JPH0143569B2 - - Google Patents

Info

Publication number
JPH0143569B2
JPH0143569B2 JP56008939A JP893981A JPH0143569B2 JP H0143569 B2 JPH0143569 B2 JP H0143569B2 JP 56008939 A JP56008939 A JP 56008939A JP 893981 A JP893981 A JP 893981A JP H0143569 B2 JPH0143569 B2 JP H0143569B2
Authority
JP
Japan
Prior art keywords
adsorption
adsorbent
adsorption tower
heating
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56008939A
Other languages
Japanese (ja)
Other versions
JPS57122917A (en
Inventor
Heikichi Kimura
Takatoshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUTANI KAKOKI
Original Assignee
MARUTANI KAKOKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUTANI KAKOKI filed Critical MARUTANI KAKOKI
Priority to JP56008939A priority Critical patent/JPS57122917A/en
Publication of JPS57122917A publication Critical patent/JPS57122917A/en
Publication of JPH0143569B2 publication Critical patent/JPH0143569B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)
  • Drying Of Solid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、2基の吸着塔を具え、一方の吸着塔
に湿潤空気を通し除湿乾燥して系外に送気する吸
着工程を行わせ、他方の吸着塔では吸着剤を加熱
して該吸着剤が吸着した水分を脱着させた後冷却
等の工程を経て該吸着剤を再生する加熱再生工程
を行わせるようにすると共に両塔の工程を交互に
切換えるようにした加熱再生式吸着除湿装置にお
ける吸着塔の切換方法に関するものである。 従来、計装用や各種プロセス用の空気の除湿乾
燥に使われており、低い露点の乾燥空気を供給で
きる装置に2塔切換式の加熱再生式吸着除湿装置
がある。 この2塔切換式の除湿装置は、2基の吸着塔に
それぞれシリカゲル、活性アルミナ、合成ゼオラ
イト等の吸着剤を乾燥剤として充填してあり、一
方の吸着塔に湿潤空気を導入して吸着剤により前
記空気中の水分を吸着除去し乾燥空気として系外
に送気する吸着工程を行わせ、他方の吸着塔では
加熱、冷却及び切換準備の諸工程から成る加熱再
生工程を前記一方の吸着塔の吸着工程内に完了さ
せるようになつており、加熱再生工程における加
熱工程では、塔内に配設した電気式ヒータ等によ
り吸着剤を加熱するか又は他の熱源により発生さ
せた熱風を吸着塔内に導入して吸着剤を加熱する
ことにより吸着剤が吸着している水分を脱着さ
せ、同じく冷却工程では、水分の少ない常温付近
の空気を吸着塔内に送気して、前記加熱工程にお
いて加熱され温度が高くなつている吸着剤を冷却
することにより吸着機能を復元させるようにして
いて、該冷却工程が完了したら、切換準備態勢に
入り、吸着工程にある吸着塔中の吸着剤が水分を
飽和する前に前記の切換準備態勢にある吸着塔に
吸着工程を移行させ、連続的に除湿作業を継続さ
せるようにしている。従つて、前記除湿装置は一
般に例えば、吸着工程を6(又は8)時間、加熱
工程を3(又は4)時間、冷却工程を2.5(又は
3.5)時間、切換準備工程を0.5時間といつた固定
された工程が採用されている。 然し乍ら、従来の除湿装置は夏季の高温多湿時
の空気中の水分を仮定して設計されているので、
一般に空気中の水分量があまり多くない春秋期や
冬期には吸着すべき水分の絶対量が少ないにも拘
らず、前述のような固定されたプログラムに従つ
て一定の処理時間が経過すると、その間の吸着水
分負荷が少なくても強制的に切換えが行われるた
め、未飽和の吸着帯域をかなり残したままで加熱
再生工程が行われることになり、この加熱再生工
程時の加熱エネルギは電熱などの手段により供給
されるので、省エネルギ上好ましくなく、また、
吸着剤の再生回数が必要以上に多くなるので、吸
着剤の劣化が早まり、不経済であつた。 本発明は上記のような従来の加熱再生式吸着除
湿装置の切換方法の難点に鑑み、前記除湿装置に
おいて省エネルギ効果を期待できる切換方法を提
供することを目的としてなされたもので、その構
成は、2基の吸着塔を具え、一方の吸着塔に湿潤
空気を通し除湿乾燥して系外に送気する吸着工程
を行わせ、他方の吸着塔では吸着剤を加熱して該
吸着剤が吸着した水分を脱着させた後冷却等の工
程を経て該吸着剤を再生する加熱再生工程を行わ
せるようにすると共に両塔の工程を交互に切換え
るようにした加熱再生式吸着除湿装置において、
吸着工程にある吸着塔の出口における除湿された
空気の相対湿度又は水分量を電気的に検出して制
御部に入力し、該制御部において吸着剤が破過点
に達したことを検出したら、吸着塔の切換を行う
と共に、加熱再生工程にある吸着塔の出口におけ
る再生排気温度を検出して制御部に入力し、該制
御部において前記再生排気温度が急激に上昇した
ことを検出したら加熱を終了し、更に、加熱終了
後の再生排気温度を検出して該排気温度が降下点
に達したことを検出したら冷却工程完了の指令を
出し、前記吸着塔の切換準備工程に入ることを特
徴とするものである。 即ち、本発明の切換方法は、吸着工程にある吸
着塔の出口空気の湿度又は水分量を検出すること
により、該吸着塔の吸着破過時間を常に正確に測
定して、吸着剤の吸着能力を過不足なく充分利用
し、吸着時間を延長できるようにすると共に吸着
剤の再生回数を減少させて熱エネルギを節減し且
つ吸着剤の劣化を改善してその寿命を延長し、保
守費の節減と省資源効果を図り得るようにするば
かりでなく、機器の事故の検出を容易にし、ま
た、加熱再生工程にある吸着塔の出口排気温度又
は湿度を常に正確に測定して、加熱工程にあつて
は、吸着剤の加熱時間を実情に合つた時間で打切
るようにすることにより、前記の再生回数の減少
による熱エネルギの節減と併せて吸着剤の節減を
図り得るようにし、更に、冷却工程においても、
例えば、冷却に吸着工程にある吸着塔の出口乾燥
空気を用いる場合も、加熱工程におけると同様に
実情に見合つた消費量で打切るようにすることに
より、省エネルギ効果を図り得るようにして、全
体として、省エネルギ、省資源効果を図ると共に
運転コストの低減を図り得るようにしたものであ
る。 而して、本発明方法を実施するための装置の一
例を図により説明すれば、次の通りである。 第1図において、1,1′は内部に吸着剤を充
填した吸着塔、2,2′,3,3′,4,4′,5,
5′,6,6′は前記吸着塔1,1′を各工程毎に
切換えアクチエータ付切換弁、7は加熱再生を行
う際に送気するブロワ、8は加熱再生用の空気加
熱器、9は冷却用空気の量を加減する絞り弁、1
0は除湿後の空気の湿度を測定するためのセン
サ、11は加熱再生時における排気の温度を測定
するためのセンサ、12,12′,13,13′,
14,14′,15,15′,16,16′は前記
各切換弁2,2′,3,3′,4,4′,5,5′,
6,6′に対応する制御用の電磁弁、17は湿度
センサ10と排気温度センサ11が出力する電気
信号を入力して増幅する入力部、18は前記入力
部17からの電気信号を入力し、該信号に基づい
て計算を行い、制御用出力部19に制御信号を送
る計算制御部、Aは空気圧縮機により加圧、圧縮
され、コンデンサにより冷却されて水分を凝縮さ
れた後、ミストフイルタにより水滴を除去された
除湿すべき加圧空気の入口、Bは除湿された空気
の出口、Cは加熱再生用の空気の入口、Dは再生
排気の出口、Eは前記制御用の電磁弁に作動用の
圧縮空気を供給する入口である。 次に上記装置により本発明方法を実施する場合
の作動例について説明する。 いま、吸着塔1において吸着工程が行われ、吸
着塔1′では加熱再生工程が行われているとする
と、切換弁2,3,4′,5′が開、同じく2′,
3′,4,5,6,6′が閉の状態にあり、除湿さ
れるべき湿潤空気は入口Aから切換弁2を通つて
吸着塔1にその下部から導入され、該吸着塔1内
を上昇しながら吸着剤に湿分を吸着されて乾燥空
気となり、塔上部から塔外へ排出されて、切換弁
3を通り系外のプロセス等に供給され、一方、吸
着塔1′においては、加熱再生用の空気がその入
口Cからブロワ7により吸引され、空気加熱器8
で加熱されて熱風となり、切換弁4′を通つて塔
上部から塔内に導入され、塔内の吸着剤が吸着し
ていた水分を脱着しつつ塔内を下降し、塔下部か
ら塔外へ排出されて、切換弁5′を通り出口Dか
ら再生排気として系外へ排出される。この間、吸
着工程では湿度測定用のセンサ10により除湿後
の空気の湿度を測定し、電気信号として入力部1
7に入れ、制御用の信号に変換されて計算制御部
18に送られ、該計算制御部18では前記信号に
よつて、吸着剤が破過点に達したことを検出した
ら、その旨の信号を制御用出力部19に送り、該
出力部19から塔の切換指令を出す。 一方、加熱再生工程にある吸着塔1′では、吸
着塔1において前記の吸着工程が行われている間
に、加熱、冷却、切換準備の各工程をすべて完了
させるのであるが、はじめ、加熱工程にあるとき
は、排気温度測定用のセンサ11により排気温度
を測定し、入力部17を経て計算制御部18に信
号を送り、該制御部18においては前記排気温度
が急激に上昇したことを検出したら、その旨の信
号を制御用出力部19に送つて、加熱完了、冷却
開始の制御指令を出す。この指令によつて、冷却
が始まると、塔内の吸着剤の高温分布帯の熱が排
気に出てくるので、始めは排気温度が一旦上昇
し、冷却工程が進むと共に排気温度が次第に低下
するので、センサ11が排気温度が降下点に達し
たことを検出したら、上記と同様にして冷却完了
の指令を出し切換準備の工程に入る。 而して、上記における吸着塔1′の加熱工程が
完了したら、制御用出力部19からの信号により
ブロワ7と空気加熱器8の作動を停止する一方、
電磁弁14′を介して切換弁4′を閉にすると共に
電磁弁16′を介して切換弁6′を開にし、吸着塔
1から排出される乾燥空気の一部を吸着塔1′に
その上部から供給して冷却工程に入り、該冷却工
程が完了したら、再び電磁弁16′を介して切換
弁6′を閉にし、切換準備工程に入るが、このと
き、電磁弁15′を介して切換弁5′も閉にする。 上記のようにして吸着塔1′が切換準備工程に
あるとき、吸着塔1の吸着工程が終了し、制御用
出力部19から塔の切換指令が出されると、電磁
弁12,13を介して切換弁2,3を閉にすると
共に、電磁弁12′,13′,14,15を介して
切換弁2′,3′,4,5を開にし、吸着塔1,
1′の工程を切換えて、吸着塔1′が吸着工程に入
り、吸着塔1では加熱再生工程に入るようにする
のである。 尚、一方の吸着塔において加熱又は冷却の再生
工程が行われている途中で、他方の吸着塔におけ
る吸着工程が終了してしまつたときは、計算制御
部18が警報を出し、アナンシエータ等にトリツ
プの信号を送り、吸着剤劣化によるものか、他の
再生系の故障によるものかを調査し、対処するも
のとする。 また、湿度センサ10として、比較的低廉で経
済的なものを使用する場合、該センサの測定範囲
が相対湿度30〜100%であり、一方、除湿装置の
要求する仕様が相対湿度0.5%(乾球温度40℃、
露点温度−30℃)以下のような場合には、第1図
の湿度センサの測定位置では許容値を超えた点で
検出されるので不都合である。従つて、このよう
な場合には、第2図に示すように、それぞれの吸
着塔1,1′内の吸着剤層の除湿空気出口端a,
a′より少し下の位置にサンプル空気取出口b,
b′を設け、該空気取出口から取出された除湿空気
がセンサ10の測定可能な湿度に達したときに、
吸着剤層の除湿空気出口端a,a′が吸着破過に達
するように設計しておけば、第1図の装置と同様
な運転が可能 となる。 即ち、第2図において、20,20′は逆止弁、
21,22は弁、23は湿度センサ10を取付け
た筐体で、湿度を測定される除湿空気は、空気取
出口b,b′から逆止弁20,20′、弁21を通
り筐体23に入つて湿度を検出され、弁22を通
つて系外へ排出されるようになつており、弁2
1,22の操作により加圧下でも湿度の測定が可
能である。 次に、実際に、第1図々示の装置における吸着
塔1,1′に、内径300mm、総高2200mmの耐圧容器
製のものを用い、それらの中に吸着剤として直径
3〜4mmの球状活性アルミナ80Kgを充填し、圧力
7Kg/cm2で1年間(7800時間)連続運転を行い、
その結果と従来の仕様により同様に運転した場合
の結果との比較を表1に示す。
The present invention is equipped with two adsorption towers, and one adsorption tower performs an adsorption process in which humid air is passed through, dehumidified and dried, and air is sent outside the system, while the other adsorption tower heats the adsorbent to adsorb the adsorbent. In a heating regeneration type adsorption dehumidification device in which a heating regeneration process is carried out in which the adsorbent is regenerated through steps such as cooling after desorption of moisture adsorbed by the agent, and processes in both towers are alternately switched. This invention relates to a method for switching adsorption towers. Conventionally, there is a two-column switching heat regeneration adsorption dehumidifier that has been used to dehumidify and dry air for instrumentation and various processes, and is capable of supplying dry air with a low dew point. This two-tower switching type dehumidification device has two adsorption towers each filled with an adsorbent such as silica gel, activated alumina, or synthetic zeolite as a desiccant, and humid air is introduced into one adsorption tower to An adsorption process is performed in which moisture in the air is adsorbed and removed and dry air is sent outside the system, and the other adsorption tower performs a heating regeneration process consisting of heating, cooling, and switching preparation steps. In the heating process in the heating regeneration process, the adsorbent is heated by an electric heater installed in the tower, or hot air generated from another heat source is heated to the adsorption tower. By heating the adsorbent, the water adsorbed by the adsorbent is desorbed, and in the same cooling step, air at room temperature with little moisture is sent into the adsorption tower, and in the heating step, the adsorbent is heated. The adsorption function is restored by cooling the adsorbent, which has been heated to a high temperature. When the cooling process is completed, the system enters a switching preparation state, and the adsorbent in the adsorption tower in the adsorption process is removed from water. Before the dehumidification reaches saturation, the adsorption process is transferred to the adsorption tower that is ready for switching, and the dehumidification work is continued continuously. Therefore, the dehumidifier generally performs the adsorption step for 6 (or 8) hours, the heating step for 3 (or 4) hours, and the cooling step for 2.5 (or 8) hours.
3.5) A fixed process with a switching preparation process of 0.5 hours is adopted. However, conventional dehumidifiers are designed assuming that there is moisture in the air during hot and humid summer months.
Although the absolute amount of moisture to be adsorbed is generally small during spring, autumn, and winter when the amount of moisture in the air is not very high, if a certain processing time has elapsed according to the fixed program as mentioned above, Since the switching is forcibly performed even if the adsorbed moisture load is small, the heating regeneration process is carried out with a considerable amount of unsaturated adsorption zone remaining, and the heating energy during this heating regeneration process is used by means such as electric heating. This is not desirable in terms of energy saving, and
Since the adsorbent has to be regenerated more times than necessary, the adsorbent deteriorates more quickly and is uneconomical. The present invention has been made in view of the above-mentioned difficulties in the switching method of the conventional heat-regenerating adsorption dehumidifier, and has been made for the purpose of providing a switching method that can expect an energy-saving effect in the dehumidifier. , equipped with two adsorption towers, one adsorption tower performs an adsorption process in which humid air is passed through, dehumidified and dried, and air is sent outside the system, while the other adsorption tower heats the adsorbent so that the adsorbent adsorbs. In a heating regeneration type adsorption dehumidification device that performs a heating regeneration step in which the absorbed moisture is desorbed and then regenerates the adsorbent through a step such as cooling, and the processes in both towers are alternately switched.
The relative humidity or moisture content of the dehumidified air at the outlet of the adsorption tower in the adsorption process is electrically detected and input to the control unit, and when the control unit detects that the adsorbent has reached the breakthrough point, At the same time as switching the adsorption tower, the temperature of the regenerated exhaust gas at the outlet of the adsorption tower in the heating regeneration process is detected and inputted to the control section, and when the control section detects that the temperature of the regeneration exhaust gas has suddenly increased, the heating is started. When the temperature of the regenerated exhaust gas is detected after the completion of heating and it is detected that the temperature of the exhaust gas has reached a drop point, a command to complete the cooling process is issued, and the switching preparation process of the adsorption tower is started. It is something to do. That is, the switching method of the present invention constantly and accurately measures the adsorption breakthrough time of the adsorption tower by detecting the humidity or moisture content of the outlet air of the adsorption tower in the adsorption process, thereby determining the adsorption capacity of the adsorbent. The adsorption time can be extended by making full use of the adsorbent, and the number of regenerations of the adsorbent can be reduced to save thermal energy, and the deterioration of the adsorbent can be improved to extend its lifespan, thereby reducing maintenance costs. In addition to making it possible to achieve resource saving effects, it also makes it easier to detect equipment accidents, and it also makes it possible to always accurately measure the exhaust gas temperature or humidity at the outlet of the adsorption tower in the heating regeneration process, and to In this case, by cutting off the heating time of the adsorbent at a time that suits the actual situation, it is possible to save thermal energy by reducing the number of regenerations mentioned above, and also to save the adsorbent. Even in the process,
For example, when dry air at the outlet of an adsorption tower in the adsorption process is used for cooling, the energy saving effect can be achieved by terminating the consumption at a rate commensurate with the actual situation, just as in the heating process. As a whole, it is possible to achieve energy saving and resource saving effects as well as reduce operating costs. An example of an apparatus for carrying out the method of the present invention will be described below with reference to the drawings. In Figure 1, 1, 1' are adsorption towers filled with adsorbent, 2, 2', 3, 3', 4, 4', 5,
5', 6, and 6' are switching valves with actuators that switch the adsorption towers 1 and 1' for each process; 7 is a blower for supplying air during heating and regeneration; 8 is an air heater for heating and regeneration; 9 is a throttle valve that adjusts the amount of cooling air, 1
0 is a sensor for measuring the humidity of the air after dehumidification, 11 is a sensor for measuring the temperature of exhaust gas during heating regeneration, 12, 12', 13, 13',
14, 14', 15, 15', 16, 16' are the respective switching valves 2, 2', 3, 3', 4, 4', 5, 5',
Control solenoid valves corresponding to 6 and 6'; 17 an input section for inputting and amplifying electrical signals output from the humidity sensor 10 and exhaust temperature sensor 11; and 18 for inputting and amplifying electrical signals from the input section 17. , a calculation control unit that performs calculations based on the signal and sends a control signal to the control output unit 19; B is the outlet of the dehumidified air, C is the inlet of the air for heating and regeneration, D is the outlet of the regenerated exhaust gas, and E is the control solenoid valve. This is an inlet that supplies compressed air for operation. Next, an example of operation when the method of the present invention is carried out by the above-mentioned apparatus will be explained. Now, assuming that an adsorption process is being performed in the adsorption tower 1 and a heating regeneration process is being performed in the adsorption tower 1', the switching valves 2, 3, 4', and 5' are open;
3', 4, 5, 6, and 6' are in a closed state, and the humid air to be dehumidified is introduced from the lower part of the adsorption tower 1 from the inlet A through the switching valve 2, and flows inside the adsorption tower 1. As it rises, the adsorbent absorbs moisture and becomes dry air, which is discharged from the top of the tower to the outside of the tower, passes through the switching valve 3, and is supplied to processes outside the system.Meanwhile, in the adsorption tower 1', the air is heated Air for regeneration is sucked in by the blower 7 from its inlet C, and then passed through the air heater 8.
It is heated to become hot air, which is introduced into the tower from the upper part of the tower through the switching valve 4', descends inside the tower while desorbing the moisture adsorbed by the adsorbent in the tower, and flows out of the tower from the lower part of the tower. The exhaust gas passes through the switching valve 5' and is discharged from the outlet D to the outside of the system as regenerated exhaust gas. During this time, in the adsorption process, the humidity of the dehumidified air is measured by the humidity measuring sensor 10, and the humidity is sent to the input section as an electrical signal.
7, which is converted into a control signal and sent to the calculation control unit 18. When the calculation control unit 18 detects that the adsorbent has reached the breakthrough point based on the signal, it sends a signal to that effect. is sent to the control output section 19, and a tower switching command is issued from the output section 19. On the other hand, in the adsorption tower 1' which is in the heating regeneration process, the heating, cooling, and switching preparation processes are all completed while the adsorption process is being performed in the adsorption tower 1. , the exhaust gas temperature is measured by the exhaust gas temperature measuring sensor 11, and a signal is sent to the calculation control unit 18 via the input unit 17, and the control unit 18 detects that the exhaust gas temperature has suddenly increased. Then, a signal to that effect is sent to the control output unit 19 to issue a control command to complete heating and start cooling. According to this command, when cooling starts, the heat from the high temperature distribution zone of the adsorbent in the tower comes out to the exhaust gas, so the exhaust gas temperature rises once at first, and as the cooling process progresses, the exhaust temperature gradually decreases. Therefore, when the sensor 11 detects that the exhaust gas temperature has reached the drop point, it issues a command to complete cooling in the same manner as above and enters the switching preparation process. When the above heating step of the adsorption tower 1' is completed, the operation of the blower 7 and the air heater 8 is stopped by a signal from the control output section 19, while
The switching valve 4' is closed via the solenoid valve 14' and the switching valve 6' is opened via the electromagnetic valve 16', so that a part of the dry air discharged from the adsorption tower 1 is transferred to the adsorption tower 1'. The cooling process is started by supplying water from the top, and when the cooling process is completed, the switching valve 6' is closed again via the solenoid valve 16' to enter the switching preparation process. The switching valve 5' is also closed. When the adsorption tower 1' is in the switching preparation process as described above, when the adsorption process of the adsorption tower 1 is completed and a tower switching command is issued from the control output section 19, The switching valves 2, 3 are closed, and the switching valves 2', 3', 4, 5 are opened via the solenoid valves 12', 13', 14, 15, and the adsorption towers 1,
By switching the step 1', the adsorption tower 1' enters the adsorption process, and the adsorption tower 1 enters the heating regeneration process. If the adsorption process in one adsorption tower ends while the regeneration process of heating or cooling is being performed in the other adsorption tower, the calculation control unit 18 issues an alarm and sends a trip to the annunciator etc. The system shall send a signal to investigate whether the problem is due to deterioration of the adsorbent or a failure in another regeneration system, and take appropriate action. In addition, when using a relatively inexpensive and economical humidity sensor 10, the measurement range of the sensor is 30 to 100% relative humidity, while the specification required by the dehumidifier is 0.5% relative humidity (relative humidity 0.5%). Ball temperature 40℃,
In a case where the dew point temperature is -30 DEG C. or lower, the measurement position of the humidity sensor shown in FIG. 1 is inconvenient because it will be detected at a point that exceeds the permissible value. Therefore, in such a case, as shown in FIG. 2, the dehumidified air outlet ends a,
Sample air outlet b located slightly below a′,
b' is provided, and when the dehumidified air taken out from the air intake port reaches a humidity that can be measured by the sensor 10,
If the dehumidified air outlet ends a and a' of the adsorbent layer are designed to reach adsorption breakthrough, the same operation as the apparatus shown in FIG. 1 can be achieved. That is, in FIG. 2, 20, 20' are check valves,
Reference numerals 21 and 22 indicate valves, and 23 indicates a housing to which the humidity sensor 10 is attached. Dehumidified air whose humidity is to be measured passes through the air intake ports b and b', the check valves 20 and 20', and the valve 21 to the housing 23. humidity is detected and discharged outside the system through valve 22.
Humidity can be measured even under pressure by operations 1 and 22. Next, we actually used adsorption towers 1 and 1' in the apparatus shown in Figure 1, which were made of pressure-resistant vessels with an inner diameter of 300 mm and a total height of 2200 mm, and contained spherical particles with a diameter of 3 to 4 mm as an adsorbent. Filled with 80 kg of activated alumina and operated continuously for 1 year (7800 hours) at a pressure of 7 kg/ cm2 .
Table 1 shows a comparison between the results and the results when the same operation was performed according to conventional specifications.

【表】 従来方法では、年間のピーク負荷に合せた仕様
により年間を通して運転するので、常に切換時間
は6時間、そのうち加熱工程3時間、冷却工程が
2.5時間、切換準備工程0.5時間などのように固定
されているため、吸着剤の再生回数が多く、その
結果、電力消費量が多いばかりでなく、冷却用空
気の消費量も多くならざるを得なかつたが、本発
明方法にあつては、吸着工程にある吸着塔の出口
空気の湿度又は水分量を検出することにより、該
吸着塔の吸着破過時間を常に正確に測定して、吸
着剤の吸着能力を過不足なく充分利用し、吸着時
間を延長できるようにすると共に、加熱再生工程
にある吸着塔の出口排気温度又は湿度を常に正確
に測定して、加熱時間と冷却時間を常に実情に合
つた時間で打切るようにするから、従来方法に比
し、吸着剤の再生回数は52%に低減されると共に
電力消費量も49%に低減され、また、冷却用空気
消費量も48%までに低減することができるので、
著しい省エネルギ効果を得られると共に吸着剤の
再生回数を従来方法に比し半減できる結果、吸着
剤の寿命は2倍程度に延長でき、省資源効果をも
期待できるし、更に、以上の諸要因により維持費
を著しく節減できるので、極めて経済的である。
[Table] In the conventional method, operation is performed throughout the year according to specifications that match the annual peak load, so the switching time is always 6 hours, of which the heating process is 3 hours and the cooling process is 3 hours.
2.5 hours, changeover preparation time 0.5 hours, etc., the number of times the adsorbent is regenerated is high, resulting in not only high power consumption but also high cooling air consumption. However, in the method of the present invention, by detecting the humidity or moisture content of the outlet air of the adsorption tower in the adsorption process, the adsorption breakthrough time of the adsorption tower is always accurately measured. In addition to making full use of the adsorption capacity of the adsorption tower and extending the adsorption time, the exhaust temperature or humidity at the outlet of the adsorption tower during the heating regeneration process is always accurately measured to ensure that the actual heating and cooling times are always updated. Compared to conventional methods, the number of adsorbent regenerations is reduced to 52%, power consumption is reduced to 49%, and cooling air consumption is also reduced to 48%. %, so
In addition to achieving a remarkable energy saving effect, the number of times the adsorbent is regenerated can be halved compared to the conventional method, and as a result, the life of the adsorbent can be approximately doubled, and a resource saving effect can be expected. It is extremely economical as maintenance costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する加熱再生式吸着
除湿装置の1例の系統図、第2図は第1図の装置
の一部を変更した図である。 1,1′…吸着塔、2,2′,3,3′,4,
4′,5,5′,6,6′…切換弁、7…ブロワ、
8…再生用空気加熱器、9…絞り弁、10…湿度
センサ、11…温度センサ、12,12′,13,
13′,14,14′,15,15′,16,1
6′…電磁弁、17…制御用入力部、18…計算
制御部、19…制御用出力部、A…湿潤空気入
口、B…除湿空気出口、C…再生用空気入口、D
…再生排気出口、E…制御用圧縮空気入口。
FIG. 1 is a system diagram of an example of a heating regeneration type adsorption dehumidification apparatus for carrying out the method of the present invention, and FIG. 2 is a diagram showing a partially modified version of the apparatus shown in FIG. 1. 1, 1'...adsorption tower, 2, 2', 3, 3', 4,
4', 5, 5', 6, 6'...Switching valve, 7...Blower,
8... Regeneration air heater, 9... Throttle valve, 10... Humidity sensor, 11... Temperature sensor, 12, 12', 13,
13', 14, 14', 15, 15', 16, 1
6'... Solenoid valve, 17... Control input section, 18... Calculation control section, 19... Control output section, A... Humid air inlet, B... Dehumidified air outlet, C... Regeneration air inlet, D
...Regeneration exhaust outlet, E...Control compressed air inlet.

Claims (1)

【特許請求の範囲】[Claims] 1 2基の吸着塔を具え、一方の吸着塔に湿潤空
気を通し除湿乾燥して系外に送気する吸着工程を
行わせ、他方の吸着塔では吸着剤を加熱して該吸
着剤が吸着した水分を脱着させた後冷却等の工程
を経て該吸着剤を再生する加熱再生工程を行わせ
るようにすると共に両塔の工程を交互に切換える
ようにした加熱再生式吸着除湿装置において、吸
着工程にある吸着塔の出口における除湿された空
気の相対湿度又は水分量を電気的に検出して制御
部に入力し、該制御部において吸着剤が破過点に
達したことを検出したら、吸着塔の切換を行うと
共に、加熱再生工程にある吸着塔の出口における
再生排気温度を検出して制御部に入力し、該制御
部において前記再生排気温度が急激に上昇したこ
とを検出したら加熱を終了し、更に、加熱終了後
の再生排気温度を検出して該排気温度が降下点に
達したことを検出したら冷却工程完了の指令を出
し、前記吸着塔の切換準備工程に入ることを特徴
とする加熱再生式吸着除湿装置の切換方法。
1 Equipped with two adsorption towers, one adsorption tower performs an adsorption process in which humid air is passed through, dehumidified and dried, and air is sent outside the system, while the other adsorption tower heats the adsorbent so that the adsorbent adsorbs. In a heating regeneration type adsorption dehumidification apparatus, a heating regeneration process is performed in which the adsorbent is regenerated through a process such as cooling after desorption of moisture, and the processes in both towers are alternately switched. The relative humidity or moisture content of the dehumidified air at the outlet of the adsorption tower is electrically detected and input to the control unit, and when the control unit detects that the adsorbent has reached the breakthrough point, the adsorption tower At the same time, the temperature of the regenerated exhaust gas at the outlet of the adsorption tower in the heating regeneration process is detected and inputted to the control section, and when the control section detects that the temperature of the regenerated exhaust gas has suddenly increased, the heating is terminated. The heating method further comprises detecting the temperature of the regenerated exhaust gas after the completion of heating, and when it is detected that the temperature of the exhaust gas has reached a drop point, issues a command to complete the cooling step, and enters the switching preparation step of the adsorption tower. How to switch a regenerative adsorption dehumidifier.
JP56008939A 1981-01-26 1981-01-26 Method for changing over heat regeneration type adsorbing and dehumidifying apparatus Granted JPS57122917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56008939A JPS57122917A (en) 1981-01-26 1981-01-26 Method for changing over heat regeneration type adsorbing and dehumidifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56008939A JPS57122917A (en) 1981-01-26 1981-01-26 Method for changing over heat regeneration type adsorbing and dehumidifying apparatus

Publications (2)

Publication Number Publication Date
JPS57122917A JPS57122917A (en) 1982-07-31
JPH0143569B2 true JPH0143569B2 (en) 1989-09-21

Family

ID=11706633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56008939A Granted JPS57122917A (en) 1981-01-26 1981-01-26 Method for changing over heat regeneration type adsorbing and dehumidifying apparatus

Country Status (1)

Country Link
JP (1) JPS57122917A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161514A (en) * 2010-01-14 2011-08-25 Denso Corp Method and apparatus for welding copper
CN102553401A (en) * 2011-12-19 2012-07-11 北京大学深圳研究生院 Silica gel drying system
JP2014055731A (en) * 2012-09-13 2014-03-27 Sanken Setsubi Kogyo Co Ltd Air humidity adjusting device
US12064723B2 (en) 2019-06-25 2024-08-20 Jgc Corporation Method for operating adsorption device
JP2021020133A (en) * 2019-07-24 2021-02-18 東洋エンジニアリング株式会社 Regeneration switching timing estimation device, computer operation method and program
CN113669806B (en) * 2021-08-31 2022-05-13 珠海格莱克科技有限公司 Self-adaptive control method for finned tube type coating dehumidification unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023940A (en) * 1975-07-02 1977-05-17 Whitlock, Inc. Regeneration cycle control for industrial air dryer
JPS54149378A (en) * 1978-05-12 1979-11-22 Boewe Boehler & Weber Kg Masch Method and apparatus for regenerating adsorbent
JPS5535996A (en) * 1978-08-31 1980-03-13 Pall Corp Nonnheating system adsorption fractionating device being accompanied by cycle control by means of microoprocessor and its method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023940A (en) * 1975-07-02 1977-05-17 Whitlock, Inc. Regeneration cycle control for industrial air dryer
JPS54149378A (en) * 1978-05-12 1979-11-22 Boewe Boehler & Weber Kg Masch Method and apparatus for regenerating adsorbent
JPS5535996A (en) * 1978-08-31 1980-03-13 Pall Corp Nonnheating system adsorption fractionating device being accompanied by cycle control by means of microoprocessor and its method

Also Published As

Publication number Publication date
JPS57122917A (en) 1982-07-31

Similar Documents

Publication Publication Date Title
EP0010704B1 (en) Downflow or upflow adsorbent fractionator flow control system
KR100701218B1 (en) Regenerating/dehumidifying process converting device for absorption type air drying system
KR102058156B1 (en) Smart dryer system of flow dependant switching type and drying method usint the same
CN103785271A (en) Cyclical swing adsorption processes
JPH027688B2 (en)
CN206473995U (en) Compressed air drying system
CN102207314A (en) Adsorbing/desorbing device and adsorbate exchange status monitoring method
JP5401121B2 (en) Dehumidifying and drying equipment for granular materials
CN204911174U (en) Adsorption dryer is retrieved to regeneration gas
JPH0143569B2 (en)
JP2023509129A (en) Method for drying compressed gas
CN207203812U (en) A kind of novel adsorption dried-air drier
JPS62132523A (en) Method and device for adsorbing and removing gaseous halogenohydrocarbon
JPH01130717A (en) Method for dehumidifying compressed air
JP3560004B2 (en) Method and apparatus for removing water and carbon dioxide
KR100437273B1 (en) Dew point control device of a absoption type air dryer system
KR100753190B1 (en) Regenerating process converting valve for absorption type air drying system
CN206391841U (en) A kind of air depth drying complete set of equipments
CN204911172U (en) Adsorption dryer is retrieved to power type variable blast volume regeneration gas
JP2003024737A (en) Dehumidication system
CN204911146U (en) Machine that blots is retrieved to variable blast volume regeneration gas
KR200291010Y1 (en) Dew point control device of a absoption type air dryer system
CN220405225U (en) Micro-heat regeneration dryer
CN216484742U (en) Drying agent pressure dew point testing device for laboratory
JPH04275903A (en) Equipment for enriching oxygen