JPS623019A - Production of titanium tetrafluoride - Google Patents

Production of titanium tetrafluoride

Info

Publication number
JPS623019A
JPS623019A JP14013085A JP14013085A JPS623019A JP S623019 A JPS623019 A JP S623019A JP 14013085 A JP14013085 A JP 14013085A JP 14013085 A JP14013085 A JP 14013085A JP S623019 A JPS623019 A JP S623019A
Authority
JP
Japan
Prior art keywords
titanium
gas
tetrafluoride
titanium tetrafluoride
tif4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14013085A
Other languages
Japanese (ja)
Other versions
JPH0518765B2 (en
Inventor
Koichi Katamura
浩一 片村
Seiichi Tomota
清一 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP14013085A priority Critical patent/JPS623019A/en
Publication of JPS623019A publication Critical patent/JPS623019A/en
Publication of JPH0518765B2 publication Critical patent/JPH0518765B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce high-purity titanium tetrafluoride, by reacting nitrogen trifluoride with metallic titanium to form a titanium tetrafluoride gas and cooling and solidifying the gas. CONSTITUTION:Nitrogen trifluoride (NF3) is brought into contact with metallic titanium such as sponge titanium, etc. at >=200 deg.C to form titanium tetrafluoride (TiF4). TiF4 is immediately vaporized since its sublimation temperature is an extremely low temperature of 240 deg.C, the metallic titanium is continuously reacted with NF3 because the new surface of the metallic titanium is successively exposed, to evolve efficiently a TiF4 gas. This gas is cooled and solidified to produce extremely high-purity solid TiF4.

Description

【発明の詳細な説明】 本発明は、三弗化窒素と金属チタンを接触、反応させる
ことにより、ガス状四弗化チタンを生成させ、該四弗化
チタンガスを冷却、固化することにより、高純度の四弗
化チタンを得る方法に関する。
Detailed Description of the Invention The present invention produces gaseous titanium tetrafluoride by bringing nitrogen trifluoride and metallic titanium into contact and reacting, and by cooling and solidifying the titanium tetrafluoride gas, This invention relates to a method for obtaining highly pure titanium tetrafluoride.

四弗化チタンは、マイルドな弗素化剤として、或は、化
学蒸着による表面処理にも用いられる有用な化合物であ
る。
Titanium tetrafluoride is a useful compound used as a mild fluorinating agent and also for surface treatment by chemical vapor deposition.

従来、四弗化チタンを製造する方法としては、(1) 
 四塩化チタンと無水フッ化水素と反応させる方法。
Conventionally, methods for producing titanium tetrafluoride include (1)
A method of reacting titanium tetrachloride with anhydrous hydrogen fluoride.

(2)金属チタンとフッ素がスを150℃以上の温度に
て反応させる方法(J、Am、Chem、Soc、 7
6 r2’177(1954))等が知られている。
(2) A method of reacting metallic titanium and fluorine at a temperature of 150°C or higher (J, Am, Chem, Soc, 7
6 r2'177 (1954)) are known.

ところで(1)の方法では、生成する四弗化チタン中に
原料の四塩化チタンが混入し、純度の良い四弗化チタン
を得るためには、さらに蒸留等の精製工程が必要である
こと、(2)の方法では、激しい反応性を有するフッ素
ガスを扱うため、操作の安全性、また、反応制御性の点
で不利である、等の欠点を有していた。
However, in method (1), the raw material titanium tetrafluoride is mixed into the titanium tetrafluoride produced, and further purification steps such as distillation are required to obtain titanium tetrafluoride with good purity. Method (2) has drawbacks such as disadvantages in terms of operational safety and reaction controllability because it handles fluorine gas, which has strong reactivity.

本発明は、上記の事情を考慮し、簡便、安全な、高純度
の四弗化チタンの製造方法の提供を目的としている。
The present invention takes the above circumstances into consideration and aims to provide a simple, safe, and highly purified method for producing titanium tetrafluoride.

上記目的を達成するため、検討を重ねた結果、本発明者
らは、三弗化窒素と金属チタンを200℃以上の温度で
接触させ、生成する四弗化チタンガスを捕集することに
より、高純度の四弗化チタンを、きわめて効率よく製造
できることを見出し、本発明を完成した。
In order to achieve the above object, as a result of repeated studies, the present inventors brought nitrogen trifluoride into contact with metallic titanium at a temperature of 200°C or higher, and by collecting the generated titanium tetrafluoride gas, The present invention was completed by discovering that highly pure titanium tetrafluoride can be produced extremely efficiently.

すなわち、本発明の要旨は、三弗化窒素と金属チタンを
200℃以上の温度、好ましくは250℃〜400℃の
温度で接触させ生成する四弗化チタンガスを冷却、捕集
し、純度99.94以上の四弗化チタンを得ることを特
徴とする四弗化チタンの製造方法にある。
That is, the gist of the present invention is to cool and collect titanium tetrafluoride gas produced by bringing nitrogen trifluoride and metallic titanium into contact at a temperature of 200°C or higher, preferably at a temperature of 250°C to 400°C, to achieve a purity of 99%. A method for producing titanium tetrafluoride characterized by obtaining titanium tetrafluoride having a molecular weight of .94 or higher.

チタン弗化物としては、一般に三弗化チタン(青色固体
、昇華温度950℃)および四弗化チタン(白色固体、
昇華温度284℃)が知られている。本発明の方法で生
成するのは、昇華温度の低い四弗化チタンであるため、
反応でチタン表面に生じる四弗化チタンは、ただちに気
化し、常に新しいチタン表面が露出されるのでチタンを
有効に使用でき、反応の効率は非常によい。
Titanium fluoride generally includes titanium trifluoride (blue solid, sublimation temperature 950°C) and titanium tetrafluoride (white solid,
The sublimation temperature (284°C) is known. Since the method of the present invention produces titanium tetrafluoride with a low sublimation temperature,
The titanium tetrafluoride produced on the titanium surface during the reaction immediately vaporizes, constantly exposing new titanium surface, allowing for effective use of titanium, and the efficiency of the reaction is very high.

本発明の方法における反応は、以下の式による。The reaction in the method of the present invention is according to the following formula.

NFs + 3/4Ti→1/2N2+ 3/4TiF
4(1)反応生成ガス中には、四弗化チタンガスの他に
、窒素ガス(bp、−196℃)、及び条件により、微
量の三弗化窒素ガス(bp−129℃)が含1れる。こ
れらの混合ガスを冷却することにより、四弗化チタンの
みが固体状四弗化チタンとして容易に捕集される。捕集
方法は、通常知られている方法でよく、特に限定される
ものではない。
NFs + 3/4Ti→1/2N2+ 3/4TiF
4(1) In addition to titanium tetrafluoride gas, the reaction product gas may also contain nitrogen gas (bp, -196°C) and, depending on the conditions, a trace amount of nitrogen trifluoride gas (bp -129°C). It will be done. By cooling these mixed gases, only titanium tetrafluoride can be easily collected as solid titanium tetrafluoride. The collection method may be a commonly known method and is not particularly limited.

原料として使用される金属チタンは、通常のスポン・ゾ
チタン等入手の容易なものでよく、その形状も、粒状、
棒状、ワイヤー状等操作性のよいものであれば特に限定
されるものではなp0日本工業規格(JIS H−21
51)によれば、ス?ンノチタン(例えばTS −10
5M )におけるチタン金属の純度は、99.6%以上
であり、また不純物として鉄0.10 %以下、マンガ
ン0.01%以下、マグネシウム0.06%以下の金属
元素が含まれる。
The metallic titanium used as a raw material may be easily available, such as ordinary spontium, zotitanium, etc., and its shape may be granular,
It is not particularly limited as long as it is rod-shaped, wire-shaped, etc., and has good operability.
According to 51), Su? titanium (e.g. TS-10
The purity of titanium metal in 5M) is 99.6% or more, and metal elements such as 0.10% or less iron, 0.01% or less manganese, and 0.06% or less magnesium are included as impurities.

これらの不純物金属が弗素化された場合、二弗化鉄(融
点1000℃以上)、三弗化鉄(昇華1000℃)、二
弗化マンガン(融点856℃)。
When these impurity metals are fluorinated, iron difluoride (melting point: 1000°C or higher), iron trifluoride (sublimation: 1000°C), manganese difluoride (melting point: 856°C).

二弗化マグネシウム(融点1263℃〕等が生成するが
、いづれも微量であり、しかも、すべて高融点化合物で
あるため、気相の四弗化チタンガス   中にこれらの
不純物金属成分が混入することはないO 本発明で用いる三弗化窒素は、そのまま反応に供しても
よく、また、窒素、ヘリウム等の不活性がスで希釈して
用いてもさしつかえない。三弗化窒素と金属チタンの反
応温度は、200℃以上。
Magnesium difluoride (melting point: 1263°C) and other substances are generated, but since they are all compounds with high melting points, these impurity metal components may be mixed into the titanium tetrafluoride gas in the gas phase. Nitrogen trifluoride used in the present invention may be used as is for the reaction, or may be diluted with an inert gas such as nitrogen or helium. The reaction temperature is 200°C or higher.

特に250℃〜400℃が好ましい。200℃以下の温
度では、生成する四弗化チタンの蒸気圧が低く、チタン
表面を固体状四弗化チタンが覆い、反応の進行を阻害す
るため、チタンの有効利用の点から、好ましくない。4
00℃以上の温度では、反応熱による反応器内部の局所
過熱状態等が生じるため、反応器の材質面2反応制御の
面から、有利であるとはいえない。しかし、このような
場合でも、窒素、ヘリウム等の不活性ガスで希釈し、三
弗化窒素濃度を減じることにより、このような局所過熱
を防ぐことができる。反応の方法は特に限定されるもの
ではないが、通常の流通式が装置も簡便で操作も容易で
ある。
Particularly preferred is 250°C to 400°C. At a temperature of 200° C. or lower, the vapor pressure of the titanium tetrafluoride produced is low and the surface of the titanium is covered with solid titanium tetrafluoride, inhibiting the progress of the reaction, which is not preferable from the point of view of effective use of titanium. 4
A temperature of 00° C. or higher is not advantageous in terms of the material of the reactor and reaction control, since local overheating occurs inside the reactor due to reaction heat. However, even in such a case, such local overheating can be prevented by diluting with an inert gas such as nitrogen or helium to reduce the nitrogen trifluoride concentration. The reaction method is not particularly limited, but the usual flow type is simple in equipment and easy to operate.

実施例 以下に実施例を示し、本発明を具体的に説明する。Example EXAMPLES The present invention will be specifically explained below with reference to Examples.

〔実施例1〕 内径20wφのニッケル製反応管に、4〜8meshの
ス?ンゾチタン(日本工業規格TS−105M。
[Example 1] A 4 to 8 mesh strip was placed in a nickel reaction tube with an inner diameter of 20 wφ. Titanium (Japanese Industrial Standards TS-105M).

チタン純度99.6%以上)を60I充填し、外部から
ヒータにより、反応管を300℃に保持した。
The reaction tube was filled with 60 l of titanium (purity of 99.6% or more) and maintained at 300° C. by an external heater.

三弗化窒素ガスを1.26/hrの流量にて導入し、1
0時間連続して反応を行なった。
Nitrogen trifluoride gas was introduced at a flow rate of 1.26/hr,
The reaction was carried out continuously for 0 hours.

生成がスを内容積300+y+lの、内部冷却器(水冷
却)を備えた円筒形容器を通過させることにより、金属
弗化物な固化、捕集した。捕集容器出口のガスをGCに
て分析したところ、未反応三弗化窒素は検出されなかっ
た。
The produced gas was passed through a cylindrical container having an internal volume of 300+y+l and equipped with an internal cooler (water cooling) to solidify and collect metal fluorides. When the gas at the outlet of the collection container was analyzed by GC, no unreacted nitrogen trifluoride was detected.

捕集金属弗化物は、白色粉末状の四弗化チタン(純度9
9.9%以上)であり、元素分析の結果、鉄、マンガン
、マグネシウム等の金属不純物は検出されなかりた。捕
集量は49.6.Fであり、これは、三弗化窒素基準の
収率98.8%に相当する。
The collected metal fluoride is white powdered titanium tetrafluoride (purity 9
9.9% or more), and as a result of elemental analysis, metal impurities such as iron, manganese, and magnesium were not detected. The amount collected was 49.6. F, which corresponds to a yield of 98.8% based on nitrogen trifluoride.

〔実施例2〕 実施例1と同様の装置、同様のチタン充填量にて、反応
を行なった。反応温度330℃にて、三弗化窒素I Q
 vol % 、窒素90voi%の組成の混合ガスを
241/hrの流量にて導入し、6時間連続して反応を
行なった。
[Example 2] A reaction was carried out using the same apparatus as in Example 1 and the same titanium filling amount. At a reaction temperature of 330°C, nitrogen trifluoride IQ
A mixed gas having a composition of 90 vol % nitrogen and 90 voi % nitrogen was introduced at a flow rate of 241/hr, and the reaction was carried out continuously for 6 hours.

生成ガスを、実施例1と同様の捕集容器を通過させ、四
弗化チタンがスを固化、捕集した。捕集容器出口のガス
中には、未反応三弗化窒素は検出されなかった。四弗化
チタン(純度9’ 9.94以上)の捕集量は59.2
.9であり、これは三弗化窒素基準の収率99.5%に
相当する。
The generated gas was passed through a collection container similar to that in Example 1, and titanium tetrafluoride was solidified and collected. No unreacted nitrogen trifluoride was detected in the gas at the outlet of the collection container. The amount of titanium tetrafluoride (purity 9' 9.94 or higher) collected is 59.2
.. 9, which corresponds to a yield of 99.5% based on nitrogen trifluoride.

発明の効果 以上述べたように、本発明は、三弗化窒素と金属チタン
を接触させることにより、きわめて効率よく、しかも高
純度の四弗化チタンを、簡便、安全に製造する方法を提
供するものである。
Effects of the Invention As described above, the present invention provides a method for easily and safely producing highly efficient titanium tetrafluoride with high purity by bringing nitrogen trifluoride into contact with metallic titanium. It is something.

Claims (1)

【特許請求の範囲】[Claims] 三弗化窒素と金属チタンを接触させ、ガス状の四弗化チ
タンを生成させることを特徴とする四弗化チタンの製造
方法。
A method for producing titanium tetrafluoride, which comprises bringing nitrogen trifluoride into contact with metallic titanium to produce gaseous titanium tetrafluoride.
JP14013085A 1985-06-28 1985-06-28 Production of titanium tetrafluoride Granted JPS623019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14013085A JPS623019A (en) 1985-06-28 1985-06-28 Production of titanium tetrafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14013085A JPS623019A (en) 1985-06-28 1985-06-28 Production of titanium tetrafluoride

Publications (2)

Publication Number Publication Date
JPS623019A true JPS623019A (en) 1987-01-09
JPH0518765B2 JPH0518765B2 (en) 1993-03-12

Family

ID=15261590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14013085A Granted JPS623019A (en) 1985-06-28 1985-06-28 Production of titanium tetrafluoride

Country Status (1)

Country Link
JP (1) JPS623019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0333084A2 (en) * 1988-03-16 1989-09-20 MITSUI TOATSU CHEMICALS, Inc. Method for preparing gaseous fluorides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0333084A2 (en) * 1988-03-16 1989-09-20 MITSUI TOATSU CHEMICALS, Inc. Method for preparing gaseous fluorides

Also Published As

Publication number Publication date
JPH0518765B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
US5744657A (en) Process for the preparation of perfluorocarbons
US4091081A (en) Preparation of nitrogen trifluoride
JP3616648B2 (en) Method for producing high purity hydrogen fluoride
JPS6071503A (en) Manufacture of nf3
US2836622A (en) Preparation of carbonyl fluoride
JPH01261208A (en) Method for purifying nitrogen trifluoride gas
JP4842272B2 (en) Method for fluorinating manganese compounds
CN103998375B (en) High-purity chloro is for the manufacture method of polysilane
JPS623019A (en) Production of titanium tetrafluoride
TWI781444B (en) The production method of bromine pentafluoride
KR20130097720A (en) Synthesis of stannane and deuterostannane
JPS5842849B2 (en) Method for producing lower perfluoroalkane
JP3258413B2 (en) Method for producing germanium tetrafluoride
Zhang et al. The safe and convenient preparation of bis (fluorosulfuryl) peroxide (S2O6F2) on a large scale
JP2000072442A (en) Purifying method of tungsten hexafluoride
US4430514A (en) Novel method for the preparation of CF3 NF2
US3336111A (en) Apparatus and method for the manufacture of fluorides
US2924624A (en) Process for preparing carbon tetrafluoride of at least 90 percent purity
JPWO2005056472A1 (en) Method and apparatus for producing carbonyl fluoride
US7417167B2 (en) Process for producing carbonyl difluoride
JP3309402B2 (en) Method for producing high purity phosphorus
KR20080016944A (en) Process for synthesis of halogenated nitrogen
US2924623A (en) Process for preparing carbon tetrafluoride essentially free from other halocarbons
US2894811A (en) Process for making uranium hexafluoride
Bulanov et al. Preparation of high-purity silicon tetrafluoride by thermal dissociation of Na 2 SiF 6