory such as a floppy disk and used as the initial values when the operation is restarted.

第2吸着反応器2についても同様の操作をし、CO2濃
度の計測と保有水分の計算を同時に行なうことになるが
、計測を割込みで行なうか、またはマルチジョブが可能
なコンピュータを使用すれば解決可能である。こSでは
供給ガスの温度及び湿度の両者を制御するようにしたが
、通常の固体の乾燥においては、温度よりも湿度に対す
る依存性が高いので、環境温度の変動が少ない場合は湿
度調節のみで対応できる。
The same operation will be performed for the second adsorption reactor 2, and the measurement of CO2 concentration and calculation of retained water will be performed at the same time, but this can be solved by performing the measurement in an interrupt manner or by using a computer capable of multi-jobs. It is possible. In this S, both the temperature and humidity of the supplied gas are controlled, but since the drying of normal solids is more dependent on humidity than on temperature, if there is little fluctuation in the environmental temperature, only humidity control is required. I can handle it.

なお以上はCO2除去装置について例示したが、CO2
に限らず、S02等の酸性ガス、NHl等の塩基性ガス
の陰イオン交換樹脂または陽イオン交換樹脂で吸着除去
可能で、かつ水蒸気による直接加熱再生可能なガスに使
用可能である。
The above example is about a CO2 removal device, but CO2
It can be used not only for acidic gases such as S02, but also for basic gases such as NH1, which can be adsorbed and removed by an anion exchange resin or a cation exchange resin, and which can be directly heated and regenerated with water vapor.

またイオン交換樹脂に限らず、水蒸気による直接加熱再
生が可能で、かつ保有水分によって破過曲線の形が定ま
るような吸着特性をもつ吸上剤に使用可能である。
Moreover, it can be used not only for ion exchange resins but also for wicking agents that can be regenerated by direct heating with water vapor and have adsorption characteristics such that the shape of the breakthrough curve is determined by the retained moisture.

(効果) 従来技術では、固体アミンの吸着性能の低下の原因が固
体アミンの保有水分の増加によるものか、減少によるも
のか判別できなかった。これに対し本発明は破過曲線の
形が保有水分と密接な関係があることに着目して、固体
アミンの保有水分を推定可能とし、更にコンピュータ利
用によって保有水分を制御可能にしたので、固体アミン
の高精度、CO2吸着性能の維持が可能になった。
(Effect) With the conventional technology, it was not possible to determine whether the cause of the decrease in the adsorption performance of solid amine was due to an increase or decrease in the water content of the solid amine. On the other hand, the present invention focuses on the fact that the shape of the breakthrough curve is closely related to the moisture content, and makes it possible to estimate the moisture content of solid amines. Furthermore, it is possible to control the moisture content of solid amines by using a computer. It has become possible to maintain high amine accuracy and CO2 adsorption performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するCO2除去装置を示す。 第2図は第1図のCO2除去装置の制御フローチャート
。 第3図は固体アミンに於ける保有水分と吸着性能の関係
を示すグラフ。 第4図は典型的な破過曲線の例を示す。 図において; 1 第1吸看反応器 2 第2吸着反応器3 供給ガス
温湿度調節装置 4 再生用蒸気発生装置 5 CO2分析計 6 制御用コンピュータ 以上 出願人 住友重機械工業株式会社 復代理人 弁理士 大 橋   勇 第1図 第2図 第3図 第4図 (a)     (b)     (c)択型有りグ磯
−曲像
FIG. 1 shows a CO2 removal device implementing the method of the invention. FIG. 2 is a control flowchart of the CO2 removal device of FIG. 1. Figure 3 is a graph showing the relationship between water content and adsorption performance in solid amines. FIG. 4 shows an example of a typical breakthrough curve. In the figure: 1. First absorption reactor 2. Second adsorption reactor 3. Supply gas temperature/humidity control device 4. Steam generator for regeneration 5. CO2 analyzer 6. Control computer. Isamu Ohashi Figure 1 Figure 2 Figure 3 Figure 4 (a) (b) (c) Selective type Iso-curved image

Claims (1)

【特許請求の範囲】[Claims] 供給ガスの供給路に温湿度調整装置と、又処理ガスの排
出路にCO_2分析計と、該CO_2分析計による分析
結果を格納し、かつ前記温湿度調整装置に設定信号を送
る制御用コンピュータとを備え、吸着工程に入ると同時
に処理ガス中のCO_2濃度をCO_2分析計で検出し
て制御用コンピュータに記憶させておき、吸着工程が終
了するとCO_2濃度測定データから吸着性能を計算し
、性能低下の有無を判別し、性能低下傾向にある場合は
、あらかじめ制御用コンピュータの記憶装置に格納され
ている保有水分に応じた破過曲線の形と比較して保有水
分を推定し、更に計算された保有水分と最適保有水用の
偏差に応じた温度及び湿度を計算し、次の吸着工程にお
ける設定値として固定アミンのCO_2の高い吸着性能
を維持可能としたことを特徴とする固体アミンによるC
O_2除去装置の制御方法。
A temperature and humidity adjustment device in the supply gas supply path, a CO_2 analyzer in the process gas discharge path, and a control computer that stores analysis results from the CO_2 analyzer and sends setting signals to the temperature and humidity adjustment device. At the same time as the adsorption process begins, the CO_2 concentration in the treated gas is detected by a CO_2 analyzer and stored in the control computer, and when the adsorption process is finished, the adsorption performance is calculated from the CO_2 concentration measurement data and performance degradation is detected. If there is a tendency for performance to decline, the water content is estimated by comparing it with the shape of the breakthrough curve according to the water content stored in advance in the storage device of the control computer, and further calculations are made. Carbon monoxide using a solid amine is characterized in that the temperature and humidity are calculated according to the deviation between the retained water content and the optimal retained water content, and the high adsorption performance of fixed amine CO_2 can be maintained as the set value in the next adsorption step.
A method of controlling an O_2 removal device.
JP63061770A 1988-03-17 1988-03-17 Method for controlling apparatus for co2 removal with solid amine Granted JPH01236915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63061770A JPH01236915A (en) 1988-03-17 1988-03-17 Method for controlling apparatus for co2 removal with solid amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63061770A JPH01236915A (en) 1988-03-17 1988-03-17 Method for controlling apparatus for co2 removal with solid amine

Publications (2)

Publication Number Publication Date
JPH01236915A true JPH01236915A (en) 1989-09-21
JPH0565207B2 JPH0565207B2 (en) 1993-09-17

Family

ID=13180674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63061770A Granted JPH01236915A (en) 1988-03-17 1988-03-17 Method for controlling apparatus for co2 removal with solid amine

Country Status (1)

Country Link
JP (1) JPH01236915A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876488A (en) * 1996-10-22 1999-03-02 United Technologies Corporation Regenerable solid amine sorbent
JP2013022577A (en) * 2011-07-26 2013-02-04 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for recovering carbon dioxide
JP2015507527A (en) * 2011-12-22 2015-03-12 アールイ−エヌ、テクノロジー、アンパルトゼルスカブRe−N Technology Aps Gas improvement method
JP2015515925A (en) * 2012-05-04 2015-06-04 ピーター・アイゼンベルガー System and method for capturing and sequestering carbon dioxide
WO2016006620A1 (en) * 2014-07-09 2016-01-14 日立化成株式会社 Co2 removal device
JP2019025482A (en) * 2018-10-01 2019-02-21 日立化成株式会社 Co2 removal apparatus
JP2019034307A (en) * 2018-10-01 2019-03-07 日立化成株式会社 Co2 removal apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876488A (en) * 1996-10-22 1999-03-02 United Technologies Corporation Regenerable solid amine sorbent
JP2013022577A (en) * 2011-07-26 2013-02-04 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for recovering carbon dioxide
JP2015507527A (en) * 2011-12-22 2015-03-12 アールイ−エヌ、テクノロジー、アンパルトゼルスカブRe−N Technology Aps Gas improvement method
JP2015515925A (en) * 2012-05-04 2015-06-04 ピーター・アイゼンベルガー System and method for capturing and sequestering carbon dioxide
WO2016006620A1 (en) * 2014-07-09 2016-01-14 日立化成株式会社 Co2 removal device
JP2016016369A (en) * 2014-07-09 2016-02-01 日立化成株式会社 Co2 removal apparatus and co2 removal method
CN106170330A (en) * 2014-07-09 2016-11-30 日立化成株式会社 CO2removing device
US10035099B2 (en) 2014-07-09 2018-07-31 Hitachi Chemical Company, Ltd. CO2 removal device
JP2019025482A (en) * 2018-10-01 2019-02-21 日立化成株式会社 Co2 removal apparatus
JP2019034307A (en) * 2018-10-01 2019-03-07 日立化成株式会社 Co2 removal apparatus

Also Published As

Publication number Publication date
JPH0565207B2 (en) 1993-09-17

Similar Documents

Publication Publication Date Title
JP6427098B2 (en) Carbon dioxide separation and recovery system and method
US4127395A (en) Adsorbent fractionator with fail-safe automatic cycle control and process
JPH01236915A (en) Method for controlling apparatus for co2 removal with solid amine
US10427093B2 (en) CO2 recovery apparatus and CO2 recovery process
JPS61254220A (en) Apparatus for removing co2
JPH06154554A (en) Method for controlling amine compound concentration in carbon dioxide-absorption liquid
JPS63252528A (en) Air purification method
JP5165838B2 (en) Gas treatment system
JPS62132523A (en) Method and device for adsorbing and removing gaseous halogenohydrocarbon
JP3172729B2 (en) Method of supplying steam to CO2 removal device
JPH0691127A (en) Adsorption separator
JPH0143569B2 (en)
JP7218245B2 (en) dehumidifier
JPH0531325A (en) Method for removing carbon dioxide gas in combustion exhaust gas
JPH06320A (en) Dry dehumidifier
JPH06134302A (en) Solid amine regenerating method for co2 removing device
JPS6244735Y2 (en)
JPH08327092A (en) Air conditioning method and air conditioner
JP2515886B2 (en) Method and device for controlling duct heater in adsorption device
JPH04161221A (en) Method and apparatus adsorbing and removing nox
JPH01130717A (en) Method for dehumidifying compressed air
JP2003024737A (en) Dehumidication system
JPH08178399A (en) Dehumidifying/humidifying apparatus
JPS61209029A (en) Regeneration of moisture adsorbent
JPS5934933B2 (en) Transient control method for temperature and humidity control

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees