JPH0565207B2 - - Google Patents

Info

Publication number
JPH0565207B2
JPH0565207B2 JP63061770A JP6177088A JPH0565207B2 JP H0565207 B2 JPH0565207 B2 JP H0565207B2 JP 63061770 A JP63061770 A JP 63061770A JP 6177088 A JP6177088 A JP 6177088A JP H0565207 B2 JPH0565207 B2 JP H0565207B2
Authority
JP
Japan
Prior art keywords
adsorption
temperature
performance
solid amine
retained moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63061770A
Other languages
Japanese (ja)
Other versions
JPH01236915A (en
Inventor
Kenji Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP63061770A priority Critical patent/JPH01236915A/en
Publication of JPH01236915A publication Critical patent/JPH01236915A/en
Publication of JPH0565207B2 publication Critical patent/JPH0565207B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体アミンによるCO2除去装置の制御
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for controlling a CO 2 removal device using a solid amine.

(従来技術) 固体アミンによるCO2除去プロセスにおいて、
固体アミンの再生には水蒸気による直接加熱再生
方式が用いられている。このプロセスの吸着−再
生工程での固体アミンの保有水分は次のように変
化する。
(Prior art) In the CO 2 removal process using solid amine,
A direct heating regeneration method using steam is used to regenerate solid amines. The water content of the solid amine during the adsorption-regeneration step of this process changes as follows.

(1) 吸着工程における保有水分の変化 固体アミン層を通過する供給ガスの温度、湿
度及び流速に応じた分だけ固体アミン粒子表面
から保有水分が蒸発し減少する。この現象は、
固体アミン層を通過するガス中の水分と固体ア
ミン粒子表面の水分との間に平衡関係が成立す
るまで続くので、固体アミンから失われる保有
水分の総量は、吸着時間または平衡到達時間
(平衡に達するまでに要する時間)の短かい方
で定まる。
(1) Change in retained moisture in the adsorption process The retained moisture evaporates and decreases from the solid amine particle surface by an amount corresponding to the temperature, humidity, and flow rate of the supplied gas passing through the solid amine layer. This phenomenon is
This continues until an equilibrium relationship is established between the moisture in the gas passing through the solid amine layer and the moisture on the surface of the solid amine particles, so the total amount of retained moisture lost from the solid amine is determined by the adsorption time or the time to reach equilibrium. (time required to reach the target) is determined by the shorter of the two.

(2) 再生工程における保有水分の変化 固体アミンの再生には、通常100〜120℃の飽
和水蒸気が用いられる。固体アミン層に供給さ
れた水蒸気は、固体アミン層内で凝縮し、この
時に発生する潜熱によつて吸着されたCO2は固
体アミンから脱離し、固体アミンは再生され
る。この凝集した水の内、一部は固体アミンに
吸着されることになる。吸着される水分の総量
は吸着工程での固体アミンの乾燥の度合、固体
アミン自体が保有可能な水量(飽和吸着水量)、
固体アミンの水分吸着速度及び再生時間等によ
つて定まる。
(2) Changes in retained moisture during the regeneration process Saturated steam at 100 to 120°C is usually used to regenerate solid amines. The water vapor supplied to the solid amine layer condenses within the solid amine layer, and the CO 2 adsorbed at this time is desorbed from the solid amine by the latent heat generated, and the solid amine is regenerated. A portion of this coagulated water will be adsorbed by the solid amine. The total amount of water adsorbed depends on the degree of drying of the solid amine during the adsorption process, the amount of water that the solid amine itself can hold (saturated adsorbed water amount),
It is determined by the water adsorption rate of solid amine, regeneration time, etc.

以上の述べたように固体アミンの保有水分は吸
着工程で減少し、再生工程で増加する。即ち、固
体アミン側からみると吸着工程で乾燥し、再生工
程で湿潤することになる。したがつて、吸着工程
で失われた水分が再生工程で補強されるような条
件下では、固体アミンは一定の範囲で水分を保持
することゝなり、安定したCO2吸着性能を維持す
ることができる。
As described above, the water content of the solid amine decreases during the adsorption process and increases during the regeneration process. That is, when viewed from the solid amine side, it dries during the adsorption process and becomes wet during the regeneration process. Therefore, under conditions where the moisture lost in the adsorption process is reinforced in the regeneration process, the solid amine will retain moisture within a certain range, making it difficult to maintain stable CO 2 adsorption performance. can.

しかしながら、上述の関係(固体アミンの乾燥
−湿潤)を維持するためには、装置の設置場所に
おける環境条件(温度、湿度)を一定に保つ必要
があり、環境条件が変動すると固体アミンは乾
燥、湿潤いずれかの方法に偏り、CO2吸着性能が
低下する。
However, in order to maintain the above relationship (drying-wetting of the solid amine), it is necessary to keep the environmental conditions (temperature, humidity) constant at the location where the equipment is installed, and if the environmental conditions change, the solid amine will dry out or become wet. If wetness is biased towards one of the methods, the CO 2 adsorption performance will decrease.

次に固体アミンの吸着性能と保有水分の関係に
ついてのべる。この関係をグラフに描くと第3図
のようになる。ハミルトンスタンダード社(米
国)が実施したIRA−45(米国ロームアンドハー
ス社製、弱塩基性陰イオン交換樹脂)でのテスト
結果によれば、IRA−45のCO2の吸着性能を維持
するためには、保有水分の範囲は18〜35%とされ
ている。この範囲を外れると性能が低下すること
になり、その原因として以下のことが挙げられ
る。
Next, we will discuss the relationship between solid amine adsorption performance and water content. If you draw this relationship on a graph, it will look like Figure 3. According to the test results of IRA-45 (manufactured by Rohm and Haas, USA, weakly basic anion exchange resin) conducted by Hamilton Standard Co., Ltd. (USA), in order to maintain the CO 2 adsorption performance of IRA-45, It is said that the moisture content ranges from 18 to 35%. If it falls outside this range, the performance will deteriorate, and the reasons for this are as follows.

(1) 保有水分が下限以下の場合(IRA−45では18
%以下) 固体アミンのCO2吸着反応はイオン交換反応
によるものであるが、交換基のアミン類が十分
に水和されていないと、イオン交換反応が抑制
され、第4図aに示すように急激に吸着性能が
低下する。
(1) If the retained moisture is below the lower limit (18 for IRA-45)
% or less) The CO 2 adsorption reaction of solid amines is due to an ion exchange reaction, but if the amines in the exchange group are not sufficiently hydrated, the ion exchange reaction will be suppressed, as shown in Figure 4 a. Adsorption performance decreases rapidly.

(2) 保有水分が上限以上の場合(IRA−45では35
%以上) 第4図cに示すように、吸着初期の吸着速度
は低下するものゝ、保有水分が下限以下(第4
図a)のような急激な低下はみられない。これ
は固体アミン粒子表面に水の層ができ、CO2
イオン交換サイトに到達するまでの抵抗とな
る。つまりCO2の拡散速度が低下することによ
る現象である。
(2) If the retained moisture is above the upper limit (35 for IRA-45)
% or more) As shown in Figure 4c, the adsorption rate at the initial stage of adsorption decreases;
There is no sharp decline as shown in Figure a). This creates a layer of water on the surface of the solid amine particles, which provides resistance for CO 2 to reach the ion exchange site. In other words, this phenomenon is caused by a decrease in the diffusion rate of CO 2 .

なお第4図bは保有水分が適切な範囲(IRA
−45では18〜35%)にある場合の典型的な例
で、破過時間(固体アミン層出口にCO2が吸着
されずに流出してくるまでに要する時間)が長
いことがわかる。
Figure 4b shows the appropriate range of retained moisture (IRA
It can be seen that the breakthrough time (the time required for CO 2 to flow out without being adsorbed at the outlet of the solid amine layer) is long in a typical example when the temperature is 18% to 35% at −45%.

また固体アミンの適切な保有水分範囲は固体
アミンの種初によつて変わるが、一般的には生
乾きの状態がよいとされている。IRA−45の場
合で説明すると、その保有可能な水分は40〜45
%で、適切な範囲は上述の如く18〜35%であ
る。
Further, the appropriate range of moisture content of the solid amine varies depending on the species of the solid amine, but it is generally said that a half-dried state is best. In the case of IRA−45, the moisture content it can hold is 40 to 45
%, a suitable range is 18-35% as described above.

以上で、吸着−再生工程の保有水分の変化及び
保有水分のCO2吸着性能への影響について説明し
たが、従来技術では直接的な保有水分の制御はな
されておらず、環境条件を保有水分が変動しない
よう調節している程度であつた。
Above, we have explained the changes in retained moisture during the adsorption-regeneration process and the influence of retained moisture on CO2 adsorption performance.However, in the conventional technology, retained moisture is not directly controlled, and environmental conditions are controlled by retained moisture. The amount was adjusted to the extent that it did not fluctuate.

したがつて、空調が整備されていないような場
所においては、保有水分の変動は避けられず、吸
着性能を維持できなかつた。
Therefore, in places where air conditioning is not provided, fluctuations in retained moisture are unavoidable, making it impossible to maintain adsorption performance.

(発明により解決しようとする課題) 本発明は固体アミンの吸着性能曲線(以下、破
過曲線)の形が保有水分の増減に伴い変動するこ
とに着目し、固体アミンの保有水分を適切な範囲
に保たせるための製御方法を提供しようとするも
のである。
(Problems to be Solved by the Invention) The present invention focuses on the fact that the shape of the adsorption performance curve (hereinafter referred to as breakthrough curve) of a solid amine changes as the water content increases, and the water content of the solid amine is adjusted to an appropriate range. The purpose of this paper is to provide a manufacturing method to maintain the same.

(発明による課題の解決手段) 供給ガスの供給路に温湿度調整装置と、又処理
ガスの排出路にCO2分析計と、該CO2分析計によ
る分析結果を格納しかつ前記温湿度調整装置に設
定信号を送る制御用コンピユータとを備え、吸着
工程に入ると同時に処理ガス中のCO2濃度を検出
して制御用コンピユータに記憶させておき、吸着
工低が終了するとCO2濃度測定データから吸着性
能を計算し、性能低下の有無を判別し、性能低下
傾向にある場合はあらかじめ制御用コンピユータ
の記憶装置に格納されている保有水分に応じた破
過曲線の形と比較して保有水分を推定し、更に計
算された保有水分と最適保有水分の偏差に応じた
温度及び湿度を計算し、次の吸着工程における設
定値として固体アミンのCO2の高い吸着性能を維
持可能にした。
(Means for Solving the Problems by the Invention) A temperature and humidity adjustment device in a supply gas supply path, a CO 2 analyzer in a process gas discharge path, and an analysis result by the CO 2 analyzer is stored, and the temperature and humidity adjustment device The CO 2 concentration in the processed gas is detected and stored in the control computer as soon as the adsorption process begins, and when the adsorption process is finished, the CO 2 concentration measurement data is Calculate the adsorption performance, determine whether there is a decline in performance, and if there is a tendency for performance to decline, calculate the retained moisture by comparing it with the shape of the breakthrough curve according to the retained moisture stored in the storage device of the control computer in advance. The temperature and humidity were estimated and further calculated according to the deviation between the calculated moisture content and the optimal moisture content, making it possible to maintain the solid amine's high CO 2 adsorption performance as set values for the next adsorption process.

(実施例) 第1図は第1吸着反応器1と第2吸着反応器2
を備えた2塔式CO2除去装置である。供給ガスは
温湿度調節装置3で温湿度調節されて供給され、
吸着反応器1又は2でCO2を吸着されたのち、環
境中へ排出される。4は再生用蒸気発生装置、5
はCO2分析計である。6は制御用コンピユータ
で、温湿度調節装置3及びCO2分析計5に結ばれ
ている。
(Example) Figure 1 shows the first adsorption reactor 1 and the second adsorption reactor 2.
This is a two-column type CO 2 removal equipment equipped with. The supply gas is supplied after being controlled in temperature and humidity by a temperature and humidity control device 3,
After CO 2 is adsorbed in the adsorption reactor 1 or 2, it is discharged into the environment. 4 is a steam generator for regeneration, 5
is a CO 2 analyzer. 6 is a control computer, which is connected to the temperature/humidity controller 3 and the CO 2 analyzer 5.

今、第1吸着反応器1が吸着工程にあるとする
と、もう一方の第2吸着反応器2は再生工程にあ
り、タイマー等により順次切替えて使用すること
により、環境中のCO2濃度を設定した範囲内に制
御することができるようになつている。
Now, if the first adsorption reactor 1 is in the adsorption process, the other second adsorption reactor 2 is in the regeneration process, and by sequentially switching and using it with a timer etc., the CO 2 concentration in the environment is set. It is now possible to control the temperature within the specified range.

供給ガスは制御用コンピユータ6からの温湿度
設定信号によつて制御される。供給ガス温湿度調
節装置3で一定温湿度に調節され、第1吸着反応
器1の上部から供給され、CO2を除去された後、
下部より排出され環境中へ戻される。この排出さ
れたガス(以下処理ガスという)の一部はCO2
析計5へ導かれ、CO2濃度が測定される。測定結
果はコンピユータ6の記憶装置へ格納され、次の
吸着工程における温湿度調整装置に対する温湿度
設定のためのデータとなる。
The supply gas is controlled by temperature and humidity setting signals from the control computer 6. The supply gas temperature and humidity are adjusted to a constant temperature and humidity by the temperature and humidity adjustment device 3, and the supply gas is supplied from the upper part of the first adsorption reactor 1, and after CO 2 is removed,
It is discharged from the bottom and returned to the environment. A part of this discharged gas (hereinafter referred to as treated gas) is led to the CO 2 analyzer 5, where the CO 2 concentration is measured. The measurement results are stored in the storage device of the computer 6 and serve as data for setting the temperature and humidity for the temperature and humidity adjustment device in the next adsorption step.

以下第2図のフローチヤートを参照してCO2
去装置の作用について説明する。
The operation of the CO 2 removal device will be explained below with reference to the flowchart shown in FIG.

第1吸着反応器1が吸着工程に入ると同時に処
理ガス中のCO2濃度を一定間隔(例えば30秒間
隔)で検出し、制御用コンピユータ6の記憶装置
に格納する。この操作は吸着工程終了まで継続す
る。
As soon as the first adsorption reactor 1 enters the adsorption step, the CO 2 concentration in the process gas is detected at regular intervals (for example, every 30 seconds) and stored in the storage device of the control computer 6. This operation continues until the end of the adsorption step.

吸着工程が終了すると、CO2濃度測定データか
ら吸着性能を計算し、性能低下の有無を判別す
る。性能が低下傾向にある場合は、あらかじめ制
御用コンピユータの記憶装置に格納されている第
4図に示した保有水分に応じた破過曲線の形と比
較し保有水分を推定する。更に計算された保有水
分と最適保有水分の偏差に応じた温度及び湿度を
計算し、次の吸着工程における設定値とする。運
転を停止する場合は、フロツピーデイスク等の不
揮発性メモリに格納し、運転再開時の初期値とす
る。
When the adsorption process is completed, the adsorption performance is calculated from the CO 2 concentration measurement data, and it is determined whether or not the performance has deteriorated. If the performance is on the decline, the retained moisture is estimated by comparing it with the shape of the breakthrough curve according to retained moisture shown in FIG. 4, which is stored in advance in the storage device of the control computer. Furthermore, the temperature and humidity are calculated according to the deviation between the calculated retained moisture content and the optimal retained moisture content, and are used as set values for the next adsorption step. When the operation is stopped, the value is stored in a non-volatile memory such as a floppy disk and used as the initial value when the operation is restarted.

第2吸着反応器2についても同様の操作をし、
CO2温度の計測と保有水分の計算を同時に行なう
ことになるが、計測を割込みで行なうか、または
マルチジヨブが可能なコンピユータを使用すれば
解決可能である。こゝでは供給ガスの温度及び湿
度の両者を制御するようにしたが、通常の固体の
乾燥においては、温度よりも湿度に対する依存性
が高いので、環境温度の変化が少ない場合は湿度
調節のみで対応できる。
The same operation is performed for the second adsorption reactor 2,
Measurement of CO 2 temperature and calculation of retained moisture will be performed at the same time, but this can be solved by performing the measurement with an interrupt or by using a computer capable of multi-jobs. In this case, both the temperature and humidity of the supplied gas were controlled, but since the drying of normal solids is more dependent on humidity than temperature, if there is little change in the environmental temperature, only humidity control is required. I can handle it.

なお以上はCO2除去装置について例示したが、
CO2に限らず、SO2等の酸性ガス、NH3等の塩基
性ガスの陰イオン交換樹脂または陽イオン交換樹
脂で吸着除去可能で、かつ水蒸気による直接加熱
再生可能なガスに使用可能である。
The above example is about a CO 2 removal device, but
It can be used not only for CO 2 but also for acidic gases such as SO 2 and basic gases such as NH 3 that can be adsorbed and removed using anion exchange resin or cation exchange resin, and that can be directly heated and regenerated with water vapor. .

またイオン交換樹脂に限らず、水蒸気による直
接加熱再生が可能で、かつ保有水分によつて破過
曲線の形が定まるような吸着特性をもつ吸着剤に
使用可能である。
Moreover, it can be used not only for ion exchange resins but also for adsorbents that can be regenerated by direct heating with water vapor and have adsorption characteristics such that the shape of the breakthrough curve is determined by the amount of water retained.

(効果) 従来技術では、固体アミンの吸着性能の低下の
原因が固体アミンの保有水分の増加によるもの
か、減少によるものか判別できなかつた。これに
対し本発明は破過曲線の形が保有水分と密接な関
係があることに着目して、固体アミンの保有水分
を推定可能として、更にコンピユータ利用によつ
て保有水分を制御可能にしたので、固体アミンの
高精度、CO2吸着性能の維持が可能になつた。
(Effects) With the conventional technology, it was not possible to determine whether the cause of the decrease in the adsorption performance of solid amines was due to an increase or a decrease in the water content of the solid amines. In contrast, the present invention focuses on the fact that the shape of the breakthrough curve has a close relationship with the water content, and has made it possible to estimate the water content of solid amines, and also to control the water content by using a computer. , it has become possible to maintain the high precision and CO 2 adsorption performance of solid amines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するCO2除去装置を
示す。第2図は第1図のCO2除去装置の制御フロ
ーチヤート。第3図は固体アミンに於ける保有水
分と吸着性能の関係を示すグラフ。第4図は典型
的な破過曲線の例を示す。 図において;1……第1吸着反応器、2……第
2吸着反応器、3……供給ガス温湿度調節装置、
4……再生用蒸気発生装置、5……CO2分析計、
6……制御用コンピユータ。
FIG. 1 shows a CO 2 removal device implementing the method of the invention. Figure 2 is a control flowchart of the CO 2 removal device shown in Figure 1. Figure 3 is a graph showing the relationship between water content and adsorption performance in solid amines. FIG. 4 shows an example of a typical breakthrough curve. In the figure; 1...first adsorption reactor, 2...second adsorption reactor, 3...supply gas temperature and humidity adjustment device,
4... Steam generator for regeneration, 5... CO 2 analyzer,
6... Control computer.

Claims (1)

【特許請求の範囲】[Claims] 1 供給ガスの供給路に温湿度調整装置と、又処
理ガスの排出路にCO2分析計と、該CO2分析計に
よる分析結果を格納し、かつ前記温湿度調整装置
に設定信号を送る制御用コンピユータとを備え、
吸着工程に入ると同時に処理ガス中のCO2濃度を
CO2分析計で検出して制御用コンピユータに記憶
させておき、吸着工程が終了するとCO2濃度測定
データから吸着性能を計算し、性能低下の有無を
判別し、性能低下傾向にある場合は、あらかじめ
制御用コンピユータの記憶装置に格納されている
保有水分に応じた破過曲線の形と比較して保有水
分を推定し、更に計算された保有水分と最適保有
水分の偏差に応じた温度及び湿度を計算し、次の
吸着工程における設定値として固体アミンのCO2
の高い吸着性能を維持可能としたことを特徴とす
る固体アミンによるCO2除去装置の制御方法。
1. A temperature/humidity adjustment device in the supply gas supply path, a CO 2 analyzer in the process gas discharge path, and control for storing the analysis results from the CO 2 analyzer and sending a setting signal to the temperature/humidity adjustment device. Equipped with a computer for
At the same time as entering the adsorption process, the CO 2 concentration in the treated gas is
It is detected by a CO 2 analyzer and stored in the control computer, and when the adsorption process is completed, the adsorption performance is calculated from the CO 2 concentration measurement data to determine whether there is a decline in performance, and if there is a tendency for performance to decline, The retained moisture is estimated by comparing it with the shape of the breakthrough curve according to the retained moisture stored in the storage device of the control computer in advance, and the temperature and humidity are determined according to the deviation between the calculated retained moisture and the optimal retained moisture. Calculate the solid amine CO2 as the set value in the next adsorption step.
A method for controlling a CO 2 removal device using a solid amine, which is characterized by being able to maintain high adsorption performance of CO 2 .
JP63061770A 1988-03-17 1988-03-17 Method for controlling apparatus for co2 removal with solid amine Granted JPH01236915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63061770A JPH01236915A (en) 1988-03-17 1988-03-17 Method for controlling apparatus for co2 removal with solid amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63061770A JPH01236915A (en) 1988-03-17 1988-03-17 Method for controlling apparatus for co2 removal with solid amine

Publications (2)

Publication Number Publication Date
JPH01236915A JPH01236915A (en) 1989-09-21
JPH0565207B2 true JPH0565207B2 (en) 1993-09-17

Family

ID=13180674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63061770A Granted JPH01236915A (en) 1988-03-17 1988-03-17 Method for controlling apparatus for co2 removal with solid amine

Country Status (1)

Country Link
JP (1) JPH01236915A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876488A (en) * 1996-10-22 1999-03-02 United Technologies Corporation Regenerable solid amine sorbent
US9028592B2 (en) * 2010-04-30 2015-05-12 Peter Eisenberger System and method for carbon dioxide capture and sequestration from relatively high concentration CO2 mixtures
JP5561788B2 (en) * 2011-07-26 2014-07-30 日本電信電話株式会社 Carbon dioxide recovery method and apparatus
MX351388B (en) * 2011-12-22 2017-10-12 Re N Tech Aps A method for upgrading a gas.
JP6413408B2 (en) * 2014-07-09 2018-10-31 日立化成株式会社 CO2 removal device
JP6721020B2 (en) * 2018-10-01 2020-07-08 日立化成株式会社 CO2 removal device
JP6721019B2 (en) * 2018-10-01 2020-07-08 日立化成株式会社 CO2 removal device

Also Published As

Publication number Publication date
JPH01236915A (en) 1989-09-21

Similar Documents

Publication Publication Date Title
US3448561A (en) Adsorbent fractionator with automatic cycle control and process
US4127395A (en) Adsorbent fractionator with fail-safe automatic cycle control and process
US4832711A (en) Adsorbent fractionator with automatic temperature-sensing cycle control and process
US20160136565A1 (en) Carbon dioxide separation and recovery system and method
JPH0565207B2 (en)
US3861054A (en) Method of drying materials
US11857917B2 (en) Method for drying compressed gas
EP0088905A2 (en) Adsorbent fractionator with automatic temperature-sensing cycle control and process
US5215555A (en) Method and apparatus for adsorbing moisture from gases, especially air
JPS63252528A (en) Air purification method
JP7167176B2 (en) Reclaiming device, CO2 recovery device provided with the same, and reclaiming method
JPH0143569B2 (en)
JPH06134303A (en) Steam supplying method to co2 removing device
CN206339543U (en) The open regulation of relative humidity device of VOC burst size detection platforms
JPH06134302A (en) Solid amine regenerating method for co2 removing device
JPH0531325A (en) Method for removing carbon dioxide gas in combustion exhaust gas
JPH01130717A (en) Method for dehumidifying compressed air
JPS6244735Y2 (en)
EP0039321B1 (en) Method of determining the mean moisture ratio of drying timber
JP7218245B2 (en) dehumidifier
JPS5934933B2 (en) Transient control method for temperature and humidity control
JPH062734Y2 (en) Dehumidifier
JPH02186244A (en) Measurement of water held for amine based ion exchange resin
JPH04161221A (en) Method and apparatus adsorbing and removing nox
SU997795A1 (en) Method of producing water vapour adsorbent

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees