JP2003024737A - Dehumidication system - Google Patents

Dehumidication system

Info

Publication number
JP2003024737A
JP2003024737A JP2001213893A JP2001213893A JP2003024737A JP 2003024737 A JP2003024737 A JP 2003024737A JP 2001213893 A JP2001213893 A JP 2001213893A JP 2001213893 A JP2001213893 A JP 2001213893A JP 2003024737 A JP2003024737 A JP 2003024737A
Authority
JP
Japan
Prior art keywords
air side
regeneration air
temperature
regeneration
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001213893A
Other languages
Japanese (ja)
Inventor
Hikoo Miyauchi
彦夫 宮内
Taichi Sumiyoshi
太一 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Munters KK
Original Assignee
Tokyo Gas Co Ltd
Munters KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Munters KK filed Critical Tokyo Gas Co Ltd
Priority to JP2001213893A priority Critical patent/JP2003024737A/en
Publication of JP2003024737A publication Critical patent/JP2003024737A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Abstract

PROBLEM TO BE SOLVED: To provide a dehumidication system capable of performing the precise control of humidity so that the humidity at an outlet on a treated air side is received in a constant range with respect to humidity set at the time of operation of a humidifier, also achieving the conservation of energy at the time of regeneration of the humidifying function of a dehumidication rotor and capable of being constituted at a low cost by dispensing with a dew point thermometer. SOLUTION: A dehumidifying air conditioning system is equipped with the dehumidication rotor alternately passed through a treated air side and regeneration air side while rotated to adsorb moisture contained in treated air flowing through the treated air side on the treated air side while desorbing moisture by the heat energy of regeneration air flowing through the regeneration air side on the regeneration air side, a cooling means for properly cooling treated air passed through the dehumidification rotor and a heating means for applying proper heat energy to regeneration air. This system is further equipped with a temperature detection means arranged to the outlet of the regeneration air side and detecting the temperature of regeneration air passed through the outlet of the regeneration air side and a control means for controlling the capacity of the heating means on the basis of the detection value from the temperature detection means so that the temperature of the outlet of the regeneration air side becomes almost constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、除湿ロータによ
って除湿を行う除湿システムの湿度制御に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to humidity control of a dehumidifying system that dehumidifies by a dehumidifying rotor.

【0002】[0002]

【発明が解決しようとする課題】除湿ロータ(ハニカム
ロータ、デシカントロータともいう)によって除湿を行
う従来の除湿装置1は、図3に示されるように、定速で
回転を続ける除湿ロータ2が、処理空気側3と再生空気
側4とを交互に通過するように配置され、処理空気側ロ
ータに多湿の処理空気が通過すると、処理空気中の湿分
がロータ内に吸湿されることによって、処理空気は除湿
される。吸湿した除湿ロータ2は、回転を続けながら再
生空気側4に入っていき、熱源制御ユニット5により稼
働制御される熱源6により加熱された再生空気の熱エネ
ルギによって湿分が脱着されることにより除湿能力が再
生される。なお、図中の符号7は、再生空気側ロータの
入口温度を検出する温度センサを示している。
A conventional dehumidifying device 1 for dehumidifying by a dehumidifying rotor (also referred to as a honeycomb rotor or a desiccant rotor) has a dehumidifying rotor 2 which continues to rotate at a constant speed as shown in FIG. The treatment air side 3 and the regeneration air side 4 are arranged so as to pass alternately, and when the humid treatment air passes through the treatment air side rotor, the moisture in the treatment air is absorbed in the rotor, whereby the treatment is performed. The air is dehumidified. The absorbed dehumidifying rotor 2 enters the regeneration air side 4 while continuing to rotate, and dehumidifies by desorption of moisture due to heat energy of the regeneration air heated by the heat source 6 whose operation is controlled by the heat source control unit 5. The ability is regenerated. Reference numeral 7 in the figure indicates a temperature sensor for detecting the inlet temperature of the regenerated air side rotor.

【0003】このような除湿装置1における湿度制御
は、一般に、再生空気側ロータの入口温度に基づいて行
われるようになっているため、室内を除湿しなさいとい
う湿度センサ8からのON信号が熱源制御ユニット5に入
力されると、熱源制御ユニット5は、再生空気側ロータ
の入口温度が所定温度(たとえば、約100℃)を維持
するように熱源6を急速稼働させることによって、除湿
ロータ2の除湿機能を制御していた。
Since the humidity control in the dehumidifying device 1 is generally performed based on the inlet temperature of the rotor on the regenerated air side, an ON signal from the humidity sensor 8 for dehumidifying the room is a heat source. When input to the control unit 5, the heat source control unit 5 rapidly operates the heat source 6 so that the inlet temperature of the regeneration air side rotor maintains a predetermined temperature (for example, about 100 ° C.), so that the dehumidification rotor 2 can be operated. It controlled the dehumidification function.

【0004】そのため、処理空気が低湿の場合でも、熱
源制御ユニット5は、湿度センサ7からON信号が出力さ
れれば、多湿の処理空気を除湿する場合と同様に、再生
空気側ロータの入口温度を所定温度に維持するように熱
源6を急速稼働させるために、低湿の処理空気を必要以
上に除湿してしまい、熱源6に無駄な燃料が投入されて
運転コストが掛かってしまうという問題点があった。さ
らに、熱源6は、湿度センサ8からのON-OFF信号に基づ
いた熱源制御ユニット5によって急速稼働、急停止され
るため、処理空気側出口の湿度を一定とすることが困難
であり、除湿装置運転時に設定された設定湿度に対して
室内へ給気する湿度の偏差が大きくなってしまうという
問題もある。
Therefore, even if the treated air has a low humidity, the heat source control unit 5 can output the ON signal from the humidity sensor 7 as in the case of dehumidifying the humid treated air, as in the case of dehumidifying the humidified treated air. In order to rapidly operate the heat source 6 so as to maintain the temperature at a predetermined temperature, the low-humidity treated air is dehumidified more than necessary, and wasteful fuel is input to the heat source 6 to cause an operating cost. there were. Furthermore, since the heat source 6 is rapidly operated and suddenly stopped by the heat source control unit 5 based on the ON-OFF signal from the humidity sensor 8, it is difficult to keep the humidity of the treated air side outlet constant, and the dehumidifier There is also a problem that the deviation of the humidity supplied to the room becomes large with respect to the set humidity set during operation.

【0005】このような問題点を解決するために、図4
に示されるように、除湿装置1の処理空気側出口の湿度
を検出する露点温度計9を配設し、この露点温度計9か
らの制御信号を熱源制御ユニット5に入力して熱源6の
容量を必要に応じて決定するようにした湿度制御が提案
されている。ところで、このような湿度制御によると、
除湿装置運転時に設定された設定湿度に対して処理空気
側出口の湿度を一定の範囲内で収まるような精密湿度制
御が行えるだけでなく、必要に応じたエネルギを熱源6
に投入するだけでよいため省エネルギ化を図ることがで
きるようになるものの、高価な露点温度計9を用いなけ
ればならないために湿度制御系が高コストとなり、除湿
システム自体のコストアップを招いてしまう。
In order to solve such a problem, FIG.
As shown in FIG. 3, a dew point thermometer 9 for detecting the humidity of the outlet of the dehumidifying device 1 on the treated air side is provided, and a control signal from the dew point thermometer 9 is input to the heat source control unit 5 to determine the capacity of the heat source 6. Humidity control has been proposed which is determined as necessary. By the way, according to such humidity control,
Not only can precise humidity control be performed so that the humidity at the processing air side outlet falls within a certain range with respect to the set humidity set during the operation of the dehumidifier, but the heat source 6 can also supply necessary energy.
Although it is possible to conserve energy because it only needs to be put in, the humidity control system becomes high in cost because the expensive dew point thermometer 9 has to be used, and the cost of the dehumidification system itself is increased. I will end up.

【0006】そこで、この発明は、上記のような従来の
除湿システムが有している問題点を解決するためになさ
れたものであって、除湿装置運転時に設定された設定湿
度に対して処理空気側出口の湿度を一定の範囲内で収ま
るような精密湿度制御が行えるだけでなく、除湿ロータ
の除湿機能を再生する際の省エネルギ化を図り、しかも
露点温度計不要でローコストにシステム構成することの
できる除湿システムを提供することを目的としている。
Therefore, the present invention has been made to solve the problems of the conventional dehumidifying system as described above, and treats the treated air against the set humidity set during the operation of the dehumidifier. Not only can precise humidity control be performed to keep the humidity at the side outlet within a certain range, but also energy saving when regenerating the dehumidifying function of the dehumidifying rotor, and a low-cost system configuration that does not require a dew point thermometer The purpose is to provide a dehumidification system capable of performing.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、回転を続けながら処理空気側と再生空気
側とを交互に通過して、前記処理空気側では処理空気側
を流通する処理空気に含まれる湿分を吸着し、前記再生
空気側では再生空気側を流通する再生空気の熱エネルギ
によって湿分が脱着されるように配設された除湿ロータ
と、前記再生空気に適度な熱エネルギを与える加熱手段
とを備えた除湿空調システムにおいて、前記再生空気側
出口に配設され、この再生空気側出口を通過する再生空
気の温度を検出する温度検出手段と、前記温度検出手段
からの検出値に基づいて、前記再生空気側出口の温度が
ほぼ一定となるように前記加熱手段を容量制御する制御
手段とを備えたことを特徴とする。
In order to achieve the above-mentioned object, according to the present invention, while continuing rotation, the treated air side and the regenerated air side are alternately passed, and the treated air side flows through the treated air side. Dehumidifying rotor arranged to adsorb the moisture contained in the treated air and to be desorbed by the thermal energy of the regeneration air flowing through the regeneration air side on the regeneration air side, and to the regeneration air. Dehumidifying air-conditioning system including heating means for applying various heat energy, temperature detecting means arranged at the regeneration air side outlet for detecting the temperature of regeneration air passing through the regeneration air side outlet, and the temperature detecting means. Control means for controlling the capacity of the heating means so that the temperature of the regeneration air side outlet becomes substantially constant on the basis of the detected value.

【0008】また、本発明は、前記制御手段は、前記加
熱手段を稼働制御することを特徴とする。
Further, the present invention is characterized in that the control means controls the operation of the heating means.

【0009】さらに、本発明は、前記制御手段は、前記
加熱手段を所定出力で稼働させたのち、前記温度検出手
段からの検出値に基づいて、前記再生空気側出口の温度
が所定範囲内に収まるときには、前記加熱手段の出力状
態を維持させ、前記再生空気側出口の温度が所定範囲内
に収まらないときには、前記再生空気側出口の温度がほ
ぼ一定となるように、前記加熱手段の出力を低めに容量
制御することを特徴とする。
Further, according to the present invention, after the control means operates the heating means at a predetermined output, the temperature of the regeneration air side outlet falls within a predetermined range based on the detected value from the temperature detecting means. When it falls, the output state of the heating means is maintained, and when the temperature of the regeneration air side outlet does not fall within a predetermined range, the output of the heating means is adjusted so that the temperature of the regeneration air side outlet becomes substantially constant. The feature is that the capacity is controlled to a low level.

【0010】[0010]

【発明の実施の形態】以下、本発明の最も好適と思われ
る実施形態について、図面を参照しながら詳細に説明を
行う。図1は、本発明の実施形態における一例を説明す
るための構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION The most preferred embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram for explaining an example in an embodiment of the present invention.

【0011】まず、この除湿システムの基本構成を、図
1を参照しながら説明する。除湿装置10のケーシング
内部は、処理空気側11と再生空気側12とが互いに通
気不能に区画形成されており、これら処理空気側11と
再生空気側12とを回転を続けながら交互に通過する除
湿ロータ13が備えられている。
First, the basic structure of this dehumidifying system will be described with reference to FIG. In the casing of the dehumidifying device 10, a treated air side 11 and a regenerated air side 12 are formed so as to be impermeable to each other, and the dehumidifying device alternately passes through the treated air side 11 and the regenerated air side 12 while continuing to rotate. A rotor 13 is provided.

【0012】除湿ロータ13は、図示しない制御手段に
より回転駆動制御されるものであって、その内部には、
シリカゲルやゼオライト系の固体吸湿剤が充填されてい
る。そのため、処理空気側入口11aから多湿の処理空
気を処理空気側ロータに通過させると、処理空気中の湿
分がロータ内部の湿分と平衡状態を保とうとロータ内に
移動することによって処理空気は除湿される。
The dehumidifying rotor 13 is rotationally driven and controlled by a control means (not shown).
It is filled with silica gel or zeolite-based solid moisture absorbent. Therefore, when the humid process air is passed through the process air side inlet 11a to the process air side rotor, the process air moves due to the moisture in the process air moving into the rotor in order to maintain the equilibrium state with the moisture inside the rotor. Dehumidified.

【0013】処理空気側出口11bには、処理空気側ロ
ータに湿分が吸湿されて温度が上昇した処理空気を適度
に冷却する冷却器14が備えられており、この冷却器1
4によって冷却された後、処理空気は、所定の空間、た
とえば室内に給気される。室内には、室内に給気された
処理空気の湿度(相対湿度)が、除湿装置運転時に設定
された設定湿度以上になったか否かを検出して制御信号
(ON-OFF信号)を熱源制御ユニット15に出力する湿度
センサ16が備えられている。
The processing air side outlet 11b is provided with a cooler 14 for appropriately cooling the processing air whose temperature has risen due to moisture being absorbed by the processing air side rotor.
After being cooled by 4, the process air is supplied to a predetermined space, for example, a room. In the room, the control signal (ON-OFF signal) is controlled by the heat source by detecting whether the humidity (relative humidity) of the treated air supplied to the room is higher than the set humidity set when the dehumidifier is operating. A humidity sensor 16 that outputs to the unit 15 is provided.

【0014】一方、再生空気側入口12aには、湿度セ
ンサ16からの制御信号に基づいた熱源制御ユニット1
5により稼働制御される熱源17が備えられていて、再
生空気側12に送り込まれた再生空気を適度に加熱する
ようになっている。そのため、回転を続けながら再生空
気側12に移行した除湿ロータ13の湿分は、熱源17
により適度に加熱された再生空気の熱エネルギによって
脱着されることにより、除湿ロータ13の除湿能力が再
生される。そして、除湿ロータ13から脱着された湿分
は、再生空気側出口12bから再生空気とともに外気に
排出される。再生空気が排出される再生空気側出口12
bには、再生空気側ロータを通過し、外気に排出される
直前の再生空気の温度を随時検出して熱源制御ユニット
15に出力する温度センサ18が設けられている。
On the other hand, the heat source control unit 1 based on the control signal from the humidity sensor 16 is provided at the regeneration air side inlet 12a.
A heat source 17 whose operation is controlled by 5 is provided so as to appropriately heat the regeneration air sent to the regeneration air side 12. Therefore, the moisture content of the dehumidifying rotor 13 that has moved to the regenerated air side 12 while continuing to rotate is the heat source 17
The dehumidifying capacity of the dehumidifying rotor 13 is regenerated by being desorbed by the heat energy of the regenerated air that has been appropriately heated. Then, the moisture desorbed from the dehumidifying rotor 13 is discharged from the regeneration air side outlet 12b together with the regeneration air to the outside air. Regeneration air side outlet 12 through which regeneration air is discharged
A temperature sensor 18 is provided at b to detect the temperature of the regenerated air immediately before being discharged to the outside air after passing through the regenerated air side rotor and outputting the temperature to the heat source control unit 15.

【0015】熱源制御ユニット15は、後述する除湿ロ
ータ13の特性を利用して除湿装置10の湿度制御を行
うものであって、湿度センサ16からの制御信号により
熱源17を稼働制御するとともに、温度センサ18から
の出力信号に基づいて熱源17を容量制御するようにな
っている。
The heat source control unit 15 controls the humidity of the dehumidifying device 10 by utilizing the characteristics of the dehumidifying rotor 13, which will be described later. The heat source controlling unit 15 controls the operation of the heat source 17 by the control signal from the humidity sensor 16 and also controls the temperature. The capacity of the heat source 17 is controlled based on the output signal from the sensor 18.

【0016】ここで、除湿ロータ13の特性について説
明すると、処理空気側11に流入する処理空気が多湿の
場合、処理空気側ロータは、要求される乾燥空気が得ら
れるまで処理空気中の湿分を吸湿する。そのため、処理
空気の湿分を吸湿した処理空気側ロータが、回転を続け
ながら再生空気側12に入っていくと、熱源17により
適度に加熱された再生空気の熱エネルギによってロータ
内の湿分が脱着される際には、湿分相応の気化熱が発生
する。この気化熱の発生によって、再生空気側ロータ通
過後の再生空気の温度は、再生空気側ロータ通過前の再
生空気の温度よりもほとんど上昇しない。これに対し、
処理空気側11に流入する処理空気が低湿の場合、処理
空気側ロータに吸湿される湿分はほとんどないため、そ
のような除湿ロータ13を再生空気側12で再生空気に
より加熱しても気化熱はほとんど発生せず、熱エネルギ
は除湿ロータ13に蓄熱される。そのため、再生空気側
ロータ通過後の再生空気の温度は、再生空気側ロータ通
過前の再生空気の温度よりも上昇することとなる。
Here, the characteristics of the dehumidifying rotor 13 will be described. When the treated air flowing into the treated air side 11 has a high humidity, the treated air side rotor causes the moisture content in the treated air until the required dry air is obtained. Absorb moisture. Therefore, when the treated air side rotor that has absorbed the moisture content of the treated air enters the regeneration air side 12 while continuing to rotate, the moisture content in the rotor is increased due to the heat energy of the regeneration air heated appropriately by the heat source 17. When desorbing, heat of vaporization corresponding to moisture is generated. Due to the generation of the heat of vaporization, the temperature of the regeneration air after passing through the regeneration air side rotor hardly rises above the temperature of the regeneration air before passing through the regeneration air side rotor. In contrast,
When the treated air flowing into the treated air side 11 has a low humidity, there is almost no moisture absorbed by the treated air side rotor. Therefore, even if such a dehumidified rotor 13 is heated by the regenerated air on the regenerated air side 12, the heat of vaporization is reduced. Is hardly generated, and heat energy is stored in the dehumidifying rotor 13. Therefore, the temperature of the regeneration air after passing through the regeneration air side rotor will be higher than the temperature of the regeneration air before passing through the regeneration air side rotor.

【0017】このような除湿ロータ13の特性を利用す
ることにより、熱源制御ユニット15は、室内に給気さ
れる処理空気の除湿を行いなさいという制御信号(ON信
号)が湿度センサ16から入力されると、まず、熱源1
7を所定出力、たとえば全力で燃焼するように稼働制御
する。その後、熱源制御ユニット15は、温度センサ1
8からの検出値に基づいて、再生空気側出口温度、つま
り再生空気側ロータを通過した再生空気の温度がほぼ一
定状態を保つのか、或いは温度上昇するのかを判断す
る。
By utilizing such characteristics of the dehumidifying rotor 13, the heat source control unit 15 receives a control signal (ON signal) from the humidity sensor 16 to dehumidify the process air supplied to the room. Then, first, heat source 1
7 is controlled so that it burns at a predetermined output, for example, at full power. After that, the heat source control unit 15 detects the temperature sensor 1
Based on the detected value from 8, it is determined whether the outlet temperature on the regeneration air side, that is, the temperature of the regeneration air that has passed through the rotor on the regeneration air side, is kept substantially constant or rises.

【0018】ここで、再生空気側出口温度が所定範囲内
に収まって、ほぼ一定状態を保つようであれば、再生空
気側ロータから気化熱が発生していることなので、熱源
制御ユニット15は、処理空気側11に流入した処理空
気が多湿であると判断し、熱源17を引き続き全力稼働
させる。そのことにより、除湿ロータ13は、最大の除
湿能力となるように再生され、その除湿ロータ13に、
要求される乾燥処理空気が得られるように、処理空気の
湿分を吸湿させることによって、多湿な処理空気におけ
る湿度制御が行われる。
Here, if the temperature of the outlet on the side of the regeneration air falls within a predetermined range and maintains a substantially constant state, the heat of vaporization is generated from the rotor on the side of the regeneration air. It is determined that the treated air flowing into the treated air side 11 is humid, and the heat source 17 is continuously operated at full power. As a result, the dehumidifying rotor 13 is regenerated so as to have the maximum dehumidifying capacity, and the dehumidifying rotor 13
Humidity of the treated air is controlled by absorbing the moisture content of the treated air so that the required dried treated air can be obtained.

【0019】これに対し、再生空気側出口温度が所定範
囲内に収まらず上昇するようであれば、再生空気側ロー
タから気化熱が発生していないので、熱源制御ユニット
15は、処理空気側11に流入した処理空気が低湿であ
ると判断し、再生空気側出口温度がほぼ一定状態に保た
れるように、熱源17を、たとえば全力稼働時の50〜
70%ぐらいに容量制御して再生空気に与える熱量を減
少調整する。そのことにより、除湿ロータ13は、その
除湿能力が低下するように可変制御されることによっ
て、低湿の処理空気を必要以上に除湿しないような湿度
制御が行われる。
On the other hand, if the outlet temperature on the regeneration air side rises without falling within the predetermined range, the heat of vaporization is not generated from the rotor on the regeneration air side. It is determined that the treated air that has flowed into the chamber has a low humidity, and the heat source 17 is set to, for example, 50 to 50 during full-power operation so that the outlet temperature on the regeneration air side is maintained at a substantially constant state.
The amount of heat given to the regenerated air is reduced and adjusted by controlling the capacity to about 70%. As a result, the dehumidifying rotor 13 is variably controlled so that its dehumidifying ability is lowered, and thus humidity control is performed so as not to dehumidify the low-humidity treated air more than necessary.

【0020】以上のように、本発明の除湿システムによ
れば、湿度センサ16からの制御信号に基づいて、再生
空気を加熱する熱源17の稼働制御を行う熱源制御ユニ
ット15が、再生空気側出口12bに配設した温度セン
サ18からの出力値に基づいて熱源17の容量制御を行
う。すなわち、熱源制御ユニット15は、湿度センサ1
6からON信号が入力されると、熱源17が全力で燃焼す
るように稼働制御するとともに、温度センサ18からの
検出値に基づいて、再生空気側出口温度がほぼ一定状態
を保つのか、或いは温度上昇するのかを判断する。そし
て、再生空気側出口温度がほぼ一定状態を保つようであ
れば、熱源17を引き続き全力稼働させて、最大の除湿
能力を得るように除湿ロータ13を再生することによ
り、多湿な処理空気から要求される乾燥処理空気を容易
に得ることができるようになる。また、再生空気側出口
温度が上昇するようであれば、再生空気側出口温度をほ
ぼ一定状態を保つように熱源17を容量制御して再生空
気に与える熱量を減少させ、除湿ロータ13の除湿能力
が最適となるように可変制御することによって、低湿の
処理空気を必要以上に除湿しない湿度制御を容易に行う
ことができるようになる。
As described above, according to the dehumidification system of the present invention, the heat source control unit 15 for controlling the operation of the heat source 17 for heating the regenerated air based on the control signal from the humidity sensor 16 has the regenerated air side outlet. The capacity of the heat source 17 is controlled based on the output value from the temperature sensor 18 arranged in 12b. That is, the heat source control unit 15 includes the humidity sensor 1
When the ON signal is input from 6, the heat source 17 controls the operation so that it burns at full power, and based on the detected value from the temperature sensor 18, the outlet temperature on the regenerated air side is maintained at a substantially constant state, or Determine if it will rise. If the outlet temperature on the regenerated air side remains almost constant, the heat source 17 is continuously operated to regenerate the dehumidifying rotor 13 so as to obtain the maximum dehumidifying capacity, so that the request from the humidified process air is increased. It becomes possible to easily obtain the dry treatment air to be used. If the temperature of the outlet on the side of the regenerated air rises, the capacity of the heat source 17 is controlled so that the temperature of the outlet on the side of the regenerated air is kept substantially constant to reduce the amount of heat given to the regenerated air. By variably controlling so as to be optimum, it becomes possible to easily perform humidity control that does not dehumidify the low-humidity treated air more than necessary.

【0021】これらの結果、除湿装置10は、常に処理
空気側出口11bから室内に流れ出す処理空気の湿度を
設定湿度にほぼ一致させ、且つ継続維持することができ
るような精密湿度制御を行うことができるようになる。
しかも、この除湿装置10は、高価な露点温度計を使用
した場合の除湿装置とほぼ同等の精密湿度制御を、露点
温度計を使用せずとも得ることができるため、除湿シス
テムをローコストに構成することができるとともに、負
荷の増減に応じて最適な量の燃料を熱源17に投入する
ので、図2に示されるように、従来の除湿装置よりも年
間の燃料消費を大幅に減少させて運転コストを更に低減
することができるようになる。
As a result, the dehumidifying device 10 can perform precise humidity control so that the humidity of the processing air flowing out into the room from the processing air side outlet 11b can almost always match the set humidity and can be continuously maintained. become able to.
Moreover, since the dehumidifying device 10 can obtain the precise humidity control almost equivalent to the dehumidifying device when the expensive dew-point thermometer is used, without using the dew-point thermometer, the dehumidifying system is configured at low cost. In addition, the optimum amount of fuel is supplied to the heat source 17 according to the increase or decrease of the load, so that as shown in FIG. Can be further reduced.

【0022】[0022]

【発明の効果】以上説明したように、本発明の除湿シス
テムによれば、除湿装置運転時に設定された設定湿度に
対して処理空気側出口の湿度を一定の範囲内で収まるよ
うな精密湿度制御が行えるだけでなく、除湿ロータの除
湿機能を再生する際の省エネルギ化を図り、しかも露点
温度計不要でローコストにシステム構成することのでき
る除湿システムを提供することができる。
As described above, according to the dehumidifying system of the present invention, the precision humidity control is such that the humidity at the outlet of the treated air is within a certain range with respect to the set humidity set during the operation of the dehumidifier. It is possible to provide a dehumidification system that not only can perform the above-described operation but also saves energy when the dehumidification function of the dehumidification rotor is regenerated and that does not require a dew point thermometer and can be configured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態における一例を説明するため
の構成図である。
FIG. 1 is a configuration diagram for explaining an example in an embodiment of the present invention.

【図2】同例における除湿装置と従来の除湿装置との燃
料消費量を比較した実験結果である。
FIG. 2 is an experimental result comparing the fuel consumptions of the dehumidifying device and the conventional dehumidifying device in the same example.

【図3】従来の除湿システムの一例を説明するための説
明図である。
FIG. 3 is an explanatory diagram for explaining an example of a conventional dehumidification system.

【図4】露点温度計を用いた従来の除湿システムの一例
を説明するための説明図である。
FIG. 4 is an explanatory diagram for explaining an example of a conventional dehumidification system using a dew point thermometer.

【符号の説明】[Explanation of symbols]

10 除湿空調装置 11 処理空気側 11a 処理空気側入口 11b 処理空気側出口 12 再生空気側 12a 再生空気側入口 12b 再生空気側出口 13 除湿ロータ 15 熱源制御ユニット 16 湿度センサ 17 熱源 18 温度センサ 10 Dehumidifying air conditioner 11 Processed air side 11a Treatment air side inlet 11b Treated air side outlet 12 Playback air side 12a Regeneration air side inlet 12b Regenerative air side outlet 13 Dehumidifying rotor 15 Heat source control unit 16 Humidity sensor 17 heat source 18 Temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 住吉 太一 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 Fターム(参考) 4D052 CB00 DA01 DB01 GA01 GA03 GB02 GB03 HA01 HA03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Taichi Sumiyoshi             1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas             Within the corporation F-term (reference) 4D052 CB00 DA01 DB01 GA01 GA03                       GB02 GB03 HA01 HA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転を続けながら処理空気側と再生空気
側とを交互に通過して、前記処理空気側では処理空気側
を流通する処理空気に含まれる湿分を吸着し、前記再生
空気側では再生空気側を流通する再生空気の熱エネルギ
によって湿分が脱着されるように配設された除湿ロータ
と、 前記再生空気に適度な熱エネルギを与える加熱手段とを
備えた除湿システムにおいて、 前記再生空気側出口に配設され、この再生空気側出口を
通過する再生空気の温度を検出する温度検出手段と、 前記温度検出手段からの検出値に基づいて、前記再生空
気側出口の温度がほぼ一定となるように前記加熱手段を
容量制御する制御手段とを備えたことを特徴とする除湿
システム。
1. While continuing to rotate, it alternately passes through the treated air side and the regenerated air side, the treated air side adsorbs moisture contained in the treated air flowing through the treated air side, and the regenerated air side. Then, in a dehumidification system comprising a dehumidifying rotor arranged so that moisture is desorbed by the heat energy of the regeneration air flowing through the regeneration air side, and a heating means for giving appropriate heat energy to the regeneration air, The temperature of the regeneration air side outlet is substantially equal to that of the regeneration air side outlet, and the temperature of the regeneration air side outlet passes through the regeneration air side outlet and detects the temperature of the regeneration air. A dehumidifying system comprising: a control unit that controls the capacity of the heating unit so that the heating unit is kept constant.
【請求項2】 前記制御手段は、前記加熱手段を稼働制
御することを特徴とする請求項1に記載の除湿システ
ム。
2. The dehumidification system according to claim 1, wherein the control unit controls the operation of the heating unit.
【請求項3】 前記制御手段は、前記加熱手段を所定出
力で稼働させたのち、前記温度検出手段からの検出値に
基づいて、前記再生空気側出口の温度が所定範囲内に収
まるときには、前記加熱手段の出力状態を維持させ、前
記再生空気側出口の温度が所定範囲内に収まらないとき
には、前記再生空気側出口の温度がほぼ一定となるよう
に、前記加熱手段の出力を低めに容量制御することを特
徴とする請求項2に記載の除湿システム。
3. The control means, after operating the heating means at a predetermined output, when the temperature of the regeneration air side outlet falls within a predetermined range based on the detection value from the temperature detection means, When the output state of the heating means is maintained and the temperature of the regeneration air side outlet does not fall within a predetermined range, the output of the heating means is controlled to be low so that the temperature of the regeneration air side outlet becomes substantially constant. The dehumidification system according to claim 2, wherein
JP2001213893A 2001-07-13 2001-07-13 Dehumidication system Pending JP2003024737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001213893A JP2003024737A (en) 2001-07-13 2001-07-13 Dehumidication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001213893A JP2003024737A (en) 2001-07-13 2001-07-13 Dehumidication system

Publications (1)

Publication Number Publication Date
JP2003024737A true JP2003024737A (en) 2003-01-28

Family

ID=19048799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001213893A Pending JP2003024737A (en) 2001-07-13 2001-07-13 Dehumidication system

Country Status (1)

Country Link
JP (1) JP2003024737A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162131A (en) * 2004-12-06 2006-06-22 Hitachi Chem Co Ltd Dry type dehumidifier
JP2011064407A (en) * 2009-09-17 2011-03-31 Mitsubishi Electric Corp Air conditioning device
US8347640B2 (en) 2005-11-16 2013-01-08 Technologies Holdings Corp. Enhanced performance dehumidification apparatus, system and method
CN105169897A (en) * 2014-06-17 2015-12-23 株式会社西部技研 Absorption dehydrating device
JP2016002518A (en) * 2014-06-17 2016-01-12 株式会社西部技研 Adsorption type dehumidifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162131A (en) * 2004-12-06 2006-06-22 Hitachi Chem Co Ltd Dry type dehumidifier
US8347640B2 (en) 2005-11-16 2013-01-08 Technologies Holdings Corp. Enhanced performance dehumidification apparatus, system and method
JP2011064407A (en) * 2009-09-17 2011-03-31 Mitsubishi Electric Corp Air conditioning device
CN105169897A (en) * 2014-06-17 2015-12-23 株式会社西部技研 Absorption dehydrating device
JP2016002518A (en) * 2014-06-17 2016-01-12 株式会社西部技研 Adsorption type dehumidifier

Similar Documents

Publication Publication Date Title
JP6383467B1 (en) Dehumidifying air conditioner
CN102538088B (en) Desiccant air-conditioning system and operating method thereof
JP2011085270A (en) Desiccant air conditioning system and method of operating the same
JP4798492B2 (en) Dehumidifier
JPH11262621A (en) Dehumidifying air conditioner
JP5250362B2 (en) Dehumidifier and operation control method thereof
JP2003021378A (en) Dehumidifying air conditioning system
JP2004008914A (en) Dry dehumidifier
JP3821371B2 (en) Dehumidifier
JP5587571B2 (en) Operation method of dry dehumidifier
JP2006266607A (en) Bathroom dryer
JP2003024737A (en) Dehumidication system
JP5570717B2 (en) Operation method of dry dehumidifier
JP5686311B2 (en) Gas removal system
JP5844611B2 (en) Desiccant air conditioner
JP2009090266A (en) Adsorption dehumidification type dry air generator with self-regeneration function of adsorbent
JP2007170786A (en) Ventilation system
JP2002331221A (en) Dehumidifying method and apparatus therefor
JP2006162131A (en) Dry type dehumidifier
JP5297289B2 (en) Air conditioning system
JP4121116B2 (en) Dehumidification and humidification system
JP2004148222A (en) Dew point control system for gas dryer
JPH08178399A (en) Dehumidifying/humidifying apparatus
KR102191087B1 (en) Dry dehumidifier system and control method thereof
JP2833237B2 (en) Dry dehumidifier

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070226