JP5165838B2 - Gas treatment system - Google Patents

Gas treatment system Download PDF

Info

Publication number
JP5165838B2
JP5165838B2 JP2005199108A JP2005199108A JP5165838B2 JP 5165838 B2 JP5165838 B2 JP 5165838B2 JP 2005199108 A JP2005199108 A JP 2005199108A JP 2005199108 A JP2005199108 A JP 2005199108A JP 5165838 B2 JP5165838 B2 JP 5165838B2
Authority
JP
Japan
Prior art keywords
gas
concentration
air
concentrated gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005199108A
Other languages
Japanese (ja)
Other versions
JP2007014885A (en
Inventor
豊 五十嵐
啓治 加藤
清隆 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonets Corp
Original Assignee
Tonets Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonets Corp filed Critical Tonets Corp
Priority to JP2005199108A priority Critical patent/JP5165838B2/en
Publication of JP2007014885A publication Critical patent/JP2007014885A/en
Application granted granted Critical
Publication of JP5165838B2 publication Critical patent/JP5165838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は、工場等で排出される有害ガスや臭気ガス等、環境対策上大気放出を抑制すべきガスの処理システムに関するものである。   The present invention relates to a gas processing system such as harmful gases and odorous gases emitted from factories and the like, which should suppress atmospheric release for environmental measures.

各種工場等から排出される有害な化学物質の大気への排出防止対策として、地方自治体の条例により排出規制が定められ、有害ガスの種類およびその排出時の濃度基準値が設定されている。そのため、例えば特許文献1に開示されているような各種有害物質の処理方法が提案されている。   As a measure to prevent harmful chemical substances emitted from various factories from being released into the atmosphere, regulations on local government regulations have been set, and the types of harmful gases and the standard values for their concentrations are set. Therefore, for example, a method for treating various harmful substances as disclosed in Patent Document 1 has been proposed.

従来より、比較的容易な有害物質の処理方法として、例えば活性炭等の吸着剤に吸着させる方法や、エアワッシャを通過させて洗浄する方法、直接燃焼する方法、光触媒を用いて処理する方法、化学的に中和させる方法等の単独処理の方法がある。その中で最も簡単な方法は、吸着剤によって有害ガスを除去する方法であり、微量なガスを処理する場合に用いられる。また、有害成分が高濃度の場合には、ガスを直接燃焼する方法が用いられる。   Conventionally, as a relatively easy method of treating harmful substances, for example, a method of adsorbing on an adsorbent such as activated carbon, a method of cleaning by passing through an air washer, a method of direct combustion, a method of treating using a photocatalyst, a chemical There is a single treatment method such as a neutralization method. Among them, the simplest method is a method of removing harmful gas with an adsorbent, and is used when processing a very small amount of gas. In addition, when the harmful component has a high concentration, a method of directly burning the gas is used.

ところが、実際に処理が必要な有害ガスの濃度は、これらのいずれの方法にも適さない中間濃度の場合が多い。このような場合には、吸着剤によって一旦有害ガスを吸着させ、吸着したガスを脱着して濃縮した後に処理する方法が一般的である。   However, the concentration of harmful gas that actually needs to be processed is often an intermediate concentration that is not suitable for any of these methods. In such a case, a method is generally adopted in which a harmful gas is once adsorbed by an adsorbent, and the adsorbed gas is desorbed and concentrated before being treated.

図6は、そのような従来の処理システムの一例を示す概略図である。図中、太い実線は、有害ガス等の処理すべきガス(被処理ガス)に含まれる除去すべきガス成分(除去成分)を吸着剤に吸着させる吸着工程時のガスの流路を示し、破線は、吸着された除去成分を吸着剤から離脱する脱着工程時のガスの流路を示す。また、黒い矢印は除去成分を含むガスの流れを示し、白抜きの矢印は、除去成分を含まない或いは取り除かれたガスの流れを示す。   FIG. 6 is a schematic diagram showing an example of such a conventional processing system. In the figure, a thick solid line indicates a gas flow path during an adsorption process in which an adsorbent adsorbs a gas component (removed component) to be removed contained in a gas to be treated (gas to be treated) such as a harmful gas. These show the gas flow path at the time of the desorption process which detach | leaves the adsorbed removal component from adsorption agent. Further, the black arrow indicates the flow of gas containing the removed component, and the white arrow indicates the flow of gas not containing or removed the removed component.

例えば日中、被処理ガスが排出されているときには、吸着部2内に備えられた例えば活性炭等の吸着剤に除去成分を吸着させる。吸着により除去成分が取り除かれ清浄化された脱ガス空気は、外部へ排出される。夜間等、被処理ガスの排出が停止している間に、吸着部2へ加熱空気を送り込むことにより、吸着剤に吸着した除去成分を脱着する。十分に脱着することにより、吸着前の被処理ガスに比べ、含有される除去成分が濃縮された濃縮ガスが得られる。この濃縮ガスを処理装置3へ送り、直接燃焼することにより除去成分を処理する。燃焼により除去成分が取り除かれ清浄化された脱ガス空気は、外部へ排出される。   For example, when the gas to be treated is exhausted during the day, the removal component is adsorbed by an adsorbent such as activated carbon provided in the adsorption unit 2. The degassed air that has been removed and cleaned by adsorption is discharged to the outside. The removal component adsorbed by the adsorbent is desorbed by sending heated air to the adsorption unit 2 while the discharge of the gas to be treated is stopped, such as at night. By sufficiently desorbing, a concentrated gas in which the removed components contained are concentrated compared to the gas to be treated before adsorption is obtained. This concentrated gas is sent to the processing device 3 and directly removed to process the removed component. The degassed air that has been removed and cleaned by combustion is discharged to the outside.

この方法によれば、簡単な装置で有害ガス等に含まれる除去成分を取り除くことができる。ところが、処理装置3内が800℃〜1000℃程度の燃焼温度になるために、極めて大きな燃焼用のエネルギーを要するとともに、処理装置3の材質を高い耐熱性を有するものにしなければならない。   According to this method, the removal component contained in harmful gas etc. can be removed with a simple apparatus. However, since the inside of the processing apparatus 3 has a combustion temperature of about 800 ° C. to 1000 ° C., extremely large combustion energy is required, and the material of the processing apparatus 3 must have high heat resistance.

図7は、従来の異なる処理システムの例を示し、処理装置3に要するエネルギーを低減させるものである。太い実線、破線、黒い矢印、白抜きの矢印のそれぞれが示す意味は、図6と同様である。   FIG. 7 shows an example of a different processing system in the past, and reduces the energy required for the processing apparatus 3. The meanings of the thick solid line, broken line, black arrow, and white arrow are the same as those in FIG.

上記の図6と同様、吸着部2に被処理ガスの除去成分を吸着させる。被処理ガスの吸着工程が停止している間に、吸着部2に加熱空気を送り込んで吸着剤を脱着する。十分に脱着することにより、除去成分が濃縮された濃縮ガスが得られる。この濃縮ガスが、熱回収装置(熱交換器)4を介して処理装置3へ送られる。処理装置3は酸化触媒からなり、濃縮ガスを触媒燃焼させる。触媒による反応熱を熱回収装置4で回収し、その熱によって、処理装置3へ送り込む濃縮ガスを予熱し、触媒の反応効率を高める。   Similar to FIG. 6 described above, the removal component of the gas to be processed is adsorbed to the adsorption unit 2. While the process for adsorbing the gas to be treated is stopped, heated air is sent to the adsorption unit 2 to desorb the adsorbent. By sufficiently desorbing, a concentrated gas enriched with the removed components can be obtained. The concentrated gas is sent to the processing device 3 through a heat recovery device (heat exchanger) 4. The processing device 3 is composed of an oxidation catalyst, and catalytically burns the concentrated gas. The heat of reaction by the catalyst is recovered by the heat recovery device 4, and the concentrated gas sent to the processing device 3 is preheated by the heat to increase the reaction efficiency of the catalyst.

この方法では、濃縮ガスを触媒を用いて燃焼するため、直接燃焼する場合に比べて燃焼温度が低い。酸化触媒を用いて燃焼する場合には、200℃〜300℃程度の燃焼温度となるので、処理装置3の耐熱性を大幅に低減できる。   In this method, since the concentrated gas is combusted using a catalyst, the combustion temperature is lower than in the case of direct combustion. When combustion is performed using an oxidation catalyst, the combustion temperature is about 200 ° C. to 300 ° C., so that the heat resistance of the processing device 3 can be greatly reduced.

また、酸化触媒を通して温度上昇した脱ガス空気と触媒燃焼前の低温の濃縮ガスとを熱回収装置4により熱交換し、燃焼前の濃縮ガスを予熱することにより、触媒反応を促進させることができる。このような酸化触媒は、入口温度により浄化率が変化し、95%あるいはそれ以上の浄化率を得るためには、除去成分の種類およびその濃度に応じた所定の入口温度以上にしなければならない。   Further, the catalytic reaction can be promoted by exchanging heat between the degassed air whose temperature has risen through the oxidation catalyst and the low temperature concentrated gas before catalytic combustion by the heat recovery device 4 and preheating the concentrated gas before combustion. . Such an oxidation catalyst has a purification rate that varies depending on the inlet temperature. In order to obtain a purification rate of 95% or more, the oxidation catalyst must be at or above a predetermined inlet temperature according to the type and concentration of the removed component.

ところが、脱着の際、脱着用加熱空気の温度や量あるいは吸着された除去成分の量および経過時間などによって、濃縮ガスの濃度が変化する。   However, at the time of desorption, the concentration of the concentrated gas varies depending on the temperature and amount of the desorption heated air, the amount of the removed component adsorbed, and the elapsed time.

濃縮ガスの濃度および入口温度が適切な状態では、触媒燃焼時に高い浄化率で除去成分が取り除かれ、所定の反応熱が得られる。例えば1000ppmの濃度のガスを酸化反応により燃焼した場合、ガスの種類によって温度上昇の値(入口温度と出口温度の差)が決まっている。例えばイソプロピルアルコールでは68℃、トルエンの場合は133℃である。温度上昇値が一定で出口温度が一定であれば、熱回収装置4によって常に一定量の熱が回収されるので、次に処理装置3へ送り込む濃縮ガスを一定の温度に昇温させるという制御を容易に行うことができる。そのため、制御装置の構成を簡素化でき、また、濃縮ガスを加熱するための加熱手段が不要となるか、あるいは低容量のものにできる。   When the concentration of the concentrated gas and the inlet temperature are appropriate, the removal component is removed at a high purification rate during catalytic combustion, and a predetermined reaction heat is obtained. For example, when a gas with a concentration of 1000 ppm is burned by an oxidation reaction, the temperature rise value (difference between the inlet temperature and the outlet temperature) is determined depending on the type of gas. For example, it is 68 ° C. for isopropyl alcohol and 133 ° C. for toluene. If the temperature rise value is constant and the outlet temperature is constant, a constant amount of heat is always recovered by the heat recovery device 4, so that the concentrated gas fed to the processing device 3 is then heated to a constant temperature. It can be done easily. Therefore, the configuration of the control device can be simplified, and a heating means for heating the concentrated gas is not required, or the capacity can be reduced.

しかしながら、吸着した除去成分を脱着する際には、吸着部2内に徐々に加熱空気を送り込むため、初期には低濃度且つ低温度の濃縮ガスが熱回収装置4を介して処理装置3に入る。低濃度、低温度の状態では、十分な触媒効果が得られないため、浄化率が低下する。また、触媒燃焼による温度上昇が少なくなって、熱回収装置4による熱回収量も僅かとなる。そのため、熱交換を行う濃縮ガスを十分に昇温させることができず、十分な触媒反応促進作用が得られない。   However, when desorbing the adsorbed removal components, heated air is gradually sent into the adsorption unit 2, so that a concentrated gas having a low concentration and a low temperature enters the processing device 3 through the heat recovery device 4 in the initial stage. . In a state of low concentration and low temperature, a sufficient catalytic effect cannot be obtained, so that the purification rate is lowered. Further, the temperature rise due to catalytic combustion is reduced, and the amount of heat recovered by the heat recovery device 4 is also small. Therefore, the concentrated gas for heat exchange cannot be sufficiently heated, and a sufficient catalytic reaction promoting action cannot be obtained.

一方、濃縮ガスの濃度が高すぎると、触媒の反応熱による温度上昇が過大になり、処理装置3や熱回収装置4等を構成する各部材の耐熱温度を高くしなければならない。   On the other hand, if the concentration of the concentrated gas is too high, the temperature rise due to the reaction heat of the catalyst becomes excessive, and the heat resistance temperature of each member constituting the processing device 3 and the heat recovery device 4 must be increased.

従来の別のガス濃縮装置として、ロータリー式吸着装置がある。ロータリー式吸着装置は、吸着剤を円板状ロータに設け、ロータを回転させて処理ゾーンおよび再生ゾーンを通過させ、処理ゾーンに被処理ガスを流通させて除去成分をロータの吸着剤に吸着させ、再生ゾーンに加熱空気を流通させて吸着剤の脱着を行うものである。   As another conventional gas concentrating device, there is a rotary adsorption device. In the rotary type adsorption device, an adsorbent is provided in a disk-shaped rotor, and the rotor is rotated to pass through the processing zone and the regeneration zone, and the gas to be processed is circulated through the processing zone to adsorb the removed components to the adsorbent of the rotor. The adsorbent is desorbed by circulating heated air through the regeneration zone.

このようなロータリー式吸着装置についても、前述の図6、図7の従来技術の問題と同様の問題が生じる。
特開2002−282654
Such a rotary suction device also has the same problems as those of the prior art shown in FIGS.
JP 2002-282654 A

本発明は、上記従来技術を考慮してなされたものであり、吸着された被処理ガスの除去成分を脱着して生成する濃縮ガスの濃度および温度を、触媒に対応した最適な一定値に維持して、効率よく吸着剤から除去成分を脱着し脱着した除去成分を処理するガス処理システムの提供を目的とする。   The present invention has been made in consideration of the above prior art, and maintains the concentration and temperature of the concentrated gas produced by desorbing the removed components of the gas to be treated at an optimum constant value corresponding to the catalyst. An object of the present invention is to provide a gas treatment system that efficiently desorbs a removed component from an adsorbent and treats the removed removed component.

請求項1の発明は、被処理ガスの除去成分を吸着部の吸着剤に吸着させた後の吸着処理済み脱ガス空気を排気し、前記吸着剤に加熱空気を供給することにより前記吸着剤から除去成分を脱着して濃縮ガスを生成し、該濃縮ガスを触媒燃焼させて除去成分を処理し、処理後の燃焼処理済み脱ガス空気と前記濃縮ガスとを熱交換するガス処理システムにおいて、前記吸着剤の脱着時に前記吸着部に加熱空気を循環させる濃縮装置と、脱着時の濃縮ガスの濃度を検知する濃度検知装置とを設け、前記濃度検知装置で検知した濃縮ガスの濃度により、吸着部内の濃縮ガスの濃度が触媒反応に最適な濃度になるように前記濃縮装置の運転を制御し、前記濃度検知装置は、前記吸着部から濃度検知用ガスを取り出すために設けたモニタ通路上に設けられ、前記濃縮ガスを処理する触媒と同じ触媒を備え、この触媒の入口と出口の温度差から前記濃縮ガスの濃度を判定する構成としたことを特徴とするガス処理システムを提供する。 According to the first aspect of the present invention, the adsorption-treated degassed air after the removal component of the gas to be treated is adsorbed by the adsorbent of the adsorbing portion is exhausted, and heated air is supplied to the adsorbent from the adsorbent. In the gas processing system for desorbing the removed component to generate a concentrated gas, catalytically burning the concentrated gas to process the removed component, and heat-exchanging the treated degassed air and the concentrated gas. a concentrator for circulating heated air to the suction unit when desorption of the adsorbent, and a density detection device for detecting the concentration of the enriched gas at the time of desorption is provided by the concentration of enriched gas detected by the concentration detection device, the suction portion The operation of the concentrator is controlled so that the concentration of the concentrated gas becomes an optimum concentration for the catalytic reaction, and the concentration detector is provided on a monitor passage provided for taking out the concentration detection gas from the adsorption section. And With the same catalyst as that processes serial enriched gas, to provide a gas processing system, characterized in that the determining arrangement the concentration of the enriched gas from the temperature difference between the inlet and outlet of the catalyst.

請求項2の発明は、前記請求項1の発明において、前記吸着部へ脱着用加熱空気を供給する空気通路を備えるとともに該空気通路に外気取入用給気バルブを設け、前記濃度検知装置による濃縮ガスの濃度により前記給気バルブの開閉を制御することを特徴とする。 The invention of claim 2 is the invention of claim 1, provided the outdoor air needful air supply valve in the air passageway with an air passage for supplying desorption heated air to said suction unit, by the concentration detection device The opening and closing of the supply valve is controlled by the concentration of the concentrated gas .

請求項3の発明は、請求項1の発明において、前記脱着用加熱空気として、前記濃縮ガスを触媒で処理した後の燃焼処理済み脱ガス空気の一部を用いることを特徴とする。 The invention of claim 3 is characterized in that, in the invention of claim 1, a part of the combustion-treated degassed air after treating the concentrated gas with a catalyst is used as the desorption heated air.

請求項の発明は、請求項1の発明において、前記濃縮ガスを処理する触媒の上流側に、前記濃縮ガスの濃度を調整する二次調整部を設けたことを特徴とする。 The invention of claim 4 is characterized in that, in the invention of claim 1, a secondary adjustment unit for adjusting the concentration of the concentrated gas is provided upstream of the catalyst for processing the concentrated gas.

請求項1の発明によると、吸着剤の脱着時に、吸着部内の濃縮ガスの濃度を検知しながら濃縮装置の運転を制御することにより、脱着されて吸着部内に充満する脱着ガスの濃度を触媒反応に最適な一定濃度にし、触媒へ送り込む濃縮ガスの濃度を一定に維持することができる。従って、酸化触媒による燃焼過程において、高い浄化率で除去成分を処理できる。また、この触媒反応で安定した一定の温度上昇が得られる。そのため、熱回収装置による熱の回収量が安定し、その後触媒へ送る濃縮ガスの入口温度を、触媒反応に最適な一定温度に維持できる。それにより、触媒への入口温度制御が不要または簡単にできる。また、触媒の反応熱を熱交換して再利用するため、エネルギーの有効利用が図られる。   According to the first aspect of the present invention, when the adsorbent is desorbed, the concentration of the desorbed gas that is desorbed and fills the adsorbing portion is controlled by a catalytic reaction by controlling the operation of the concentrating device while detecting the concentration of the concentrated gas in the adsorbing portion. The concentration of the concentrated gas fed to the catalyst can be kept constant. Therefore, the removal component can be treated with a high purification rate in the combustion process by the oxidation catalyst. In addition, a stable and constant temperature increase can be obtained by this catalytic reaction. For this reason, the amount of heat recovered by the heat recovery device is stabilized, and the inlet temperature of the concentrated gas sent to the catalyst thereafter can be maintained at a constant temperature optimum for the catalytic reaction. Thereby, the inlet temperature control to the catalyst is unnecessary or simple. In addition, since the reaction heat of the catalyst is heat-exchanged and reused, energy can be effectively used.

このように、濃縮ガスの濃度及び温度を一定に維持できるため、従来技術では必要であった触媒燃焼部での濃縮ガスの加熱エネルギーが不要になり、大きな省エネ効果が得られる。また、前記濃縮ガスを処理する触媒と同じ触媒が、モニタ通路上の濃度検知装置に設けられているため、濃縮ガスを処理する触媒と同じ条件を濃度検知装置内で再現して、触媒反応をモニタすることができる。このモニタする触媒の入口及び出口の温度差から、濃縮ガスの濃度を判別することができ、これに応じて、濃縮ガスの濃度を制御できる。なお、吸着部に接続されるモニタ通路が常に開いているため、これがリリーフ通路として作用し、吸着部が加熱されて吸着部内の濃縮ガスが体積膨張を始めても、膨張した濃縮ガスを吸着部の外に逃すことが出来る。従って、吸着部内の圧力が上がることがなく、濃縮ガスが外部に漏れ出すことがない。 As described above, since the concentration and temperature of the concentrated gas can be maintained constant, the heating energy of the concentrated gas in the catalytic combustion section, which was necessary in the prior art, becomes unnecessary, and a great energy saving effect is obtained. In addition, since the same catalyst as the catalyst for processing the concentrated gas is provided in the concentration detection device on the monitor passage, the same conditions as the catalyst for processing the concentrated gas are reproduced in the concentration detection device to perform the catalytic reaction. Can be monitored. The concentration of the concentrated gas can be determined from the temperature difference between the inlet and outlet of the catalyst to be monitored, and the concentration of the concentrated gas can be controlled accordingly. Since the monitor passage connected to the adsorption section is always open, this acts as a relief passage, and even if the adsorption section is heated and the concentrated gas in the adsorption section starts volume expansion, the expanded concentrated gas is removed from the adsorption section. You can miss out. Therefore, the pressure in the adsorption portion does not increase and the concentrated gas does not leak to the outside.

請求項2の発明によると、吸着剤の脱着時に、吸着部内の濃縮ガスの濃度に応じて給気バルブを開閉制御し、外気量を調整することにより、脱着用加熱空気の温度および触媒に送り込む濃縮ガスの濃度を制御できる。これにより、脱着時に安定して一定の最適濃度の濃縮ガスを触媒に供給して、高い浄化率の触媒反応を得ることができる。   According to the second aspect of the present invention, when the adsorbent is desorbed, the supply valve is controlled to open and close according to the concentration of the concentrated gas in the adsorption section, and the amount of outside air is adjusted to feed the temperature of the desorption heated air and the catalyst. The concentration of the concentrated gas can be controlled. Thus, a concentrated gas having a constant optimum concentration can be supplied to the catalyst stably at the time of desorption, and a catalytic reaction with a high purification rate can be obtained.

請求項3の発明によると、脱着用加熱空気として、本来は全て排出される触媒通過後の昇温した脱ガス空気の一部を用いるため、排熱を効率よく利用して、加熱のためのエネルギーを軽減させることができる。   According to the invention of claim 3, since a part of the degassed air that has been heated after passing through the catalyst, which is originally exhausted, is used as the desorption heated air, the exhaust heat is efficiently used for heating. Energy can be reduced.

請求項の発明によると、触媒燃焼させる濃縮ガスの濃度を、吸着部内で制御するとともに触媒の直前でも調整するので、タイムラグをなくして触媒の位置で正確に所定の濃度に保つことができる。そのため、触媒の反応熱を利用した温度制御が正確且つ容易に行える。 According to the invention of claim 4 , since the concentration of the concentrated gas for catalytic combustion is controlled in the adsorption portion and adjusted immediately before the catalyst, it is possible to eliminate the time lag and accurately maintain the predetermined concentration at the position of the catalyst. Therefore, temperature control using reaction heat of the catalyst can be performed accurately and easily.

図1は、本発明の処理システムの概略を示す図である。太い実線は、有害ガス等の処理すべきガス(被処理ガス)に含まれる除去すべきガス成分(除去成分)を吸着剤に吸着させる吸着工程時のガスの流路を示し、破線は、吸着された除去成分を吸着剤から離脱する脱着工程時のガスの流路を示す。また、黒い矢印は除去成分を含むガスの流れを示し、白抜きの矢印は、除去成分を含まない或いは取り除かれたガスの流れを示す。   FIG. 1 is a diagram showing an outline of a processing system of the present invention. The thick solid line indicates the gas flow path during the adsorption process in which the gas component to be removed (removed component) contained in the gas to be treated (gas to be treated) such as harmful gas is adsorbed by the adsorbent, and the broken line is the adsorption The gas flow path at the time of the desorption process which detach | leaves the removed removal component from adsorption agent is shown. Further, the black arrow indicates the flow of gas containing the removed component, and the white arrow indicates the flow of gas not containing or removed the removed component.

吸着部2には、被処理ガスの除去成分を吸着する活性炭やゼオライト等からなる吸着剤が備えられる。吸着部2において、例えば95%以上の吸着効率で被処理ガスから除去成分を取り除くことができるように、除去成分に応じた最適な吸着剤の種類や量が設定される。   The adsorbing unit 2 is provided with an adsorbent made of activated carbon, zeolite, or the like that adsorbs the removal component of the gas to be treated. In the adsorption unit 2, for example, the optimum type and amount of the adsorbent according to the removed component are set so that the removed component can be removed from the gas to be processed with an adsorption efficiency of 95% or more.

吸着部2には、脱着用加熱空気の給気バルブ10の開閉により外気を導入する加熱空気用空気通路2a、および熱回収装置4を介して処理装置3へ濃縮ガスを送る濃縮ガス用空気通路2cが接続される。処理装置3は酸化触媒を備え、送り込まれた濃縮ガス中の除去成分を触媒燃焼により取り除く。更に、吸着部2内に加熱空気を循環させて吸着剤から除去成分を脱着させる濃縮装置5、および吸着部2内の脱着ガスの濃度を検知する濃度検知装置6が、それぞれ循環空気通路2b、モニタ通路2dを介して吸着部2に連結される。   In the adsorbing unit 2, a heated air air passage 2 a that introduces outside air by opening and closing a desorption heated air supply valve 10 and a concentrated gas air passage that sends the concentrated gas to the processing device 3 through the heat recovery device 4. 2c is connected. The processing device 3 includes an oxidation catalyst, and removes the removed components in the sent concentrated gas by catalytic combustion. Further, a concentration device 5 that circulates heated air in the adsorption unit 2 to desorb a removed component from the adsorbent, and a concentration detection device 6 that detects the concentration of the desorption gas in the adsorption unit 2, respectively, are a circulating air passage 2b, It is connected to the suction part 2 through the monitor passage 2d.

以下、図1の処理システム1による被処理ガスの処理手順について説明する。   Hereinafter, the processing procedure of the gas to be processed by the processing system 1 of FIG. 1 will be described.

各種工場で塗装工程等により排出される例えばイソプロピルアルコールやトルエン等の除去成分ガスを含む被処理ガスは、吸着部2へ送られ、除去成分を例えば95%以上吸着剤に吸着させた後、清浄化された脱ガス空気が外部へ排気される。   Processed gas containing removed component gas such as isopropyl alcohol and toluene discharged at various factories is sent to the adsorbing unit 2 and cleaned after adsorbing the removed component on the adsorbent, for example, 95% or more. The degasified air is exhausted to the outside.

夜間等、吸着工程が停止される時に、吸着部2内の吸着剤に吸着された除去成分の脱着工程が、以下のように行われる。尚、24時間吸着工程が連続する場合には、吸着部2を複数個所設けて、吸着工程を行う吸着部と、脱着工程を行う吸着部とを切り替えてもよい。   When the adsorption process is stopped at night or the like, the desorption process of the removed component adsorbed by the adsorbent in the adsorption unit 2 is performed as follows. When the adsorption process is continued for 24 hours, a plurality of adsorption units 2 may be provided to switch between the adsorption unit that performs the adsorption process and the adsorption unit that performs the desorption process.

脱着工程の開始時に濃縮装置5が用いられる。すなわち、脱着開始時には、吸着剤から脱着された除去成分がほとんどないため、吸着部2内のガス濃度は低く、処理装置3で必要とする濃度に達していない。従って、この濃度の低いガスをそのまま処理装置3に送り込んでも、十分な触媒燃焼が得られず、燃焼後の触媒出口での脱ガス空気温度も必要な温度に達しない。従って、加熱ヒータにより処理装置3を加熱して触媒入口温度を高め、触媒燃焼を促進させなければならない。   Concentrator 5 is used at the start of the desorption process. That is, at the start of desorption, since there is almost no removed component desorbed from the adsorbent, the gas concentration in the adsorption unit 2 is low and does not reach the concentration required by the processing device 3. Therefore, even if this low-concentration gas is sent as it is to the processing apparatus 3, sufficient catalytic combustion cannot be obtained, and the degassing air temperature at the catalyst outlet after combustion does not reach the required temperature. Therefore, the processing apparatus 3 must be heated by a heater to increase the catalyst inlet temperature and promote catalyst combustion.

このような吸着部2内のガス濃度が低い状態は、時間経過とともに解消され、脱着が進めば徐々に濃度が濃くなり、必要な濃度の濃縮ガスが得られる。しかし、それまでの間、濃度が徐々に変化するため、濃度変化に応じて加熱ヒータによる触媒入口温度の加熱制御が必要になる。   Such a state in which the gas concentration in the adsorbing portion 2 is low is eliminated as time elapses, and as desorption proceeds, the concentration gradually increases and a concentrated gas having a necessary concentration can be obtained. However, since the concentration gradually changes until then, it is necessary to control the heating of the catalyst inlet temperature by the heater in accordance with the concentration change.

そこで、本実施例では、脱着を始めるときに、吸着部2内のガス濃度を迅速に高め、所定濃度の濃縮ガスを速やかに生成し、生成された適正濃度の濃縮ガスを処理装置3に送り込む。従って、処理装置3には初めから所定濃度の濃縮ガスが送り込まれるため、十分な触媒燃焼作用が得られる。   Therefore, in this embodiment, when desorption is started, the gas concentration in the adsorption unit 2 is rapidly increased, a concentrated gas having a predetermined concentration is quickly generated, and the generated concentrated gas having an appropriate concentration is sent to the processing device 3. . Therefore, since the concentrated gas having a predetermined concentration is sent to the processing device 3 from the beginning, a sufficient catalytic combustion action can be obtained.

濃縮装置5は、加熱機能および送風機能を備え、40℃〜100℃程度に加熱した空気を循環空気通路2bに流し、吸着部2との間で循環させる。これにより、吸着部2が徐々に加熱され、吸着剤に吸着した除去成分が吸着剤から脱着する。これにより、吸着部2内に充満する脱着した除去成分の濃度が上昇して濃縮ガスが生成される。   The concentrating device 5 has a heating function and an air blowing function, and causes the air heated to about 40 ° C. to 100 ° C. to flow through the circulation air passage 2 b and to circulate between the adsorption unit 2. Thereby, the adsorption | suction part 2 is heated gradually and the removal component which adsorb | sucked to adsorption agent desorbs from adsorption agent. Thereby, the density | concentration of the desorbed removal component with which the inside of the adsorption | suction part 2 is filled rises, and concentrated gas is produced | generated.

吸着部2内の濃縮ガスの一部は、モニタ通路2dを介して濃度検知装置6へ送られる。濃度検知装置6では、吸着部2で脱着されて生成された濃縮ガスの濃度が、処理装置3の触媒燃焼が十分効果的に行える濃度に達しているかどうかを判定する。   A part of the concentrated gas in the adsorption unit 2 is sent to the concentration detector 6 through the monitor passage 2d. In the concentration detection device 6, it is determined whether or not the concentration of the concentrated gas generated by desorption in the adsorption unit 2 has reached a concentration at which the catalytic combustion of the processing device 3 can be sufficiently effectively performed.

必要な濃度の濃縮ガスが得られたら、濃縮装置5の運転を停止して、吸着部2から熱回収装置4を介して処理装置3へ濃縮ガスを供給する。   When the concentrated gas having the required concentration is obtained, the operation of the concentration device 5 is stopped, and the concentrated gas is supplied from the adsorption unit 2 to the processing device 3 through the heat recovery device 4.

処理装置3で触媒燃焼して昇温した後の脱ガス空気は、熱回収装置4で濃縮ガスと熱交換され、濃縮ガスの温度を上昇させた後、外部へ排出される。尚、脱ガス空気とは、吸着剤あるいは触媒を通して、吸着作用或いは触媒作用を受けた後のガス(通常は空気)のことをいう。   The degassed air that has been heated by catalytic combustion in the processing device 3 is subjected to heat exchange with the concentrated gas in the heat recovery device 4 to increase the temperature of the concentrated gas, and then discharged to the outside. In addition, degassing air means the gas (usually air) after receiving an adsorption action or a catalytic action through an adsorbent or a catalyst.

以下、処理装置3を通した本システムの脱着時の動作について更に説明する。   Hereinafter, the operation at the time of detachment of the system through the processing device 3 will be further described.

処理装置3を出て熱回収装置4を通過する脱ガス空気は、ファン7により吸引され、大気開放部8で外部へ排出される。   The degassed air that leaves the processing device 3 and passes through the heat recovery device 4 is sucked by the fan 7 and discharged to the outside through the atmosphere opening unit 8.

大気開放部8には、脱着用加熱空気通路2eの空気取入口9が開口する、大気開放部8から排出された脱ガス空気の一部は、空気取入口9から空気通路2eおよび2aを通して吸着部2内に供給され、再び脱着作用を行って熱回収装置4および処理装置3を循環する。このような脱ガス空気の循環は、ファン7によって行われる。すなわち、大気開放部8は、ファン7の吐出側であるため正圧であり、脱ガス空気が大気に放出される。一方、ファン7の吸引側は、大気開放されない閉じた状態の空気通路系により、処理装置3、熱回収装置4および吸着部2を連通し、更に空気通路2a,2eを通して空気取入口9に連通する。従って、脱着用空気通路2eの空気取入口9は負圧であり、排出された脱ガス空気の一部が吸引される。このとき、空気取入口9から外気が吸い込まれないように、空気取入口9は、大気開放部8の正圧の範囲内に配置しておく。   A part of the degassed air exhausted from the atmosphere opening part 8 is adsorbed to the atmosphere opening part 8 through the air passages 2e and 2a. It is supplied into the section 2 and desorbs again to circulate through the heat recovery device 4 and the processing device 3. Such circulation of the degassed air is performed by the fan 7. That is, the atmosphere opening portion 8 is at a positive pressure because it is on the discharge side of the fan 7, and degassed air is released to the atmosphere. On the other hand, the suction side of the fan 7 communicates with the processing device 3, the heat recovery device 4, and the adsorption unit 2 through a closed air passage system that is not released to the atmosphere, and further communicates with the air intake 9 through the air passages 2 a and 2 e. To do. Therefore, the air intake 9 of the desorption air passage 2e has a negative pressure, and a part of the discharged degas air is sucked. At this time, the air intake 9 is arranged in the range of the positive pressure of the atmosphere opening portion 8 so that outside air is not sucked from the air intake 9.

このように、触媒燃焼後の脱ガス空気を脱着用加熱空気として利用することにより、吸着部2に送り込む脱着用加熱空気の加熱が不要になるかまたは軽減され、エネルギーの削減が図られる。   Thus, by using the degassed air after catalytic combustion as the desorption heating air, the heating of the desorption heating air sent to the adsorption unit 2 becomes unnecessary or reduced, and the energy is reduced.

加熱空気用空気通路2aには、給気バルブ10を介して外気が導入される。濃度検知装置6で検出された吸着部2内の濃縮ガスの濃度が必要以上に濃い場合や、あるいは温度が必要以上に高い場合に、給気バルブ10を開いて適正な温度の加熱空気を生成して、これを吸着部2へ送る。吸着部2内で脱着して生成された濃縮ガスは、処理装置3に供給される。給気バルブ10は、吸着部2内の濃度および温度に応じて、流量を調整可能としておくことが望ましい。   Outside air is introduced into the heating air passage 2 a through the air supply valve 10. When the concentration of the concentrated gas in the adsorption unit 2 detected by the concentration detector 6 is higher than necessary, or when the temperature is higher than necessary, the air supply valve 10 is opened to generate heated air having an appropriate temperature. Then, this is sent to the adsorption unit 2. The concentrated gas generated by desorption in the adsorption unit 2 is supplied to the processing device 3. It is desirable that the air supply valve 10 be capable of adjusting the flow rate according to the concentration and temperature in the adsorption unit 2.

図2は濃度検知装置6の内部構造を示す概略図である。吸着部2(図1)で濃縮ガスが生成されると、吸着部2から濃度検知装置6へ、ファン21またはポンプで濃縮ガスを少量取り込む。   FIG. 2 is a schematic diagram showing the internal structure of the density detector 6. When the concentrated gas is generated in the adsorption unit 2 (FIG. 1), a small amount of the concentrated gas is taken from the adsorption unit 2 to the concentration detection device 6 by the fan 21 or the pump.

濃度検知装置6には、酸化触媒25と、その入口側および出口側に設けられる温度センサ24,26と、各温度センサ24,26に接続されて温度センサ24,26の検出値により各種制御を行う調節器23,27と、取り込んだガスを加熱する加熱器22とが設けられる。触媒25は、処理装置3内の触媒と同じものである。   The concentration detection device 6 has an oxidation catalyst 25, temperature sensors 24 and 26 provided on the inlet side and the outlet side thereof, and various controls based on the detection values of the temperature sensors 24 and 26 connected to the temperature sensors 24 and 26. The regulators 23 and 27 to perform and the heater 22 to heat the taken-in gas are provided. The catalyst 25 is the same as the catalyst in the processing apparatus 3.

一般に、酸化触媒は温度が高いほど化学反応が促進されるという特徴があるため、濃度検知装置6へ取り込んだ濃縮ガスは、触媒25に入る際、どのような種類のガスでも十分に触媒25に反応するように、例えば300℃になるまで加熱器22で加熱される。この温度制御は、触媒25の入口側温度センサ24に接続した調節器23により、加熱器22を制御して行われる。   In general, since the oxidation catalyst has a feature that the chemical reaction is promoted as the temperature is higher, the concentrated gas taken into the concentration detection device 6 can be sufficiently converted into the catalyst 25 by any kind of gas when entering the catalyst 25. For example, it is heated by the heater 22 until it reaches 300 ° C. so as to react. This temperature control is performed by controlling the heater 22 with a regulator 23 connected to the inlet side temperature sensor 24 of the catalyst 25.

所定温度の濃縮ガスを触媒25に通し、出口側温度センサ26で検出されるガスの温度と、入口側温度センサ24で検出された温度とを比較し、触媒燃焼による温度上昇値から、濃縮ガスの濃度を出口側調節器27により判定する。例えば、入口と出口との温度差が100℃になるときが、濃縮ガスを処理工程へ送るのに適した濃度である場合には、300℃で触媒25に入ったガスの出口温度が400℃であれば、最適濃度に達していると判定される。調整器27により400℃に対して高低いずれかを判定し、外気導入用の給気バルブ10に制御信号を送信する。触媒25を通過した濃縮ガスは、そのまま大気中に排気される。   A concentrated gas having a predetermined temperature is passed through the catalyst 25, the temperature of the gas detected by the outlet side temperature sensor 26 is compared with the temperature detected by the inlet side temperature sensor 24, and the concentrated gas is calculated based on the temperature rise value due to catalytic combustion. Is determined by the outlet-side regulator 27. For example, when the temperature difference between the inlet and the outlet is 100 ° C., when the concentration is suitable for sending the concentrated gas to the treatment process, the outlet temperature of the gas entering the catalyst 25 at 300 ° C. is 400 ° C. If so, it is determined that the optimum density has been reached. The regulator 27 determines whether the temperature is higher or lower than 400 ° C., and transmits a control signal to the supply valve 10 for introducing outside air. The concentrated gas that has passed through the catalyst 25 is exhausted to the atmosphere as it is.

尚、空気通路2e(図1)上に流量調整バルブ11を設け、給気バルブ10と連動させて開閉制御し、外気とこれよりも高温の脱ガス空気の流量を調整することにより、吸着部2内を温度制御して、濃縮ガスの濃度を調整してもよい。   Incidentally, a flow rate adjusting valve 11 is provided on the air passage 2e (FIG. 1), and the opening / closing control is performed in conjunction with the air supply valve 10 to adjust the flow rate of the outside air and degassed air having a temperature higher than that, thereby the adsorbing portion. The concentration inside the gas 2 may be controlled to adjust the concentration of the concentrated gas.

濃縮装置5の運転開始により徐々に吸着部2を加熱する際、吸着部2内のガスが徐々に体積膨張を始めるが、濃度検知装置6へのモニタ通路2dが常に開いているため、膨張したガスを吸着部2の外に逃がすことができる。従って、初期の低濃度時から最適濃度に至るまで、吸着部2内の圧力が過度に上がることがない。   When the adsorption unit 2 is gradually heated by the start of the operation of the concentrating device 5, the gas in the adsorption unit 2 gradually begins to expand in volume, but has expanded because the monitor passage 2d to the concentration detection device 6 is always open. The gas can escape to the outside of the adsorption unit 2. Therefore, the pressure in the adsorption unit 2 does not increase excessively from the initial low concentration to the optimum concentration.

処理装置3は、濃縮ガスを触媒燃焼させる白金等の酸化触媒と加熱手段を備える。濃縮ガスを触媒燃焼させる際、ガスの温度により、触媒反応作用に大きな差が生じる。   The processing apparatus 3 includes an oxidation catalyst such as platinum for catalytically burning the concentrated gas and a heating unit. When the concentrated gas is subjected to catalytic combustion, a large difference occurs in the catalytic reaction action depending on the temperature of the gas.

図3は、ガスを触媒燃焼させる際の触媒への入口温度による浄化率の変化を示すものである。この曲線は、ガスの種類およびその濃度により異なり、図3では、250ppmのイソプロピルアルコールと、537ppmのトルエンの場合の測定結果を示す。イソプロピルアルコールの場合には、220℃以上で触媒に入れると、ほぼ95%以上の浄化率が得られる。トルエンの場合は、170℃を超えると急激に浄化率が上昇し、180℃以上で約95%、200℃を超えると98%以上の浄化率が得られる。従って、例えばトルエンを除去する場合、150℃以下で触媒に入れても、ほとんど除去効果が得られない。このように、除去成分を処理するためには、浄化率の高い適温で触媒に入れることが必要である。   FIG. 3 shows the change in the purification rate depending on the inlet temperature to the catalyst when the gas is catalytically combusted. This curve varies depending on the type of gas and its concentration. FIG. 3 shows the measurement results for 250 ppm isopropyl alcohol and 537 ppm toluene. In the case of isopropyl alcohol, a purification rate of approximately 95% or more can be obtained when it is put into the catalyst at 220 ° C. or higher. In the case of toluene, the purification rate increases abruptly when the temperature exceeds 170 ° C., and a purification rate of about 95% is obtained at 180 ° C. or higher, and 98% or higher when 200 ° C. is exceeded. Therefore, for example, when removing toluene, even if it is put in the catalyst at 150 ° C. or lower, the removal effect is hardly obtained. Thus, in order to process the removal component, it is necessary to put it in the catalyst at an appropriate temperature with a high purification rate.

また、ガスの種類およびその濃度によって、燃焼後の温度上昇の値が異なり、例えば1000ppmのイソプロピルアルコールでは68℃、トルエンの場合は133℃の温度上昇が得られる。   The value of the temperature rise after combustion differs depending on the type of gas and its concentration. For example, a temperature rise of 68 ° C. is obtained for 1000 ppm isopropyl alcohol and 133 ° C. for toluene.

従って、図1の処理装置3へ送り込む濃縮ガスの濃度を一定値、例えば1000ppmにすれば、触媒により酸化燃焼した後の温度上昇値が一定に決まる。また、ガスの種類により、所望する浄化率を得るための触媒への入口温度が決まる。例えば濃度が1000ppm、温度が250℃のイソプロピルアルコールを触媒に通すことにより、触媒の出口では、約95%浄化され、68℃温度上昇する。   Therefore, if the concentration of the concentrated gas fed into the processing apparatus 3 in FIG. 1 is set to a constant value, for example, 1000 ppm, the temperature rise value after oxidation combustion by the catalyst is fixed. Moreover, the inlet temperature to the catalyst for obtaining a desired purification rate is determined by the type of gas. For example, when isopropyl alcohol having a concentration of 1000 ppm and a temperature of 250 ° C. is passed through the catalyst, about 95% of the isopropyl alcohol is purified at the outlet of the catalyst and the temperature is increased by 68 ° C.

以下、図1の処理システム1において、250℃で触媒に入れると所定の浄化率が得られ、触媒燃焼により1000ppmの場合に100℃温度上昇する濃縮ガスの処理工程手順について説明する。   Hereinafter, in the processing system 1 of FIG. 1, a predetermined purification rate will be obtained when it is put into the catalyst at 250 ° C., and the processing procedure of the concentrated gas that rises by 100 ° C. at 1000 ppm due to catalytic combustion will be described.

濃縮装置5により吸着部2内のガスを濃縮し、濃度検知装置6により1000ppmに制御された濃縮ガスが、例えば50℃で熱回収装置4に送り込まれる。熱回収装置4による熱交換が行えない初期には、50℃の濃縮ガスをヒータ等で250℃まで加熱した後、触媒に入れる。触媒燃焼すると、反応熱の発生により温度が100℃上昇するとともに、濃縮ガスの除去成分が取り除かれ、350℃の脱ガス空気として処理装置3から排出される。排出された脱ガス空気は熱回収装置4に入り、熱交換により例えば150℃に温度低下して濃縮ガスを50℃から250℃に昇温させる。これにより、ヒータでの加熱が不要となる。この状態を維持すると、濃縮ガスの触媒入口温度を250℃にするために加熱する必要がなくなり、大きな省エネ効果が図れる。   The gas in the adsorption unit 2 is concentrated by the concentrating device 5, and the concentrated gas controlled to 1000 ppm by the concentration detecting device 6 is sent to the heat recovery device 4 at 50 ° C., for example. In the initial stage where heat exchange by the heat recovery device 4 cannot be performed, the concentrated gas at 50 ° C. is heated to 250 ° C. with a heater or the like and then put into the catalyst. When catalytic combustion occurs, the temperature rises by 100 ° C. due to the generation of reaction heat, the removed components of the concentrated gas are removed, and the degassed air at 350 ° C. is discharged from the processing device 3. The discharged degassed air enters the heat recovery device 4 and is reduced in temperature to, for example, 150 ° C. by heat exchange to raise the concentration gas from 50 ° C. to 250 ° C. Thereby, heating with a heater becomes unnecessary. If this state is maintained, it is not necessary to heat the concentrated gas at the catalyst inlet temperature to 250 ° C., and a great energy saving effect can be achieved.

熱回収装置4を通過した150℃の脱ガス空気は、前述のようにファン7により大気中に排出され、一部は空気通路2eを介して吸着部2へ戻される。吸着部2の加熱温度の適温は60℃〜100℃程度なので、給気バルブ10を制御して空気と混合し、温度を下げて吸着部2へ送る。   The 150 ° C. degassed air that has passed through the heat recovery device 4 is discharged into the atmosphere by the fan 7 as described above, and a part thereof is returned to the adsorption unit 2 through the air passage 2e. Since the appropriate heating temperature of the adsorption unit 2 is about 60 ° C. to 100 ° C., the air supply valve 10 is controlled to mix with air, and the temperature is lowered and sent to the adsorption unit 2.

吸着部2内で生成される濃縮ガスは、処理装置3内での触媒燃焼が最大の反応効率で行われるように、濃度が正確に1000ppm、入口温度が250℃になるように、濃度検知装置6で監視するとともに、濃縮装置5および給気バルブ10を制御する。   The concentration gas generated in the adsorption unit 2 is such that the concentration is precisely 1000 ppm and the inlet temperature is 250 ° C. so that catalytic combustion in the processing device 3 is performed with the maximum reaction efficiency. 6 and the concentrator 5 and the air supply valve 10 are controlled.

このように、触媒による反応熱を熱回収装置4を用いて再利用するとともに、吸着部2から処理装置3へ送られる濃縮ガスの濃度を一定に制御することにより、処理システム1の自己循環で被処理ガスの除去成分を除去するとともに加熱に要するエネルギーを大幅に低減させることができる。触媒が十分に反応するために必要な入口温度、および触媒燃焼による温度上昇値は、ガスの種類により異なるので、除去するガスの種類に応じて温度および濃度を制御する。   In this way, the heat of reaction by the catalyst is reused by using the heat recovery device 4, and the concentration of the concentrated gas sent from the adsorption unit 2 to the processing device 3 is controlled to be constant so that the processing system 1 can self-circulate. The removal component of the gas to be treated can be removed and the energy required for heating can be greatly reduced. Since the inlet temperature necessary for the catalyst to sufficiently react and the temperature rise value due to catalytic combustion vary depending on the type of gas, the temperature and concentration are controlled according to the type of gas to be removed.

図4は、本発明の異なる実施の形態を示し、濃縮ガスの濃度検知精度を更に向上させるために、二次調整部12を設けたものである。   FIG. 4 shows a different embodiment of the present invention, in which a secondary adjustment unit 12 is provided in order to further improve the concentration detection accuracy of the concentrated gas.

吸着部2と濃度検知装置6との間は、ある程度の距離が隔てられるため、吸着部2から濃縮ガスのモニタ用サンプルを取り出すときと、その濃度を検知するときとの間にタイムラグが生じる。また、脱着開始時には、吸着部2の入口側では所定の濃度および温度に達しても、出口側では濃度および温度が低い状態となる。従って、適正な濃度および温度の濃縮ガスが処理装置3に到達するまでに、タイムラグが生じる。このようなタイムラグにより、濃度検知装置6で濃縮ガスの濃度制御を行っても、適正な濃度の濃縮ガスが処理装置3に供給されない状態が生じる。また、最適濃度を検知した後、更に濃縮作用が続いて、濃縮ガスの濃度が必要以上に高くなる場合がある。   Since a certain amount of distance is separated between the adsorption unit 2 and the concentration detection device 6, a time lag occurs between when the sample for monitoring the concentrated gas is taken out from the adsorption unit 2 and when the concentration is detected. At the start of desorption, even if a predetermined concentration and temperature are reached on the inlet side of the adsorbing unit 2, the concentration and temperature are low on the outlet side. Therefore, a time lag occurs until the concentrated gas having an appropriate concentration and temperature reaches the processing device 3. Due to such a time lag, even if concentration control of the concentrated gas is performed by the concentration detection device 6, a state where the concentrated gas having an appropriate concentration is not supplied to the processing device 3 occurs. In addition, after the optimum concentration is detected, the concentration action may continue and the concentration of the concentrated gas may become higher than necessary.

そこで、図4の例では、吸着部2と熱回収装置4との間に二次調整部12を設けて、濃縮ガスの濃度をさらに調整する。   Therefore, in the example of FIG. 4, the secondary adjustment unit 12 is provided between the adsorption unit 2 and the heat recovery device 4 to further adjust the concentration of the concentrated gas.

図5は、二次調整部12の内部構成を示す。二次調整部12に送られた濃縮ガスは、一時的に緩衝タンク31に溜める。二次調整部12内に、例えば図2に示す濃度検知装置6と同様の構成を有する濃度検知装置33を設けて、緩衝タンク31から出て熱回収装置4へ流れる濃縮ガスの一部を取り込んで濃度検知する。所定の濃度よりも高い場合には、外気導入用のバルブ32を開き、外気を混合して希釈する。これにより、所定濃度の濃縮ガスを処理装置3に送り込むことができる。また、緩衝タンク31を設けることにより、濃縮ガスの高濃度化を抑えることができる。   FIG. 5 shows the internal configuration of the secondary adjustment unit 12. The concentrated gas sent to the secondary adjustment unit 12 is temporarily stored in the buffer tank 31. For example, a concentration detection device 33 having the same configuration as the concentration detection device 6 shown in FIG. 2 is provided in the secondary adjustment unit 12, and a part of the concentrated gas flowing out from the buffer tank 31 and flowing into the heat recovery device 4 is taken in. Detect density with. When the concentration is higher than the predetermined concentration, the outside air introduction valve 32 is opened, and the outside air is mixed and diluted. Thereby, the concentrated gas of predetermined concentration can be sent into the processing apparatus 3. Further, by providing the buffer tank 31, it is possible to suppress the concentration of the concentrated gas from being increased.

尚、通常は、濃度検知装置6で濃度を判定した後、少し濃度が上がった状態で濃縮ガスが吸着部2から送り出されるため、二次調整部12では希釈により濃度を下げれば所定濃度ちょうどに調整することができるが、濃度検知装置6による濃度制御を所定の濃度よりも少し高めに設定してもよい。   Normally, after the concentration is determined by the concentration detection device 6, the concentrated gas is sent out from the adsorption unit 2 in a state where the concentration is slightly increased. Therefore, if the concentration is reduced by dilution in the secondary adjustment unit 12, the concentration will be exactly the predetermined concentration. Although it can be adjusted, the density control by the density detector 6 may be set slightly higher than a predetermined density.

二次調整部12により濃度を再調整する以外の工程は、全て図1の例と同様である。熱回収装置4の直前に二次調整部12を設けることにより、更に濃縮ガスの濃度の精度を向上させ、触媒燃焼効果を正確に維持することができる。   All the steps other than readjusting the density by the secondary adjustment unit 12 are the same as in the example of FIG. By providing the secondary adjustment unit 12 immediately before the heat recovery apparatus 4, the concentration accuracy of the concentrated gas can be further improved and the catalytic combustion effect can be accurately maintained.

本発明は、工場等から排出される有害ガスを、吸着剤で吸着した後、吸着した有害成分を脱着して酸化触媒により燃焼処理するシステムに適用できる。   The present invention can be applied to a system in which harmful gas discharged from a factory or the like is adsorbed with an adsorbent, and then adsorbed harmful components are desorbed and burned with an oxidation catalyst.

本発明の実施の形態を示す概略図。Schematic which shows embodiment of this invention. 図1の濃度検知装置の内部構造を示す概略図。Schematic which shows the internal structure of the density | concentration detection apparatus of FIG. 触媒への入口温度と被処理ガスの浄化率との関係を示すグラフ。The graph which shows the relationship between the inlet_port | entrance temperature to a catalyst, and the purification rate of to-be-processed gas. 本発明の異なる実施の形態を示す概略図。Schematic which shows different embodiment of this invention. 図4の二次調整部の内部構造を示す概略図。Schematic which shows the internal structure of the secondary adjustment part of FIG. 従来例を示す概略図。Schematic which shows a prior art example. 従来の異なる例を示す概略図。Schematic which shows the conventional different example.

符号の説明Explanation of symbols

1:処理システム、2:吸着部、2a:加熱空気用空気通路、2b:循環空気通路、2c:濃縮ガス用空気通路、2d:モニタ通路、2e:空気通路、3:処理装置、4:熱回収装置、5:濃縮装置、6:濃度検知装置、7:ファン、8:大気開放部、9:空気取入口、10:給気バルブ、11:流量調整バルブ、12:二次調整部、21:ファン、22:加熱器、23,27:調整器、24,26:温度センサ、25:触媒、31:緩衝タンク、32:バルブ、33:濃度検知装置。
1: treatment system, 2: adsorption section, 2a: heated air passage, 2b: circulating air passage, 2c: concentrated gas air passage, 2d: monitor passage, 2e: air passage, 3: treatment device, 4: heat Recovery device, 5: Concentration device, 6: Concentration detection device, 7: Fan, 8: Air release unit, 9: Air intake port, 10: Air supply valve, 11: Flow rate adjustment valve, 12: Secondary adjustment unit, 21 : Fan, 22: Heater, 23, 27: Regulator, 24, 26: Temperature sensor, 25: Catalyst, 31: Buffer tank, 32: Valve, 33: Concentration detector.

Claims (4)

被処理ガスの除去成分を吸着部の吸着剤に吸着させた後の吸着処理済み脱ガス空気を排気し、前記吸着剤に加熱空気を供給することにより前記吸着剤から除去成分を脱着して濃縮ガスを生成し、該濃縮ガスを触媒燃焼させて除去成分を処理し、処理後の燃焼処理済み脱ガス空気と前記濃縮ガスとを熱交換するガス処理システムにおいて、
前記吸着剤の脱着時に前記吸着部に加熱空気を循環させる濃縮装置と、脱着時の濃縮ガスの濃度を検知する濃度検知装置とを設け、前記濃度検知装置で検知した濃縮ガスの濃度により、吸着部内の濃縮ガスの濃度が触媒反応に最適な濃度になるように前記濃縮装置の運転を制御し、
前記濃度検知装置は、前記吸着部から濃度検知用ガスを取り出すために設けたモニタ通路上に設けられ、前記濃縮ガスを処理する触媒と同じ触媒を備え、この触媒の入口と出口の温度差から前記濃縮ガスの濃度を判定する構成としたことを特徴とする、ガス処理システム。
Exhaust the degassed air that has been adsorbed after adsorbing the removal component of the gas to be adsorbed on the adsorbent of the adsorption unit, and supplying the heated air to the adsorbent to desorb the removal component and concentrate it In a gas processing system for generating a gas, catalytically burning the concentrated gas to process a removed component, and exchanging heat between the processed degassed air after the processing and the concentrated gas,
A concentrator that circulates heated air through the adsorber when the adsorbent is desorbed and a concentration detector that detects the concentration of the concentrated gas at the time of desorption are provided. Depending on the concentration of the concentrated gas detected by the concentration detector, adsorption is performed. Control the operation of the concentrator so that the concentration of the concentrated gas in the unit becomes an optimum concentration for the catalytic reaction,
The concentration detection device is provided on a monitor passage provided for taking out the concentration detection gas from the adsorption section, and includes the same catalyst as the catalyst for processing the concentrated gas. From the temperature difference between the inlet and the outlet of the catalyst, A gas processing system characterized in that the concentration of the concentrated gas is determined.
前記吸着部へ脱着用加熱空気を供給する空気通路を備えるとともに該空気通路に外気取入用給気バルブを設け、前記濃度検知装置による濃縮ガスの濃度により前記給気バルブの開閉を制御することを特徴とする、請求項1に記載のガス処理システム。 An air passage for supplying heated air to be desorbed to the adsorption portion is provided, and an air supply valve for taking in outside air is provided in the air passage, and the opening and closing of the air supply valve is controlled by the concentration of the concentrated gas by the concentration detector. The gas processing system according to claim 1, wherein: 前記脱着用加熱空気として、前記濃縮ガスを触媒で処理した後の燃焼処理済み脱ガス空気の一部を用いることを特徴とする、請求項1に記載のガス処理システム。 The gas processing system according to claim 1, wherein a part of the combustion-treated degassed air after treating the concentrated gas with a catalyst is used as the desorption heated air. 前記濃縮ガスを処理する触媒の上流側に、前記濃縮ガスの濃度を調整する二次調整部を設けたことを特徴とする、請求項1に記載のガス処理システム。   The gas processing system according to claim 1, wherein a secondary adjustment unit that adjusts the concentration of the concentrated gas is provided upstream of a catalyst that processes the concentrated gas.
JP2005199108A 2005-07-07 2005-07-07 Gas treatment system Active JP5165838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199108A JP5165838B2 (en) 2005-07-07 2005-07-07 Gas treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199108A JP5165838B2 (en) 2005-07-07 2005-07-07 Gas treatment system

Publications (2)

Publication Number Publication Date
JP2007014885A JP2007014885A (en) 2007-01-25
JP5165838B2 true JP5165838B2 (en) 2013-03-21

Family

ID=37752493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199108A Active JP5165838B2 (en) 2005-07-07 2005-07-07 Gas treatment system

Country Status (1)

Country Link
JP (1) JP5165838B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125606A (en) * 2007-11-19 2009-06-11 O-Den Co Ltd Adsorbent regenerator used by being incorporated in waste gas treatment apparatus, waste gas treatment apparatus, and adsorbent regeneration method
JP2012223293A (en) * 2011-04-18 2012-11-15 Kanken Techno Co Ltd Voc elminating device
CN108554118B (en) * 2018-04-16 2020-10-09 李庆彪 Double-loop gas path adsorption concentration thermal desorption catalytic combustion system
JP7280694B2 (en) * 2018-12-27 2023-05-24 高砂熱学工業株式会社 Adsorbent regeneration device, VOC recovery device, VOC recovery system, and adsorbent regeneration method
KR102683327B1 (en) * 2023-03-20 2024-07-09 창성엔지니어링 주식회사 Apparatus for reducing volatile organic compound and method of operating the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522867A (en) * 1975-06-24 1977-01-10 Taikisha Ltd Exhaust gas treatment apparatus for organic gases
JPS5858819U (en) * 1981-10-09 1983-04-21 株式会社大氣社 Adsorption/desorption device
US5338515A (en) * 1990-08-17 1994-08-16 Catalytica, Inc. SO2 sensor
JPH0910553A (en) * 1995-06-27 1997-01-14 Sumitomo Metal Mining Co Ltd Treatment of discharged gas containing volatile organic halide
JP3894238B2 (en) * 1996-10-31 2007-03-14 東洋紡績株式会社 Low concentration organic solvent gas processing equipment

Also Published As

Publication number Publication date
JP2007014885A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP5165838B2 (en) Gas treatment system
US6569673B1 (en) Garbage disposing device
JP2006247595A (en) Apparatus for adsorption and concentration
JP2004351312A (en) Method and apparatus for regenerating activated carbon and air purifying system with the activated carbon incorporated
JPH0568290B2 (en)
JP2011031159A (en) Organic solvent recovery system
KR101796242B1 (en) Method and apparatus for controling apparatus of exhaust sintering gas cleaning system
JPS61254220A (en) Apparatus for removing co2
JP3894238B2 (en) Low concentration organic solvent gas processing equipment
JP3363030B2 (en) Low-concentration organic solvent gas processing apparatus and processing method
CN110548361B (en) Recovery system and recovery method of organic waste gas
CN109529530A (en) Low concentration VOCs gas purge system and method
JP2013132582A (en) Organic solvent-containing gas treatment system
KR102447580B1 (en) Co₂separation system
CN211562380U (en) Active carbon bed adsorption and desorption device with catalytic combustion system
JP2021169097A (en) Organic solvent gas concentration device
CN209596862U (en) Low concentration VOCs gas purge system
JPH0691127A (en) Adsorption separator
KR20230070625A (en) System and method for waste gas treatment
JPH10128047A (en) Treatment of dilute organic solvent gas and treating device
JP2006272337A (en) Method for operating dry waste gas treatment apparatus
JPH08155253A (en) Control of concentration ratio in concentration type deodorizer
JP3788523B2 (en) Low concentration organic solvent gas processing equipment
US20230001346A1 (en) Air treatment device
CN220609758U (en) Exhaust gas treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5165838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150