JP6150229B2 - Method for producing lithium sulfide - Google Patents

Method for producing lithium sulfide Download PDF

Info

Publication number
JP6150229B2
JP6150229B2 JP2013188981A JP2013188981A JP6150229B2 JP 6150229 B2 JP6150229 B2 JP 6150229B2 JP 2013188981 A JP2013188981 A JP 2013188981A JP 2013188981 A JP2013188981 A JP 2013188981A JP 6150229 B2 JP6150229 B2 JP 6150229B2
Authority
JP
Japan
Prior art keywords
lithium
reaction
sulfide
gas
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013188981A
Other languages
Japanese (ja)
Other versions
JP2015054797A (en
Inventor
秀利 加藤
秀利 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2013188981A priority Critical patent/JP6150229B2/en
Publication of JP2015054797A publication Critical patent/JP2015054797A/en
Application granted granted Critical
Publication of JP6150229B2 publication Critical patent/JP6150229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電池用イオン伝導性固体電解質、エンジニアリングプラスチックス、潤滑剤や化学薬品用の中間原料として有用な、硫化リチウムの製造方法に関する。   The present invention relates to a method for producing lithium sulfide useful as an intermediate raw material for ion conductive solid electrolytes for batteries, engineering plastics, lubricants and chemicals.

近年、電池用イオン伝導性固体電解質、エンジニアリングプラスチックス、潤滑剤や化学薬品用の中間原料として、硫化リチウムが注目されている。硫化リチウムは、特有の臭気のある白色粉末であり、ポリアリーレンスルフィド樹脂の重合用原料や、電池用イオン伝導性固体電解質の原料として用いられている。   In recent years, lithium sulfide has attracted attention as an intermediate raw material for ion conductive solid electrolytes for batteries, engineering plastics, lubricants and chemicals. Lithium sulfide is a white powder with a characteristic odor, and is used as a raw material for polymerization of polyarylene sulfide resin and a raw material for ion conductive solid electrolyte for batteries.

硫化リチウムは、その潮解性により、天然鉱産物としては産出しないため、他のリチウム化合物から合成して得られる。従来は、金属リチウム、水酸化リチウムおよび炭酸リチウムから製造する方法が知られている。   Lithium sulfide is not produced as a natural mineral product due to its deliquescent nature, and is thus synthesized by synthesis from other lithium compounds. Conventionally, a method for producing metal lithium, lithium hydroxide, and lithium carbonate is known.

金属リチウムから硫化リチウムを製造する方法としては、固形の金属リチウムと硫黄蒸気または硫化水素とを300℃から1100℃にて反応させる方法が知られていた(特許文献1)。   As a method for producing lithium sulfide from metallic lithium, a method of reacting solid metallic lithium with sulfur vapor or hydrogen sulfide at 300 ° C. to 1100 ° C. has been known (Patent Document 1).

また、水酸化リチウムから硫化リチウムを製造する方法としては、固体の水酸化リチウムに硫化水素や硫黄蒸気といったガス状硫黄源を、130〜445℃以下の温度で反応させる方法(特許文献2)や、水酸化リチウムを水や有機溶媒に溶解し、硫化水素を吹き込んで反応させ水硫化リチウムを得た後、脱硫化水素する方法(特許文献3〜5)が知られている。   Moreover, as a method of producing lithium sulfide from lithium hydroxide, a method of reacting solid lithium hydroxide with a gaseous sulfur source such as hydrogen sulfide or sulfur vapor at a temperature of 130 to 445 ° C. or lower (Patent Document 2) A method is known in which lithium hydroxide is dissolved in water or an organic solvent, hydrogen sulfide is blown into the reaction to obtain lithium hydrosulfide, and then dehydrogenated (Patent Documents 3 to 5).

さらに、炭酸リチウムから硫化リチウムを製造する方法としては、炭酸リチウムと硫化水素とを450℃から700℃の温度で気固反応させる方法(特許文献6、7)が知られていた。   Furthermore, as a method for producing lithium sulfide from lithium carbonate, a method in which lithium carbonate and hydrogen sulfide are subjected to a gas-solid reaction at a temperature of 450 ° C. to 700 ° C. (Patent Documents 6 and 7) has been known.

しかしながら、金属リチウムを原料とした場合、固形の金属リチウムは薄膜や粉末と比べ、表面積が少なくガス状の硫黄源と十分に接触させることができず反応に時間がかかるという課題があった。さらに、金属リチウムは、活性が高く、常温で水分や酸素等と反応するため、薄膜や粉末に加工することはコストの面で不利であった。   However, when metallic lithium is used as a raw material, solid metallic lithium has a smaller surface area than a thin film or powder, and cannot be sufficiently brought into contact with a gaseous sulfur source, resulting in a long reaction time. Furthermore, since lithium metal is highly active and reacts with moisture, oxygen, and the like at room temperature, processing into a thin film or powder is disadvantageous in terms of cost.

水酸化リチウムから硫化リチウムを製造する方法は、水酸化リチウムを水や溶媒に溶解し、硫化水素を吹き込んで反応させる気液反応によるものと、固体の水酸化リチウムとガス状硫黄源とを直接反応させる気固反応によるものとに分けられる。気液反応によるものは、溶媒を除去するために多量のエネルギーを必要としたり、除去した溶媒は廃棄物として処理する必要があったりとコストの面で不利であった。一方で、気固反応によるものは、水酸化リチウムに潮解性があるため、粒子が融着してしまい粒子径が0.1mm未満の原料を得るのが困難で、表面積が小さいため反応が進みづらくなることがあった。また、粒子の融着や水分の含有を防ぐため、乾燥雰囲気で取り扱う必要があるなど、原料の取扱いが困難であった。   The method of producing lithium sulfide from lithium hydroxide is based on a gas-liquid reaction in which lithium hydroxide is dissolved in water or a solvent and reacted by blowing hydrogen sulfide, and solid lithium hydroxide and a gaseous sulfur source are directly combined. It can be divided into those due to gas-solid reaction. The gas-liquid reaction is disadvantageous in terms of cost because a large amount of energy is required to remove the solvent, and the removed solvent needs to be treated as waste. On the other hand, in the case of the gas-solid reaction, lithium hydroxide has deliquescence, so the particles are fused and it is difficult to obtain a raw material having a particle diameter of less than 0.1 mm, and the reaction proceeds because the surface area is small. It sometimes became difficult. In addition, it is difficult to handle the raw materials because it is necessary to handle in a dry atmosphere in order to prevent particle fusion and moisture content.

炭酸リチウムを原料とした場合、その反応条件が、硫化水素の存在下、450℃から700℃に加熱し、かつ反応によって水分が発生する、非常に過酷な条件であるため、その条件に耐えうる材質が少なく、製造装置を作製することが困難であるという課題があった。   When lithium carbonate is used as a raw material, the reaction conditions are extremely harsh conditions in which moisture is generated by reaction when heated from 450 ° C. to 700 ° C. in the presence of hydrogen sulfide, and can withstand the conditions. There was a subject that there were few materials and it was difficult to produce a manufacturing apparatus.

特開平09−110404号公報JP 09-110404 A 特開平09−278423号公報JP 09-278423 A 特開平07−330312号公報Japanese Patent Application Laid-Open No. 07-330312 国際公開第2005/040039号パンフレットInternational Publication No. 2005/040039 Pamphlet 特開2011−84438号公報JP 2011-84438 A 米国特許第4,126,666号明細書US Pat. No. 4,126,666 特開2013−75816号公報JP2013-75816A

そこで、本発明の目的は、硫化リチウムを、溶媒の除去をすることなく、比較的温和な条件で製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing lithium sulfide under relatively mild conditions without removing the solvent.

上記目的を達成するに当たり、鋭意検討の結果、酸化リチウムと硫化水素とを反応させることによって、精製や溶媒の除去をすることなく、比較的温和な条件で硫化リチウムが得られることを見出した。   In achieving the above object, as a result of intensive studies, it was found that lithium sulfide can be obtained under relatively mild conditions by reacting lithium oxide and hydrogen sulfide without purification and removal of the solvent.

本発明の硫化リチウムの製造方法は、酸化リチウムと硫化水素含有ガスとを反応させる方法である。この方法により溶媒の除去をすることなく、比較的温和な条件で硫化リチウムが得られる。   The method for producing lithium sulfide of the present invention is a method of reacting lithium oxide and a hydrogen sulfide-containing gas. By this method, lithium sulfide can be obtained under relatively mild conditions without removing the solvent.

さらに、比較的温和な条件で反応させるため、設備材質に対する負担が少なく、安価な素材で設備を作製でき経済的に有利である。   Furthermore, since the reaction is performed under relatively mild conditions, the burden on the equipment material is small, and the equipment can be produced with an inexpensive material, which is economically advantageous.

酸化リチウムを原料として使用するため、水酸化リチウムの様に潮解したり、結晶水や付着水を除去したりする必要が無く取り扱いが容易である。酸化リチウムは潮解しないため、破砕や粉砕が容易で、微粒子が得られる。微粒子は表面積が大きく反応速度が速くなる。短時間で製造できるため経済的に有利である。   Since lithium oxide is used as a raw material, it does not need to be deliquescent like lithium hydroxide or to remove crystal water or adhering water, and is easy to handle. Since lithium oxide does not deliquesce, it can be easily crushed and crushed and fine particles can be obtained. Fine particles have a large surface area and a high reaction rate. Since it can be manufactured in a short time, it is economically advantageous.

本発明の硫化リチウムの製造方法によれば、得られる硫化リチウムは粉状で生成する。原料の酸化リチウムの形状をそのまま継承して反応容器から取り出せるので作業性が良い。   According to the method for producing lithium sulfide of the present invention, the obtained lithium sulfide is produced in powder form. Since the shape of the raw material lithium oxide is inherited as it is and can be taken out from the reaction vessel, workability is good.

本発明の硫化リチウム製造方法を用いて得られた金属硫化物は、エンジニアリングプラスチックスの原料や、電池用のイオン伝導性固体電解質、潤滑剤、化学薬品の中間原料としても好適に用いることができる。   The metal sulfide obtained by using the method for producing lithium sulfide of the present invention can be suitably used as an engineering plastics raw material, an ion conductive solid electrolyte for batteries, a lubricant, or an intermediate raw material for chemicals. .

以下に、本発明の硫化リチウムの製造方法について詳細に記載する。   Below, the manufacturing method of the lithium sulfide of this invention is described in detail.

本発明の硫化リチウムの製造方法では、硫化水素と酸化リチウムとを反応させる。   In the method for producing lithium sulfide of the present invention, hydrogen sulfide and lithium oxide are reacted.

本発明で用いられる硫化水素は、例えば、石油などの燃料油の水素化脱硫反応により得られる硫化水素を含むガスから分離・回収したものや、水素と硫黄蒸気とを加熱反応炉で反応させたもの、硫化鉄、硫化ナトリウムに無機酸を作用させたものなどが用いられる。   The hydrogen sulfide used in the present invention is, for example, separated and recovered from a gas containing hydrogen sulfide obtained by hydrodesulfurization reaction of fuel oil such as petroleum, or reacted with hydrogen and sulfur vapor in a heating reactor. And those obtained by allowing an inorganic acid to act on iron sulfide or sodium sulfide.

硫化水素は、ボンベから反応装置へ供給しても良いし、反応系内で発生させても良い。反応系内で発生させた発生期状態の硫化水素を用いると、反応が速やかに進行し好ましい。   Hydrogen sulfide may be supplied from a cylinder to the reactor or may be generated in the reaction system. The use of nascent hydrogen sulfide generated in the reaction system is preferable because the reaction proceeds rapidly.

硫化水素の分圧は、0.1%〜99%が好ましい。好ましくは、1%〜85%であり、さらに好ましくは3%〜70%である。0.1%以上であれば、短時間で反応が進行し、99%以下であれば、未反応で排出される硫化水素が少なく経済的に有利である。   The partial pressure of hydrogen sulfide is preferably 0.1% to 99%. Preferably, it is 1% to 85%, and more preferably 3% to 70%. If it is 0.1% or more, the reaction proceeds in a short time, and if it is 99% or less, the amount of unreacted hydrogen sulfide discharged is small, which is economically advantageous.

本発明で使用する硫化水素の純度は、80%以上が好ましく、より好ましくは90%以上、さらに好ましくは95%以上である。硫化水素の純度が80%以上であると、十分に反応が完結し、得られる硫化リチウム中の不純物が少なく好ましい。   The purity of hydrogen sulfide used in the present invention is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more. It is preferable that the purity of hydrogen sulfide is 80% or more because the reaction is sufficiently completed, and there are few impurities in the obtained lithium sulfide.

本発明において、酸化リチウムに接触させる硫化水素の供給量は、酸化リチウムの仕込量に対して0.5モル倍から8モル倍が好ましく、より好ましくは、0.8モル倍から6モル倍である。さらに好ましくは1.0モル倍〜4モル倍である。0.5モル倍以上であれば、硫化リチウムが得られ、8モル倍以下であれば、反応時間が短く、かつ硫化水素のロスが少なくなり経済的である。   In the present invention, the supply amount of hydrogen sulfide to be brought into contact with lithium oxide is preferably 0.5 to 8 mol times, more preferably 0.8 to 6 mol times with respect to the charged amount of lithium oxide. is there. More preferably, it is 1.0 mol times-4 mol times. If it is 0.5 mol times or more, lithium sulfide is obtained, and if it is 8 mol times or less, the reaction time is short and the loss of hydrogen sulfide is reduced, which is economical.

本発明で用いられる酸化リチウムは、リチウムの酸化物である。例えば、金属リチウムの空気中や酸素中での燃焼や、水酸化リチウムの熱分解、炭酸リチウムの脱炭酸などで得られる。   The lithium oxide used in the present invention is an oxide of lithium. For example, it can be obtained by burning metallic lithium in air or oxygen, thermal decomposition of lithium hydroxide, decarboxylation of lithium carbonate, or the like.

酸化リチウムの粒子径は、20メッシュ(篩目開き0.85mm)以下が好ましく、より好ましくは、60メッシュ(篩目開き0.25mm)以下である。20メッシュ以下であれば、表面積が大きいため反応速度が大きく好ましい。   The particle diameter of lithium oxide is preferably 20 mesh (aperture opening 0.85 mm) or less, and more preferably 60 mesh (aperture opening 0.25 mm) or less. If it is 20 mesh or less, since the surface area is large, the reaction rate is large and preferable.

酸化リチウムは、通常、異種金属やその他の不純物を含有するが、副反応を抑制するために、できる限り高純度のものが好ましい。   Lithium oxide usually contains dissimilar metals and other impurities, but preferably has a purity as high as possible in order to suppress side reactions.

酸化リチウムは、硫化水素との反応に先立って乾燥を行っても良い。乾燥を行うと、得られる酸化リチウムが塊状化することなく、また水硫化物の副生が抑制され好ましい。乾燥の終点は、雰囲気ガスの露天を計測することで行うことができる。   Lithium oxide may be dried prior to reaction with hydrogen sulfide. Drying is preferable because the obtained lithium oxide does not agglomerate and the by-product of hydrosulfide is suppressed. The end point of drying can be performed by measuring the outdoor atmosphere gas.

乾燥温度は100℃以上が好ましく、より好ましくは200℃以上である。温度が100℃以上であれば、十分に、水分が除去され好ましい。   The drying temperature is preferably 100 ° C. or higher, more preferably 200 ° C. or higher. A temperature of 100 ° C. or higher is preferable because water is sufficiently removed.

乾燥時の雰囲気ガスは、水素や窒素または、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等の希ガスが好適に用いられる。中でも窒素、水素含有窒素は安価であり好ましい。乾燥時の雰囲気ガスは2種類以上用いても良い。   As the atmospheric gas during drying, hydrogen, nitrogen, or a rare gas such as helium, neon, argon, krypton, xenon, or radon is preferably used. Among these, nitrogen and hydrogen-containing nitrogen are preferable because they are inexpensive. Two or more kinds of atmospheric gases at the time of drying may be used.

酸化リチウムと硫化水素とを反応させる際の温度は、150℃〜450℃である。温度が150℃以上であれば、十分に反応が進行する。 The temperature at the time of making lithium oxide and hydrogen sulfide react is 150 degreeC- 450 degreeC . If temperature is 150 degreeC or more, reaction will fully advance .

酸化リチウムと硫化水素とを接触させる時間は、未反応の酸化リチウムが残らない時間であれば、特に制限は無い。   The time for contacting lithium oxide and hydrogen sulfide is not particularly limited as long as unreacted lithium oxide does not remain.

本発明の酸化リチウムと硫化水素との反応は、次式の通りである。   The reaction of lithium oxide and hydrogen sulfide according to the present invention is as follows.

LiO + HS → LiS + H
従って、水が副生する。本発明では、反応温度が150℃〜450である。反応温度が150℃〜450℃の場合、水は水蒸気となっている。本発明の硫化リチウムの製造方法では、硫化水素等のガスを反応系内に供給しつつ、反応系内の水蒸気を排出しながら反応行うと、設備の腐食と粒子の固着を防ぎ、好ましい。水蒸気は、ガスと共に排出することが、より好ましい。
Li 2 O + H 2 S → Li 2 S + H 2 O
Therefore, water is by-produced. In the present invention, the reaction temperature is 0.99 ° C. to 450 ° C.. When the reaction temperature is 150 ° C. to 450 ° C., the water is water vapor. In the method for producing lithium sulfide of the present invention, it is preferable to carry out the reaction while supplying a gas such as hydrogen sulfide into the reaction system and discharging the water vapor in the reaction system, thereby preventing corrosion of the equipment and adhesion of particles. More preferably, the water vapor is discharged together with the gas.

本発明では、溶媒の除去をすることなく比較的温和な条件で硫化リチウムを得るという目的を達成しうる限り、その他のガスを共存させても良い。その他のガスには、還元性ガスを用いると硫化リチウムに含まれる不純物が低減し好ましい。例えば、水素、一酸化炭素、メタン及び他の気体状アルカンが挙げられる。   In the present invention, other gases may coexist as long as the object of obtaining lithium sulfide can be achieved under relatively mild conditions without removing the solvent. For other gases, it is preferable to use a reducing gas because impurities contained in lithium sulfide are reduced. Examples include hydrogen, carbon monoxide, methane and other gaseous alkanes.

本発明では、好ましくは、固体の酸化リチウムと気体の硫化水素とを気固反応させる。気固反応であると、溶媒の除去をする必要がなく、かつ廃液を生じないため経済的に有利である。   In the present invention, preferably, solid lithium oxide and gaseous hydrogen sulfide are gas-solid reacted. The gas-solid reaction is economically advantageous because there is no need to remove the solvent and no waste liquid is produced.

本発明における好ましい気固反応の反応装置は、固定層、移動層、転動層、流動層、気流層のいずれかを有する。   A preferable gas-solid reaction reactor in the present invention has any one of a fixed bed, a moving bed, a rolling bed, a fluidized bed, and an air flow bed.

本発明における固定層とは、原料の固体成分を反応装置に充填し、原料ガスを連続的に供給し反応させる装置である。固定層には、軸方向流式、ラジアルフロー式、パラレルフロー式などが用いられる。固定層反応器の伝熱方式としては、断熱式、多段断熱式、自己熱交換式、多管熱交換式が好適に用いられる。装置としては、固定炉、プッシャーキルン、メッシュベルトキルン、ローラーハースキルンなどが挙げられる。   The fixed bed in the present invention is an apparatus in which a solid component of a raw material is filled in a reaction apparatus, and a raw material gas is continuously supplied and reacted. For the fixed layer, an axial flow method, a radial flow method, a parallel flow method, or the like is used. As the heat transfer method of the fixed bed reactor, an adiabatic type, a multistage adiabatic type, a self-heat exchange type, and a multi-tube heat exchange type are suitably used. Examples of the apparatus include a fixed furnace, a pusher kiln, a mesh belt kiln, and a roller hearth kiln.

本発明における移動層とは、連続的に塔頂から金属炭酸塩粒子を供給し緩やかに降下させ、向流または並流で気体を接触させて反応する反応装置形態である。装置としては、立型移動層、十字流式縦型移動層などが挙げられる。立型移動層は、金属精錬、セメント製造、石炭ガス化などに、十字流式縦型移動層は排ガス処理にそれぞれ応用されている。   The moving bed in the present invention is a form of a reaction apparatus in which metal carbonate particles are continuously supplied from the top of the tower, gently lowered, and brought into contact with gas in a countercurrent or cocurrent flow to react. Examples of the apparatus include a vertical moving bed and a cross-flow vertical moving bed. The vertical moving bed is applied to metal refining, cement production, coal gasification, etc., and the cross-flow vertical moving bed is applied to exhaust gas treatment.

本発明における転動層とは、金属炭酸塩粒子を充填した容器や格子を運動させることで、金属炭酸塩を転動させ、気体と接触させて反応する反応装置形態である。装置としては、摺動グレート、ロータリーキルンなどが挙げられる。摺動グレートおよびロータリーキルンは、セメント製造、金属精錬、熱分解などにそれぞれ応用されている。   The rolling layer in the present invention is a reaction device form in which a metal carbonate is rolled by moving a container or a lattice filled with metal carbonate particles and brought into contact with a gas to react. Examples of the apparatus include a sliding grate and a rotary kiln. Sliding grate and rotary kiln are applied to cement production, metal refining, thermal decomposition, etc., respectively.

本発明における流動層とは、上向きに気体を噴出させることによって、金属炭酸塩粒子を気体中に懸濁浮遊させた状態で、気体と接触させて反応させる反応装置形態である。固体粒子に働く気体の力と重力とがつりあい、全体が均一な流体のように挙動する。反応装置としては、気泡流動層、噴流層、高速流動層などが挙げられる。気泡流動層は、石炭燃焼、ごみ処理、粒子合成、熱分解に、噴流層は、コーティング、粒子合成などに応用されている。   The fluidized bed in the present invention is a reaction device form in which metal carbonate particles are suspended and suspended in a gas and brought into contact with the gas to cause a reaction by ejecting the gas upward. The gas force acting on the solid particles balances with gravity, and the whole behaves like a uniform fluid. Examples of the reaction apparatus include a bubble fluidized bed, a spouted bed, and a high-speed fluidized bed. The bubbling fluidized bed is applied to coal combustion, waste treatment, particle synthesis, and thermal decomposition, and the spouted bed is applied to coating, particle synthesis, and the like.

本発明における気流層とは、比表面積を大きくした酸化リチウムを、気体と均一に混合し、両者をほぼ同一速度で反応雰囲気を通過させる反応装置形態である。気流層は、微粉炭燃焼、気相合成、石炭ガス化などに応用されている。   The airflow layer in the present invention is a reactor configuration in which lithium oxide having a large specific surface area is uniformly mixed with a gas and both are passed through the reaction atmosphere at substantially the same speed. The airflow layer is applied to pulverized coal combustion, gas phase synthesis, coal gasification, and the like.

本発明における気固反応の反応装置は、移動層、転動層、流動層、気流層が2種類以上複合させた形態としてもよい。   The gas-solid reaction reactor in the present invention may have a configuration in which two or more kinds of moving bed, rolling layer, fluidized bed, and airflow layer are combined.

本発明における気固反応の反応装置は、固定層、転動層を有する反応装置が好ましい。気体の供給速度や酸化リチウムの運動状態を、酸化リチウム粒子の比重や粒子径等に左右されること無く自由に設定することができ、かつ連続的に反応を行うことが可能で、さらには粒子が固着することが無く好ましい。本発明における気固反応の反応装置は、固定炉、プッシャーキルン、ローラーハースキルン、ロータリーキルンがさらに好適に用いられる。   The reactor for gas-solid reaction in the present invention is preferably a reactor having a fixed bed and a rolling bed. The gas supply speed and the movement state of lithium oxide can be freely set without being influenced by the specific gravity or particle diameter of the lithium oxide particles, and the reaction can be continuously performed. Is preferred because it does not stick. As the gas-solid reaction reactor in the present invention, a fixed furnace, a pusher kiln, a roller hearth kiln, and a rotary kiln are more preferably used.

設備の材質には、腐食性の高い水分を含んだ硫化水素に耐えうる材質を用いることが望ましい。具体的には、ニッケル、コバルト、クロム等を主成分とする合金、チタン、ガラス等の金属以外の材質が挙げられる。ニッケル、コバルト、クロム等を主成分とする合金としては例えば、ハステロイC−22、ハステロイC−276、ハステロイB、ハステロイB−2、ハステロイG、ハステロイG−3、インコネル600、インコネル625、インコロイ825、MCアロイ、UMCo50が挙げられる。チタンとしては例えば、TP270、TP340、TP480などが挙げられる。ガラス等の金属以外の材質としては石英ガラスが挙げられる。中でも石英ガラス、チタンは耐食性が良好で好ましい。   It is desirable to use a material that can withstand hydrogen sulfide containing highly corrosive moisture as the material of the equipment. Specifically, materials other than metals, such as an alloy which has nickel, cobalt, chromium, etc. as a main component, titanium, and glass, are mentioned. Examples of alloys mainly composed of nickel, cobalt, chromium, etc. include Hastelloy C-22, Hastelloy C-276, Hastelloy B, Hastelloy B-2, Hastelloy G, Hastelloy G-3, Inconel 600, Inconel 625, Incoloy 825. MC alloy and UMCo50. Examples of titanium include TP270, TP340, and TP480. Quartz glass is mentioned as materials other than metals, such as glass. Of these, quartz glass and titanium are preferable because of their good corrosion resistance.

本発明の硫化リチウムの製造方法では、反応は大気圧下で行っても良いし、高圧下で行っても良い。   In the method for producing lithium sulfide of the present invention, the reaction may be carried out under atmospheric pressure or under high pressure.

本発明の硫化リチウムの製造方法により、得られた硫化リチウムは、粒子を均一化させる目的で、破砕処理を行っても良い。破砕処理に用いる装置は、一般的な装置を用いることができる。具体的には、ビーズミル、ボールミル、高速回転式ミル、ジェットミル等である。破砕処理によって得られる粒子の平均粒子径は、0.1μm〜1mmが好ましく、より好ましくは、1μm〜300μmである。さらに好ましくは20μm〜200μmである。平均粒子径が0.1μm以上であれば、表面積が大きいため反応速度が大きく好ましい。また、1mm以下であれば、飛散しづらく、静電気で装置の壁面に付着せず、取扱い易い。さらに、嵩密度が高くなり、一定の容積の装置の中に、仕込める重量が多くなるため生産性が高くなる。   The lithium sulfide obtained by the method for producing lithium sulfide of the present invention may be crushed for the purpose of homogenizing particles. A general apparatus can be used for the apparatus used for the crushing treatment. Specifically, a bead mill, a ball mill, a high-speed rotary mill, a jet mill, and the like. The average particle diameter of the particles obtained by the crushing treatment is preferably 0.1 μm to 1 mm, more preferably 1 μm to 300 μm. More preferably, it is 20 micrometers-200 micrometers. If the average particle size is 0.1 μm or more, the surface area is large and the reaction rate is high. Moreover, if it is 1 mm or less, it is hard to scatter, it does not adhere to the wall surface of an apparatus with static electricity, and is easy to handle. Further, the bulk density is increased, and the weight that can be charged in the apparatus having a constant volume is increased, so that the productivity is increased.

以下、実施例により具体的に説明する。なお、各例において得られる金属硫化物の分析値は、次の方法により測定した。   Hereinafter, specific examples will be described. In addition, the analytical value of the metal sulfide obtained in each example was measured by the following method.

純度測定
酸化還元滴定にて測定した。硫化リチウム0.2gをイオン交換水25mlで溶解し試料溶液を得た。試料溶液10mlに0.1Nヨウ素溶液50mlを加えて硫化リチウムを還元し、残ったヨウ素を0.1Nチオ硫酸ナトリウム溶液で逆滴定し、純度を求めた。
Purity measurement Measured by oxidation-reduction titration. A sample solution was obtained by dissolving 0.2 g of lithium sulfide with 25 ml of ion-exchanged water. 50 ml of 0.1N iodine solution was added to 10 ml of the sample solution to reduce lithium sulfide, and the remaining iodine was back titrated with 0.1N sodium thiosulfate solution to determine purity.

イオンクロマトグラフィー測定
装置:ICS−2000(日本ダイオネクス(株)製)
カラム:IonPac AG-11-HC / IonPac AS11-HC
溶離液:下記のKOHグラジエントを用いた。なお、カーブとはグラジエントの濃度変化のパターンであり、カーブ5は直線的に濃度が変化するパターンである。
Ion chromatography measurement device: ICS-2000 (manufactured by Nippon Dionex)
Column: IonPac AG-11-HC / IonPac AS11-HC
Eluent: The following KOH gradient was used. The curve is a gradient density change pattern, and the curve 5 is a pattern in which the density changes linearly.

Figure 0006150229
Figure 0006150229

流量:1.25mL/min
サプレッサ:ASRS−300(130mA/リサイクル)
カラム温度:30℃
導入量:25μL
測定方法
37%ホルマリン液を超純水で1%に希釈後、超音波洗浄機とアスピレーターを用いて10分間脱気することで、1%ホルマリン水溶液を得た。サンプル約0.1gを精秤し、1%ホルマリン溶液で100mlにメスアップした。サンプルは調整後、直ちに測定した。
Flow rate: 1.25 mL / min
Suppressor: ASRS-300 (130 mA / recycle)
Column temperature: 30 ° C
Amount introduced: 25 μL
Measurement method A 37% formalin solution was diluted to 1% with ultrapure water, and then degassed for 10 minutes using an ultrasonic cleaner and an aspirator to obtain a 1% formalin aqueous solution. About 0.1 g of the sample was precisely weighed and made up to 100 ml with 1% formalin solution. Samples were measured immediately after adjustment.

実施例、比較例に記載の転化率とは、イオンクロマトグラフィーにて生成物中の炭酸イオンを定量して、炭酸リチウム換算し、試料全体に対する重量割合を求め、100から引いた値を示す。   The conversion rate described in Examples and Comparative Examples is a value obtained by quantifying carbonate ions in the product by ion chromatography, converting to lithium carbonate, obtaining a weight ratio with respect to the whole sample, and subtracting from 100.

(実施例1)
内径21mm、長さ500mmの石英ガラス管の中央部に、直径2mmの孔を9箇所あけた目皿を取り付けた反応器に、ガラスウールを詰め、酸化リチウム(純度97%、シグマ−アルドリッチ社製)を1.02g充填した。反応器の上部と下部には、ガスの供給管・排気管が取り付けられており、また、熱電対が目皿付近まで到達するように保護管が取り付けられている。すなわち固定層反応である。反応器下部のガス供給管から、窒素を50ml/min導入し、外部加熱により450℃まで加熱した。450℃になったことを確認した後、硫化水素(ジャパンファインプロダクツ株式会社製)を供給速度2ml/minで、窒素に同伴させて供給し、排気ガスを排出しながら6.5時間反応を行った。反応終了後、室温まで冷却することで、茶色塊状の固形物1.01gを得た。X線回折を測定したところ、硫化リチウムのピークが得られ、硫化リチウムが生成していることを確認した。得られた硫化リチウムの純度は58.3%、イオンクロマトグラフィーで測定した不純物含量は、それぞれ亜硫酸リチウム2.4wt%、硫酸リチウム0.1wt%、チオ硫酸リチウム0.1wt%で、合計2.6wt%であった。
Example 1
Glass wool was filled into a reactor in which a center plate of a 21 mm inner diameter and 500 mm long quartz glass tube was fitted with a glass plate with nine holes with a diameter of 2 mm, and lithium oxide (purity 97%, manufactured by Sigma-Aldrich) ) Was filled with 1.02 g. A gas supply pipe and an exhaust pipe are attached to the upper and lower parts of the reactor, and protective tubes are attached so that the thermocouple reaches the vicinity of the eye plate. That is a fixed bed reaction. Nitrogen was introduced at 50 ml / min from the gas supply pipe at the bottom of the reactor and heated to 450 ° C. by external heating. After confirming that the temperature reached 450 ° C., hydrogen sulfide (manufactured by Japan Fine Products Co., Ltd.) was supplied along with nitrogen at a supply rate of 2 ml / min, and reacted for 6.5 hours while exhausting the exhaust gas. It was. After completion of the reaction, the mixture was cooled to room temperature to obtain 1.01 g of a brown lump solid. When X-ray diffraction was measured, a lithium sulfide peak was obtained, and it was confirmed that lithium sulfide was generated. The purity of the obtained lithium sulfide was 58.3%, and the impurity contents measured by ion chromatography were 2.4 wt% lithium sulfite, 0.1 wt% lithium sulfate, and 0.1 wt% lithium thiosulfate, respectively. It was 6 wt%.

(実施例2)
実施例1において、窒素の供給速度を50ml/minから25ml/minに変更した以外は、実施例1と同様に反応させることにより、茶色塊状の固形物1.11gを得た。得られた固形物の硫化リチウムの純度は36.0%、イオンクロマトグラフィーで測定した不純物含量は、それぞれ亜硫酸リチウム0.7wt%、硫酸リチウム0.1wt%、チオ硫酸リチウム0.1wt%で、合計0.9wt%であった。
(Example 2)
In Example 1, except that the supply rate of nitrogen was changed from 50 ml / min to 25 ml / min, the reaction was performed in the same manner as in Example 1 to obtain 1.11 g of a brown lump solid. The purity of the solid lithium sulfide obtained was 36.0%, and the impurity content measured by ion chromatography was 0.7 wt% lithium sulfite, 0.1 wt% lithium sulfate, and 0.1 wt% lithium thiosulfate, respectively. The total was 0.9 wt%.

比較例1
実施例1において、窒素の供給速度を50ml/minから25ml/minに、反応温度を450℃から500℃に変更した以外は、実施例1と同様に反応させることにより、茶色塊状の固形物0.81gを得た。得られた硫化リチウムの純度は56.8%、イオンクロマトグラフィーで測定した不純物含量は、それぞれ亜硫酸リチウム2.1wt%、硫酸リチウム1.1wt%、チオ硫酸リチウム0.1wt%で、合計3.3wt%であった。
( Comparative Example 1 )
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the nitrogen supply rate was changed from 50 ml / min to 25 ml / min, and the reaction temperature was changed from 450 ° C. to 500 ° C. .81 g was obtained. The purity of the obtained lithium sulfide was 56.8%, and the impurity contents measured by ion chromatography were 2.1 wt% lithium sulfite, 1.1 wt% lithium sulfate, and 0.1 wt% lithium thiosulfate, respectively. It was 3 wt%.

(比較例
実施例1において、酸化リチウムを炭酸リチウム(PLC−4N、パシフィックリチウム株式会社製)に、反応時間を6.5時間から5時間に変更した以外は、実施例1と同様に反応させた。白色の粉末が得られたが、酸化還元滴定において、硫化リチウムが検出されず、硫化リチウムは得られなかった。
(Comparative Example 2 )
In Example 1, the reaction was performed in the same manner as in Example 1 except that lithium oxide was changed to lithium carbonate (PLC-4N, manufactured by Pacific Lithium Corporation) and the reaction time was changed from 6.5 hours to 5 hours. A white powder was obtained, but lithium sulfide was not detected in redox titration, and lithium sulfide was not obtained.

Figure 0006150229
Figure 0006150229

Claims (3)

酸化リチウムと硫化水素とを、150℃〜450℃で反応させる硫化リチウムの製造方法。 A method for producing lithium sulfide, in which lithium oxide and hydrogen sulfide are reacted at 150 to 450 ° C. 固体の酸化リチウムと気体の硫化水素とを気固反応させる請求項1記載の硫化リチウムの製造方法。 2. The method for producing lithium sulfide according to claim 1, wherein solid lithium oxide and gaseous hydrogen sulfide are subjected to a gas-solid reaction. 水蒸気を反応装置から除去しながら反応させる請求項1または2に記載の硫化リチウムの製造方法。 The method for producing lithium sulfide according to claim 1 or 2, wherein the reaction is carried out while removing water vapor from the reactor.
JP2013188981A 2013-09-12 2013-09-12 Method for producing lithium sulfide Active JP6150229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013188981A JP6150229B2 (en) 2013-09-12 2013-09-12 Method for producing lithium sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188981A JP6150229B2 (en) 2013-09-12 2013-09-12 Method for producing lithium sulfide

Publications (2)

Publication Number Publication Date
JP2015054797A JP2015054797A (en) 2015-03-23
JP6150229B2 true JP6150229B2 (en) 2017-06-21

Family

ID=52819437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188981A Active JP6150229B2 (en) 2013-09-12 2013-09-12 Method for producing lithium sulfide

Country Status (1)

Country Link
JP (1) JP6150229B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6801232B2 (en) * 2016-05-26 2020-12-16 Dic株式会社 Manufacturing method of polyarylene sulfide resin
JP6753753B2 (en) * 2016-10-05 2020-09-09 三井金属鉱業株式会社 Lithium sulfide production method and equipment
KR20230129118A (en) * 2022-02-28 2023-09-06 주식회사 레이크테크놀로지 Apparatus for manufacturing lithium sulfide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126666A (en) * 1978-01-25 1978-11-21 Foote Mineral Company Process for producing high purity lithium sulfide
GB2464455B (en) * 2008-10-14 2010-09-15 Iti Scotland Ltd Lithium-containing transition metal sulfide compounds
KR20140003514A (en) * 2011-01-27 2014-01-09 이데미쓰 고산 가부시키가이샤 Composite material of alkali metal sulfide and conducting agent
JP4948659B1 (en) * 2011-04-12 2012-06-06 三井金属鉱業株式会社 Method for producing lithium sulfide for solid electrolyte material of lithium ion battery

Also Published As

Publication number Publication date
JP2015054797A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP6103499B2 (en) Method for producing lithium sulfide
JP6300014B2 (en) Method for producing lithium sulfide
Srinivasan et al. Studies on the reduction of hematite by carbon
TW201840468A (en) Highly reactive, dust-free and free-flowing lithium sulfide and method for producing it
WO2016098351A1 (en) Device for producing lithium sulfide, and method for producing lithium sulfide
JP6150229B2 (en) Method for producing lithium sulfide
CN106276886A (en) A kind of method of purification of diamond
JP6254413B2 (en) Method for producing lithium sulfide
JP6715985B2 (en) Method for producing lithium sulfide
JPS58500663A (en) Recovery of cathode waste material from aluminum electrolyzers
JP6620953B2 (en) Lithium sulfide production equipment
Sarafraz et al. Experimental investigation of the reduction of liquid bismuth oxide with graphite
NZ207130A (en) Preparation of micaceous iron oxide
JP2020033259A (en) Lithium sulfide production apparatus
JP6281841B2 (en) Method for producing lithium sulfide
JP6256754B2 (en) Method for producing lithium sulfide
JP6612145B2 (en) Method for producing lithium sulfide
Ma et al. Analysis of the behavior of NaF in the vacuum carbothermal reduction of magnesium oxide
JP5950160B2 (en) Method for producing lithium oxide
JP6508673B2 (en) Method of producing lithium sulfide
WO2006040788A1 (en) Simultaneous production of carbon nanotubes and molecular hydrogen
TW202239711A (en) Process for the preparation of pure lithium oxide
JP6414674B2 (en) Method for producing lithium sulfide
CN102115079A (en) Preparation method of sulfur-free carbon-graphite
JP2014055097A (en) Method of producing metal sulfide

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170515

R150 Certificate of patent or registration of utility model

Ref document number: 6150229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250