JPH01234301A - Production of gaseous metal fluoride - Google Patents

Production of gaseous metal fluoride

Info

Publication number
JPH01234301A
JPH01234301A JP63060271A JP6027188A JPH01234301A JP H01234301 A JPH01234301 A JP H01234301A JP 63060271 A JP63060271 A JP 63060271A JP 6027188 A JP6027188 A JP 6027188A JP H01234301 A JPH01234301 A JP H01234301A
Authority
JP
Japan
Prior art keywords
metal
gaseous
fluoride
gas
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63060271A
Other languages
Japanese (ja)
Inventor
Isao Harada
功 原田
Yukihiro Yoda
與田 幸廣
Tokuyuki Iwanaga
岩永 徳幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63060271A priority Critical patent/JPH01234301A/en
Priority to DE68916988T priority patent/DE68916988T2/en
Priority to EP89104364A priority patent/EP0333084B1/en
Priority to US07/322,415 priority patent/US4960581A/en
Priority to CA000593574A priority patent/CA1314128C/en
Priority to KR1019890003287A priority patent/KR910004855B1/en
Publication of JPH01234301A publication Critical patent/JPH01234301A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/45Compounds containing sulfur and halogen, with or without oxygen
    • C01B17/4507Compounds containing sulfur and halogen, with or without oxygen containing sulfur and halogen only
    • C01B17/4515Compounds containing sulfur and halogen, with or without oxygen containing sulfur and halogen only containing sulfur and fluorine only
    • C01B17/453Sulfur hexafluoride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/10Halides or oxyhalides of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10705Tetrafluoride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • C01B35/061Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/08Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten

Abstract

PURPOSE:To produce a gaseous metal fluoride in good yield and inexpensively so as to prevent mixing of fine powder of a simple substance metal in the gaseous metal fluoride by compression-molding a mixture of a simple substance metal with a specified molding additive, then allowing the mixture to react with gaseous F2. CONSTITUTION:Powder of simple substance metal such has Mo, W, Nb, Si, Ge, etc., is mixed with powder of a solid fluoride as a molding additive which does not react with gaseous F2 and is held at solid state at a temp. where said simple substance metal reacts with gaseous F2 (in a proportion of 30-70wt.% of said simple substance metal basing on the total wt. of the mixture), and the mixture is compression-molded with a pelletizer, etc., under 1-3t/cm<2> pressure. The solid fluoride to be used is, for example, NaF, CaF2, Na2AlF6, etc. A gaseous metal fluoride is obtained by allowing the molded body to react with gaseous F2 (pref. diluted usually to 5-40vol.% with inert gas) at 250-500 deg.C under normal pressure -10kg/cm<2> for 2-10hr.

Description

【発明の詳細な説明】 「技術分野」 本発明は単体金属と弗素ガスを反応させてガス状金属弗
化物を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a gaseous metal fluoride by reacting an elemental metal with fluorine gas.

「従来の技術」 ガス状金属弗化物には、六弗化タングステン(WF、)
 、六弗化モリブデン(MoFs)、三弗化アンチモン
(SbFs)、三弗化ニオブ(NbFs)、三弗化タン
タル(TaFs)、四弗化チタン、(TiFn)、四弗
化ケイ素(SiF4)、四弗化ゲルマニウム(GeF、
) 、三弗化砒素^sh)などの化合物がある。
"Conventional technology" Gaseous metal fluorides include tungsten hexafluoride (WF).
, molybdenum hexafluoride (MoFs), antimony trifluoride (SbFs), niobium trifluoride (NbFs), tantalum trifluoride (TaFs), titanium tetrafluoride (TiFn), silicon tetrafluoride (SiF4), Germanium tetrafluoride (GeF,
), arsenic trifluoride^sh), and other compounds.

これらの化合物の中でも−F、やMOF&等は、半導体
用の電極材料の原料として期待されている。特に、訃、
やMoF、を原料として製造されるタングステンシリサ
イド(WSit)及びモリブデンシリサイド(MoSi
z)は高密度集積回路LSIの配線材料として注目され
ている。また、WFaやMoF &も含め上記ガス状金
属弗化物は、各種の弗素化剤や光学材料の原料としても
使用されている。
Among these compounds, -F, MOF&, etc. are expected to be used as raw materials for electrode materials for semiconductors. Especially the deceased,
Tungsten silicide (WSit) and molybdenum silicide (MoSi
z) is attracting attention as a wiring material for high-density integrated circuit LSI. Further, the above gaseous metal fluorides, including WFa and MoF&, are also used as raw materials for various fluorinating agents and optical materials.

本発明でいうガス状金属弗化物とは、単体金属とF2ガ
スが反応する温度に於いてガス状である金属弗化物をい
う。
The gaseous metal fluoride used in the present invention refers to a metal fluoride that is gaseous at the temperature at which an elemental metal and F2 gas react.

従来、ガス状金属弗化物は、−S的に単体金属と弗素(
F、)ガスとを高温で接触・反応させる方法で製造され
ている。
Conventionally, gaseous metal fluorides are composed of elemental metals and fluorine (-S).
F.) It is manufactured by contacting and reacting with gas at high temperature.

F2ガスは毒性が強く、かつ非常に活性な物質であるの
で、上記接触による反応においては、F2ガスはその濃
度が10〜30容量%になるように窒素(Nt)ガス、
アルゴン(Ar)ガス等の不活性ガスで希釈して使用さ
れる。
Since F2 gas is a highly toxic and very active substance, in the above contact reaction, F2 gas is mixed with nitrogen (Nt) gas, so that its concentration is 10 to 30% by volume.
It is used after being diluted with an inert gas such as argon (Ar) gas.

しかして、上記単体金属とF2ガスとを反応させるに際
しては、単体金属とF2ガスの接触を迅速かつ良好なか
らしめるため、単体金属は通常粉末状で使用されている
。そして、この反応は反応器中に流動床または固定床を
設け、この流動床または固定床上の金属粉末層へN2ガ
ス等で希釈されたF2ガスを通気する方法で実施されて
いる。
When reacting the above-mentioned elemental metal with the F2 gas, the elemental metal is usually used in the form of powder in order to ensure rapid and good contact between the elemental metal and the F2 gas. This reaction is carried out by providing a fluidized bed or a fixed bed in a reactor and passing F2 gas diluted with N2 gas or the like into the metal powder layer on the fluidized bed or fixed bed.

「発明が解決しようとする課題」 しかしながら、このような方法では次のような問題があ
る。
"Problem to be Solved by the Invention" However, such a method has the following problems.

すなわち、流動床方式では希釈されたFtガスが流動し
ている金属粉末層を通過するので、生成したガス状金属
弗化物中に該金属の微粉末が同伴され、製品の純度低下
を招く原因となる。また、反応収率もFアガス基準で8
0%程度が限度であり、この点でも不十分である。
In other words, in the fluidized bed method, diluted Ft gas passes through a bed of fluidized metal powder, so fine powder of the metal is entrained in the gaseous metal fluoride that is generated, causing a decrease in the purity of the product. Become. In addition, the reaction yield was also 8 based on F agas standard.
The limit is about 0%, which is also insufficient in this respect.

一方、固定床方式では金属粉末とF、ガスとの反応は金
属粉末層の表面のみで行われるので、単体金属粉末とF
2ガスの接触面積が小さく、従って反応収率が低いとい
う問題があり、また、生成したガス状金属弗化物中に未
反応のF2ガスが大量に混入するという問題もある。更
に、反応の進行にしたがい単体金属粉末が微粉化され、
この微粉化された単体金属が生成ガス中に同伴されて、
製品の純度低下を招くという問題もある。尚、上記の固
定床方式で反応収率を上げるためには、単体金属粉末と
F2ガスの接触面積を太き(する必要があり、反応器を
相当大きくしなければならない。しかし、本反応では腐
食性の極めて強いF、ガスを原料として使用するので、
反応器の材質は高価なニッケルが通常用いられる。従っ
て、反応器の大型化は相当の費用増加となり問題である
On the other hand, in the fixed bed method, the reaction between the metal powder, F, and gas takes place only on the surface of the metal powder layer, so the single metal powder and F
There is a problem that the contact area between the two gases is small and therefore the reaction yield is low, and there is also a problem that a large amount of unreacted F2 gas is mixed into the generated gaseous metal fluoride. Furthermore, as the reaction progresses, the single metal powder is pulverized,
This pulverized single metal is entrained in the generated gas,
There is also the problem of lowering the purity of the product. In order to increase the reaction yield in the above fixed bed method, it is necessary to increase the contact area between the single metal powder and the F2 gas, and the reactor must be made considerably large.However, in this reaction, Since extremely corrosive F gas is used as a raw material,
The reactor is usually made of expensive nickel. Therefore, increasing the size of the reactor is a problem as it increases costs considerably.

[課題を解決するための手段」 本発明者らはかかる状況に鑑み、ガス状金属弗化物中へ
の単体金属微粉末の混入を防止し、かつ、高収率で安価
にガス状金属弗化物を製造する方法について種々検討を
重ねた結果、単体金属に特定の成形助剤を加えて加圧・
成形した成形体を単体金属の原料として使用すれば、上
記目的が達成できることを見出し、本発明を完成するに
至ったものである。
[Means for Solving the Problems] In view of the above situation, the present inventors have attempted to prevent the mixing of single metal fine powder into gaseous metal fluoride, and to produce gaseous metal fluoride at low cost with high yield. As a result of various studies on manufacturing methods, we added a specific forming aid to a single metal, pressed
The inventors have discovered that the above object can be achieved by using the molded body as a raw material for a single metal, and have completed the present invention.

即ち、本発明は、単体金属と弗素ガスとを反応させてガ
ス状金属弗化物を製造する方法において、該単体金属に
予め成形助剤として弗素と反応しない固体金属弗化物を
添加・混合しこれを加圧・成形した後、この成形体を加
熱した状態で弗素ガスと接触させることを特徴とするガ
ス状金属弗化物の製造方法、である、 − 「発明の詳細な開示」 以下、本発明の詳細な説明する。
That is, the present invention provides a method for producing a gaseous metal fluoride by reacting an elemental metal with fluorine gas, in which a solid metal fluoride that does not react with fluorine is added and mixed with the elemental metal as a forming aid in advance. - "Detailed Disclosure of the Invention" Hereinafter, the present invention will be described. Detailed explanation of.

本発明で製造可能なガス状金属弗化物は、通常弗素と金
属の直接反応により合成されうる弗化物であり、かつ前
記の通り単体金属とF2ガスが反応する温度、例えば、
300°C以上の温度でガス状であるものである。この
ような化合物を例示すると、六弗化タングステン(WF
6) 、六弗化モリブデン(MoFJ、三弗化アンチモ
ン(SbF’S)、三弗化ニオブ(NbFs)、三弗化
タンタル(TaF、)、四弗化チタン、(TiF、)、
四弗化ケイ素(SiF4)、四弗化ゲルマニウム(Ge
F、)、三弗化砒素(ASF3)等が挙げられる。
The gaseous metal fluoride that can be produced in the present invention is a fluoride that can be usually synthesized by direct reaction of fluorine and metal, and as mentioned above, the temperature at which the elemental metal and F2 gas react, for example,
It is gaseous at temperatures of 300°C or higher. An example of such a compound is tungsten hexafluoride (WF
6) Molybdenum hexafluoride (MoFJ, antimony trifluoride (SbF'S), niobium trifluoride (NbFs), tantalum trifluoride (TaF), titanium tetrafluoride, (TiF),
Silicon tetrafluoride (SiF4), germanium tetrafluoride (Ge
), arsenic trifluoride (ASF3), and the like.

本発明で使用される原料単体金属は、その形状を特に限
定するものではないが粉末状のものが好ましい。その理
由は後記する如く、本発明ではこの単体金属に成形助剤
を添加・混合し、この混合物を加圧・成形して成形体と
する必要があるが、上記成形体は単体金属と成形助剤が
なるべく均一に混合されていることが高反応収率を得る
上で好ましく、そのためには単体金属は粉末状が好都合
であるからである。また、粉末の方が加圧成形も容易で
ある。
The shape of the raw metal used in the present invention is not particularly limited, but it is preferably in the form of a powder. The reason for this is, as will be described later, in the present invention, it is necessary to add and mix a forming aid to this single metal, pressurize and mold this mixture, and make a molded object. This is because it is preferable to mix the agents as uniformly as possible in order to obtain a high reaction yield, and for this purpose it is convenient for the elemental metal to be in powder form. In addition, powder is easier to press and mold.

なお、本発明で使用する単体金属は、前記ガス状金属弗
化物を構成する金属であることはいうまでもない。
It goes without saying that the elemental metal used in the present invention is the metal constituting the gaseous metal fluoride.

次に成形助剤について説明する。Next, the molding aid will be explained.

本発明では弗素と反応しない固体弗化物が成形助剤とし
て使用されるが、この固体弗化物は単体金属とF2ガス
とが反応する温度においても固体である必要があり、こ
のような固体弗化物を例示すると、弗化リチウム(Li
F) 、弗化ナトリウム(NaF)、フン化カリウム(
にF)、弗化ルビジウム(RbF)、弗化セシウム(C
sF)などのlAl1の金属弗化物;弗化ベリリウム(
BeFz)、弗化マグネシウム(MgF2)、弗化カル
シウム(CaFz)、弗化ストロンチウム(Srh)、
弗化バリウム(BaFz)等のIIA属の金属弗化物;
弗化アルミニウム(A I F3) 、弗化ガリウム(
GaFx)、弗化インシジウム(InFx)、弗化タリ
ウム(1!Pff)等のIIIA属の全屈弗化物;弗化
アルミニウムナトリウム(NaxAffiFJ の如き
複塩が挙げられる。またこれらの混合物でも差支えない
In the present invention, a solid fluoride that does not react with fluorine is used as a molding aid, but this solid fluoride needs to remain solid even at the temperature at which the elemental metal and F2 gas react. For example, lithium fluoride (Li
F), sodium fluoride (NaF), potassium fluoride (
F), rubidium fluoride (RbF), cesium fluoride (C
Metal fluorides of lAl1 such as sF); beryllium fluoride (
BeFz), magnesium fluoride (MgF2), calcium fluoride (CaFz), strontium fluoride (Srh),
Group IIA metal fluorides such as barium fluoride (BaFz);
Aluminum fluoride (AI F3), gallium fluoride (
Examples include total fluorides of the IIIA group such as GaFx), insidium fluoride (InFx), and thallium fluoride (1!Pff); and double salts such as sodium aluminum fluoride (NaxAffiFJ).A mixture of these may also be used.

尚、これらの固体金属弗化物は、単体金属と混合したの
ち加圧・成形する必要があるので、単体金属の場合と同
様粉末状であることが好ましい。
It should be noted that these solid metal fluorides need to be mixed with a single metal and then pressurized and molded, so it is preferable that they be in powder form as in the case of the single metal.

次に、本発明においては、単体金属と成形助剤である固
体金属弗化物は、これを混合して加圧・成形する。この
際の両者の混合割合は、単体金属の割合が多過ぎると反
応性は向上するものの成形体の強度が低下し、その結果
反応の進行に伴い成形体が粉化する惧れがあるので好ま
しくない。逆に、単体金属の割合が少な過ぎると、成形
体の強度は問題ないが反応性が低下する。従って混合割
合は通常両者の合計量に対して、単体金、属の含有量が
30〜70重世%の範囲で実施される。
Next, in the present invention, the single metal and the solid metal fluoride as a forming aid are mixed together and pressed and formed. The mixing ratio of the two at this time is preferable because if the ratio of the single metal is too large, the reactivity will improve but the strength of the molded body will decrease, and as a result, there is a risk that the molded body will turn into powder as the reaction progresses. do not have. On the other hand, if the proportion of the elemental metal is too small, the strength of the molded product will not be a problem, but the reactivity will decrease. Therefore, the mixing ratio is usually such that the content of elemental metals and metals is in the range of 30 to 70 weight percent based on the total amount of both.

本発明においては、単体金属と固体金属弗化物とを混合
してこれを成形するが、得られた成形体が反応中に崩壊
ないし粉化すると好ましくないので、成形は通常打錠機
等を用いて加圧・成形することにより行われるのが好ま
しく、この際の打錠圧力は通常1〜3t/cJ程度で実
施される。成形して得られる成形体の形状は、円柱状、
リング状、前影柱状など、通常の打錠機で打錠成形でき
るものであれば何れの形状でもかまわない。また、成形
体の大きさも特に限定はなく反応器の大きさや成形体の
取扱い易さによって決められるが、これも打錠機で打錠
成形できるものであればよい。
In the present invention, a single metal and a solid metal fluoride are mixed and molded. However, since it is undesirable if the resulting molded product collapses or becomes powder during the reaction, the molding is usually carried out using a tablet press or the like. It is preferable to pressurize and mold the tablets, and the tableting pressure at this time is usually about 1 to 3 t/cJ. The shape of the molded product obtained by molding is cylindrical,
It may have any shape, such as a ring shape or a columnar shape, as long as it can be formed into tablets using a normal tablet machine. Further, the size of the molded product is not particularly limited and is determined depending on the size of the reactor and the ease of handling the molded product, but it may be any size that can be formed into tablets with a tablet machine.

向、上記成形体は水分の含有量が少ない方が好ましいの
で、原料である単体金属及び固体弗素化合物は、成形に
先立って乾燥し水分を除去しておくことが望ましい。
On the other hand, since it is preferable that the above-mentioned molded body has a low moisture content, it is desirable that the raw materials, the single metal and the solid fluorine compound, be dried to remove moisture before molding.

次に、この成形体とF2ガスを使用して、ガス状金属弗
化物を製造する方法について述べる。
Next, a method for producing a gaseous metal fluoride using this compact and F2 gas will be described.

本発明においては、上記成形体中に含まれる単体金属と
F2ガスを反応させる反応器は、弗素に対する耐食性の
点で材質は通常ニンケルが使用される。形状については
特に限定されるものではないが制作の容易さから円筒形
のものが好ましく、これを竪型にし下部に目皿を設け、
この目皿上に上記成形体を充填して、下部よりF2ガス
を送入する形で使用するのが簡便で好都合である。尚、
反応器の加熱は、反応器の円筒部の外側にヒーター等を
設けることで簡単に行うことができる。
In the present invention, the reactor for reacting the single metal contained in the molded body with the F2 gas is usually made of nickel because of its corrosion resistance against fluorine. There are no particular restrictions on the shape, but a cylindrical shape is preferred for ease of production.
It is convenient and convenient to fill this perforated plate with the above-mentioned molded body and to use it by feeding F2 gas from the bottom. still,
Heating of the reactor can be easily performed by providing a heater or the like on the outside of the cylindrical portion of the reactor.

本発明においては、上記の通り反応器に単体金属と成形
助剤からなる成形体を充填し、成形体を加熱した状態で
下部よりF2ガスを送入して、成形体中の単体金属とF
2とを反応させてガス状金属弗化物を製造するわけであ
るが、反応温度は当然のことながら製造しようとするガ
ス状金属弗化物の種類によって異なる。これを例示する
と下記表−1に示す温度が適当である。
In the present invention, as described above, a reactor is filled with a molded body made of a single metal and a forming aid, and while the molded body is heated, F2 gas is introduced from the bottom to remove the single metal and F2 gas in the molded body.
A gaseous metal fluoride is produced by reacting with 2, and the reaction temperature naturally varies depending on the type of gaseous metal fluoride to be produced. To illustrate this, the temperatures shown in Table 1 below are suitable.

表−1 反応器に送入するF2ガスは高濃度では危険であるので
、N2ガス、^rガス等の不活性ガスで希釈して5〜4
0容量%程度の濃度で使用するのが好ましい。
Table-1 The F2 gas fed into the reactor is dangerous at high concentrations, so it should be diluted with an inert gas such as N2 gas or ^r gas.
It is preferable to use it at a concentration of about 0% by volume.

反応時の圧力は特に限定はなく減圧でももちろん良いが
、通常、常圧〜10kg/cJ程度の圧力で実施される
。反応時間は温度によって変わりうるが、通常1〜20
時間、好ましくは2〜10時間程度行われる。反応によ
り得られたガス状金属弗化物はF2ガスの希釈に用いら
れた不活性ガスやや若干の未反応F2ガスを含有してい
るので、これをガス状金属弗化物の液化温度以下に冷却
して該不活性ガス及びF2ガスと分離する。
The pressure during the reaction is not particularly limited and of course may be reduced pressure, but the reaction is usually carried out at a pressure of about normal pressure to 10 kg/cJ. The reaction time may vary depending on the temperature, but is usually 1 to 20
The treatment time is preferably about 2 to 10 hours. The gaseous metal fluoride obtained by the reaction contains the inert gas used to dilute the F2 gas and some unreacted F2 gas, so it is cooled to below the liquefaction temperature of the gaseous metal fluoride. to separate the inert gas and F2 gas.

「実施例」 以下、実施例により本発明をより具体的に説明する。"Example" Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 予めN2ガス雰囲気中、120°Cで2時間乾燥した、
純度99.9%の金属タングステン粉末(鉄分含有15
0pp+n)と、これも同様にして予め乾燥したNaF
粉末(試薬1級)を重量比で1対1の割合で十分混合し
た後、小型打錠機を使用して2t/cIaの打錠圧力で
打錠し、直径5問、高さ5叩の円柱状の成形体を100
g得た。尚、この成形体の圧縮強度は、平均値で270
kg/cJと極めて高いものであった。
Example 1 Dry in advance at 120°C for 2 hours in a N2 gas atmosphere.
Metallic tungsten powder with a purity of 99.9% (iron content: 15%)
0pp+n) and NaF, which was also pre-dried in the same way.
After thoroughly mixing the powder (grade 1 reagent) at a ratio of 1:1 by weight, it was compressed into tablets with a tableting pressure of 2t/cIa using a small tableting machine, with a diameter of 5 and a height of 5. 100 cylindrical molded bodies
I got g. The average compressive strength of this molded body is 270.
kg/cJ, which was extremely high.

次にこの成形体をニッケル製で内径19mm、高さ60
抛mの竪型反応器の中央部に充填した。しかる後、成形
体中の水分を完全に除去するため、成形体の充填層を約
100°Cに加熱した状態で、下方より常圧の)hガス
を300 Nynl/min、の流量で約2時間通気し
たa SZガスの通気停止後、成形体の充填層を380
〜400°Cに加熱した状態で、反応器の下方よりN2
ガスで希釈した濃度約30容量%の常圧のPgガスを3
00 Nd/win、の流量で3時間通気して反応を行
った0反応器より発生した畦、含有ガスは、−80°C
の温度まで冷却した冷媒トラップに導き液化させて捕集
した0反応終了後トラップ内を真空ポンプにて真空排気
し、F2ガスの希釈に使用したN2ガス及び未反応のF
tガスを除去した。
Next, this molded body is made of nickel and has an inner diameter of 19 mm and a height of 60 mm.
The mixture was filled in the center of a vertical reactor with a hollow bar. After that, in order to completely remove the moisture in the molded body, while the packed bed of the molded body was heated to about 100°C, normal pressure (h) gas was poured from below at a flow rate of 300 Nynl/min for about 2 hours. After venting the SZ gas for a time, the packed layer of the molded body was
While heating to ~400°C, N2 was added from the bottom of the reactor.
Pg gas at normal pressure with a concentration of about 30% by volume diluted with gas
The gas contained in the ridge generated from the 0 reactor was vented for 3 hours at a flow rate of 00 Nd/win, and the gas contained therein was heated to -80°C.
After the reaction, the inside of the trap was evacuated with a vacuum pump to remove the N2 gas used to dilute the F2 gas and unreacted F2 gas.
t gas was removed.

WF、の収得量は69gで弗素基準での収率は96%と
高収率であった。また反応器中の成型体も崩壊すること
なく原形を維持していた。
The amount of WF obtained was 69 g, which was a high yield of 96% based on fluorine. Moreover, the molded body in the reactor maintained its original shape without collapsing.

尚、捕集した訃、中の単体金属の含有量を分析するにあ
たり、畦、中の単体タングステンの含有量を測定するこ
とは困難であるので、単体タングステン中に不純物とし
て比較的釜(存在する鉄分(Fe)について、ICP 
 (高周波誘導結合プラズマ)分析にてその含有量を測
定したがその結果は0.05pp+w以下であった。こ
の結果から原料である金属タングステンの飛散は実質的
に防止できているものと推定 される。
In addition, when analyzing the content of elemental metals in the collected carcasses, it is difficult to measure the content of elemental tungsten in the ridges. Regarding iron (Fe), ICP
The content was measured by (high-frequency inductively coupled plasma) analysis, and the result was 0.05 pp+w or less. From this result, it is estimated that the scattering of the raw material, tungsten metal, has been substantially prevented.

実施例2〜8 単体金属としてタングステンの代りに表−2に示す単体
金属を、成形助剤として弗化ナトリウムの代りに表−2
に示す固体金属弗化物を、それぞれ表−2に示す量使用
し、表−2に示す打錠圧力で実施例1と同様にして打錠
して、表−2に示す量の成形体を得た。(尚、単体金属
と成形助剤は、成形に先立ってそれぞれ、実施例1と同
様に乾燥した。)この成形体を実施例1で使用した反応
器に表−2に示す量充填し、これに表−2に示す反応条
件でF2ガスを通気して、実施例1と同様な方法で各種
ガス状金属弗化物を得た。
Examples 2 to 8 Single metals shown in Table 2 were used instead of tungsten as the single metal, and Table 2 was used instead of sodium fluoride as the forming aid.
The solid metal fluorides shown in Table 2 were used in the amounts shown in Table 2, and the tablets were compressed in the same manner as in Example 1 at the tableting pressures shown in Table 2 to obtain molded products in the amounts shown in Table 2. Ta. (The single metal and the molding aid were each dried in the same manner as in Example 1 prior to molding.) The reactor used in Example 1 was filled with the molded product in the amounts shown in Table 2. Various gaseous metal fluorides were obtained in the same manner as in Example 1 by passing F2 gas under the reaction conditions shown in Table 2.

尚、反応器へのF2ガス通気前の成形体の乾燥条件は、
実施例1と全く同様な方法で行った。
In addition, the drying conditions of the molded body before introducing F2 gas into the reactor are as follows:
This was carried out in exactly the same manner as in Example 1.

得られた製品であるガス状金属弗化物の収量、収率、F
e含有量は表−2に示す通りで、実施例1と同様高収率
でかつ単体金属の飛散もなかった。また、反応終了後の
成形体は何れも崩壊していなかった。
Yield, yield, F of the resulting product, gaseous metal fluoride
The e content was as shown in Table 2, and as in Example 1, the yield was high and there was no scattering of single metals. In addition, none of the molded bodies collapsed after the reaction was completed.

比較例1 直径38mm、長さ6001のニッケル製の横型反応器
の底部に、実施例1で使用したものと同一の予め乾燥し
た金属タングステン粉末100gをなるべく均一に仕込
んだ後、反応器を約100°Cに加熱して反応器の左端
より82ガスを300 Nm/win、の流量で約2時
間通気して、金属タングステンを乾燥した。
Comparative Example 1 After charging 100 g of pre-dried metal tungsten powder, which is the same as that used in Example 1, as uniformly as possible at the bottom of a nickel horizontal reactor with a diameter of 38 mm and a length of 600 mm, the reactor was heated to about 100 g. The reactor was heated to .degree. C. and 82 gas was passed through the left end of the reactor at a flow rate of 300 Nm/win for about 2 hours to dry the metal tungsten.

N2ガス通気停止後、金属タングステン層を実施例1と
同じ(380〜400 ”Cの温度に加熱した状態で、
反応器の左端より実施例と同一の条件でH2ガスで希釈
されたF2ガスを通気して、反応器より発生した訃、含
有ガスを冷却し旺、を捕集した。
After stopping the N2 gas ventilation, the metal tungsten layer was heated to the same temperature as in Example 1 (380 to 400"C,
F2 gas diluted with H2 gas was vented from the left end of the reactor under the same conditions as in the example to cool the gases generated from the reactor and collect the gases contained therein.

WFiの収得量は33gで、弗素基準での収率は46%
と実施例1の半分にも達しない低いものであった。また
畦、中のFe含有量は0.9ppmであり、金属タング
ステン粉末が少なからず混入しているものと推定される
The amount of WFi obtained was 33g, and the yield was 46% based on fluorine.
This was less than half of that of Example 1. Further, the Fe content in the ridges was 0.9 ppm, and it is presumed that a considerable amount of metallic tungsten powder was mixed in.

「発明の効果」 以上詳細に説明した如く、単体金属とF2ガスを反応さ
せてガス状金属弗化物を製造する方法において、従来は
反応収率を向上するため、単体金属は粉末状のものを使
用していたが、本発明では、単体金属、好ましくは粉末
状の単体金属に成形助剤として弗素と反応しない固体金
属弗化物、好ましくはその粉末を添加混合した後、これ
を加圧・成形して得た成形体を使用するという方法であ
り、これによって、従来問題であった製品であるガス状
金属弗化物中への単体金属粉末の混入という問題を、完
全に防止することができるようになり、製品の高品質化
が可能となった。
"Effects of the Invention" As explained in detail above, in the method of producing gaseous metal fluoride by reacting an elemental metal with F2 gas, conventionally, in order to improve the reaction yield, the elemental metal was used in powder form. However, in the present invention, a solid metal fluoride that does not react with fluorine, preferably its powder, is added and mixed as a forming aid to a single metal, preferably a powdered single metal, and then this is pressurized and molded. This method uses a molded product obtained by using a molded product, which completely prevents the problem of contamination of single metal powder into the gaseous metal fluoride product, which has been a problem in the past. This has made it possible to improve the quality of products.

また、単体金属は成形助剤を加えて加圧・成形している
にも拘らず、従来の方法に比べて、格段に高い反応収率
が得られることも本発明の効果として特筆さるべきであ
ろう。
It should also be noted that, as an effect of the present invention, a significantly higher reaction yield can be obtained compared to conventional methods, even though the single metal is pressurized and molded with the addition of a molding aid. Probably.

更に、本発明ではこの様に高反応収率が得られるので、
反応器も小さなもので良く、その材質が高価なニッケル
製であるので従来の反応器に比べ、格段に安価に製作が
できるという効果もある。
Furthermore, since the present invention provides such a high reaction yield,
The reactor can also be small, and since it is made of expensive nickel, it has the advantage of being much cheaper to manufacture than conventional reactors.

更にまた、反応に使用する成形体は、反応終了後には弗
素と反応しない固体金属弗化物がそのままの形で残存し
ているが、この固体金、紘弗化物はこれを粉砕すれば繰
返し再使用することができるので、これも本発明の利点
の一つである。
Furthermore, solid metal fluorides that do not react with fluorine remain in the molded bodies used in the reaction after the reaction is completed, but these solid gold and hydrofluorides can be reused repeatedly by crushing them. This is also one of the advantages of the present invention.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)単体金属と弗素ガスとを反応させてガス状金属弗
化物を製造する方法において、該単体金属に予め成形助
剤として弗素と反応しない固体金属弗化物を添加・混合
しこれを加圧・成形した後、この成形体を加熱した状態
で弗素ガスと接触させることを特徴とするガス状金属弗
化物の製造方法。
(1) In a method of producing a gaseous metal fluoride by reacting an elemental metal with fluorine gas, a solid metal fluoride that does not react with fluorine is added and mixed with the elemental metal as a forming aid in advance, and the mixture is pressurized. - A method for producing a gaseous metal fluoride, which comprises, after molding, bringing the molded product into contact with fluorine gas in a heated state.
JP63060271A 1988-03-16 1988-03-16 Production of gaseous metal fluoride Pending JPH01234301A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63060271A JPH01234301A (en) 1988-03-16 1988-03-16 Production of gaseous metal fluoride
DE68916988T DE68916988T2 (en) 1988-03-16 1989-03-11 Process for the production of gaseous fluorides.
EP89104364A EP0333084B1 (en) 1988-03-16 1989-03-11 Method for preparing gaseous fluorides
US07/322,415 US4960581A (en) 1988-03-16 1989-03-13 Method for preparing gaseous metallic fluoride
CA000593574A CA1314128C (en) 1988-03-16 1989-03-14 Method for preparing gaseous metallic fluoride
KR1019890003287A KR910004855B1 (en) 1988-03-16 1989-03-16 Method for preparing gaseous metallic fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63060271A JPH01234301A (en) 1988-03-16 1988-03-16 Production of gaseous metal fluoride

Publications (1)

Publication Number Publication Date
JPH01234301A true JPH01234301A (en) 1989-09-19

Family

ID=13137304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63060271A Pending JPH01234301A (en) 1988-03-16 1988-03-16 Production of gaseous metal fluoride

Country Status (1)

Country Link
JP (1) JPH01234301A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131370A (en) * 2002-08-14 2004-04-30 Advance Research Chemicals Inc Method of manufacturing high purity germanium tetrafluoride
JP2010105910A (en) * 2008-10-28 2010-05-13 Foosung Co Ltd Method and apparatus for producing tungsten hexafluoride using fluidization reactor
WO2010055768A1 (en) * 2008-11-12 2010-05-20 セントラル硝子株式会社 Method for producing germanium tetrafluoride
WO2019189715A1 (en) * 2018-03-30 2019-10-03 関東電化工業株式会社 Method and device for producing molybdenum hexafluoride
KR20200087848A (en) 2017-12-19 2020-07-21 샌트랄 글래스 컴퍼니 리미티드 Manufacturing method of tungsten fluoride
KR20210041079A (en) 2018-08-17 2021-04-14 샌트랄 글래스 컴퍼니 리미티드 Method for producing tungsten hexafluoride

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131370A (en) * 2002-08-14 2004-04-30 Advance Research Chemicals Inc Method of manufacturing high purity germanium tetrafluoride
JP4638662B2 (en) * 2002-08-14 2011-02-23 アドヴァンス・リサーチ・ケミカルズ・インコーポレーテッド Method for producing high purity germanium tetrafluoride
JP2010105910A (en) * 2008-10-28 2010-05-13 Foosung Co Ltd Method and apparatus for producing tungsten hexafluoride using fluidization reactor
WO2010055768A1 (en) * 2008-11-12 2010-05-20 セントラル硝子株式会社 Method for producing germanium tetrafluoride
JP2010116282A (en) * 2008-11-12 2010-05-27 Central Glass Co Ltd Method for producing germanium tetrafluoride
KR20200087848A (en) 2017-12-19 2020-07-21 샌트랄 글래스 컴퍼니 리미티드 Manufacturing method of tungsten fluoride
WO2019189715A1 (en) * 2018-03-30 2019-10-03 関東電化工業株式会社 Method and device for producing molybdenum hexafluoride
CN111918839A (en) * 2018-03-30 2020-11-10 关东电化工业株式会社 Method and apparatus for producing molybdenum hexafluoride
KR20200136913A (en) 2018-03-30 2020-12-08 칸토 덴카 코교 가부시키가이샤 Molybdenum hexafluoride manufacturing method and manufacturing apparatus
JPWO2019189715A1 (en) * 2018-03-30 2021-04-22 関東電化工業株式会社 Manufacturing method and equipment for molybdenum hexafluoride
CN111918839B (en) * 2018-03-30 2022-09-13 关东电化工业株式会社 Method and apparatus for producing molybdenum hexafluoride
US11878915B2 (en) 2018-03-30 2024-01-23 Kanto Denka Kogyo Co., Ltd. Production method and production apparatus for molybdenum hexafluoride
KR20210041079A (en) 2018-08-17 2021-04-14 샌트랄 글래스 컴퍼니 리미티드 Method for producing tungsten hexafluoride

Similar Documents

Publication Publication Date Title
KR910004855B1 (en) Method for preparing gaseous metallic fluoride
US7524480B2 (en) Process for producing manganese fluoride
US9543075B2 (en) Niobium powders having a particle shape
US4543242A (en) Process of preparing nitrogen trifluoride by gas-solid reaction
JP4842272B2 (en) Method for fluorinating manganese compounds
WO1991004942A1 (en) Process for purifying nitrogen trifluoride gas
JPWO2019189715A1 (en) Manufacturing method and equipment for molybdenum hexafluoride
JPH01234301A (en) Production of gaseous metal fluoride
JP6620953B2 (en) Lithium sulfide production equipment
RU2221739C1 (en) Fluorine production process
JPH01234302A (en) Production of gaseous metal fluoride
US6770253B2 (en) Process for producing silicon tetrafluoride
JP6150229B2 (en) Method for producing lithium sulfide
JP5060504B2 (en) Metal amide production method and metal amide production apparatus
JPH01234304A (en) Production of gaseous metal fluoride
JPH01234303A (en) Production of gaseous metal fluoride
US20220219982A1 (en) Method for producing bromine pentafluoride
US2958576A (en) Preparation of a metal fluoride
JPH02133302A (en) Production of gaseous metal fluoride
US4966763A (en) Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine
JPH0230609A (en) Purification of nitrogen trifluoride gas
JPH01261210A (en) Method for purifying nitrogen trifluoride gas
JPH04275909A (en) Method for refinement of nitrogen trifluoride gas
JPS623019A (en) Production of titanium tetrafluoride
JPH01261207A (en) Method for purifying nitrogen trifluoride gas